
FALCON: A Fourier Transform Based Approach for Fast and Secure

Convolutional Neural Network Predictions

Shaohua Li1 Kaiping Xue1 Bin Zhu1 Chenkai Ding1 Xindi Gao1 David Wei2 Tao Wan3

1University of Science and Technology of China 2Fordham University 3CableLabs

lshhsl@mail.ustc.edu.cn kpxue@ustc.edu.cn {cnzb01, chimkie, khronos}@mail.ustc.edu.cn

dsl.wei01@gmail.com t.wan@cablelabs.com

Abstract

Deep learning as a service has been widely deployed

to utilize deep neural network models to provide predic-

tion services. However, this raises privacy concerns since

clients need to send sensitive information to servers. In

this paper, we focus on the scenario where clients want to

classify private images with a convolutional neural network

model hosted in the server, while both parties keep their

data private. We present FALCON, a fast and secure ap-

proach for CNN predictions based on fast Fourier Trans-

form. Our solution enables linear layers of a CNN model

to be evaluated simply and efficiently with fully homomor-

phic encryption. We also introduce the first efficient and

privacy-preserving protocol for softmax function, which is

an indispensable component in CNNs and has not yet been

evaluated in previous work due to its high complexity.

1. Introduction

Deep learning has been applied to quite a few fields

to overcome the limitations of traditional data process-

ing methods, such as image classification [19, 17], speech

recognition [3, 4], medical diagnosis [28, 11], etc. Some

companies and institutions have also invested in deep learn-

ing technologies, and trained their own deep neural network

models to provide users with paid or free services. For ex-

ample, Google Vision [9] provides an API for image clas-

sification for developers and general users, and one can up-

load an image to the cloud to obtain the classification result

and its corresponding probability. Although these services

provide rich experiences to users, they also cause serious

privacy concerns because uploaded user data may contain

private information [29], such as face pictures and X-ray

images. Although many companies claim that they will

never leak or use users’ data for commercial purposes, the

increasing number of data leaks alert us that there is no

guarantee on what they promised [2].

Certainly, the clients’ input data is not the only sensi-

tive information, because for servers, their own models also

need to be protected from adversarial clients. First, models

may be trained with large amount of private data, e.g., med-

ical records to obtain a model for disease prediction. Thus,

sensitive information could be extracted from a trained

model if disclosed to a malicious client [30, 31]. Second,

model parameters and detailed prediction results, i.e., ac-

curate probabilities over all classes, can be used to gener-

ate adversarial examples to deceive deep learning models

[27, 8], to result in incorrect classification results. Third,

many prediction models themselves, even without consid-

ering sensitive training data, require intellectual property

protection and cannot be disclosed to third parties includ-

ing their clients [21, 18].

To tackle this problem, researchers have put forward

a secure deep learning scenario, where the server has a

model, the client has data, and these two interact in such

a way that the client can obtain the prediction result with-

out leaking anything to the server, while learning nothing

about the model. They usually use homomorphic encryp-

tion (e.g., CryptoNets [15]), secure multi-party computa-

tion [34] (e.g., MiniONN [21]), or their combination (e.g.,

GAZELLE [18]), for secure evaluation.

In this paper, we focus on the fast and secure solution

for Convolutional Neural Networks (CNNs), one of the

most important neural networks in deep learning. CNNs

are characterized by the spatial input data, such as images

and speeches. Typically, a CNN model consists of convolu-

tional, activation, pooling, and fully-connected layers, and

often follows by a softmax layer. Convolutional and fully-

connected layers have linear property, while activation and

pooling are nonlinear layers. The softmax layer is used to

normalize the output into probabilities, usually used as the

last layer of a CNN. The softmax layer is indispensable in

many use cases. For example, a CNN model classifies an

X-Ray image into “Pneumonia” with probability 5%. Al-

though “Pneumonia” is the top label, the real result indi-

cates that the patient probably has no such disease, and this

8705

cannot be known without the probability output. Because

the softmax function involves division and exponentiation

that would introduce incredibly high overhead when evalu-

ating with privacy tools, the existing work, e.g., CryptoNets,

MiniONN and GAZELLE, used argmax function instead of

softmax to obtain only the top one label. We, however, pro-

pose a novel efficient protocol for the softmax layer.

In this paper, we propose FALCON for fast and secure

convolutional neural network predictions. Our contribu-

tions can be summarized as follows:

• For convolutional and fully-connected layers, we se-

cure them with fully homomorphic encryption and

achieve high efficiency by fast Fourier Transform (FFT)

based ciphertext calculation.

• For ReLU and pooling layers, we propose a secure two-

party computation protocol to evaluate them. Their

evaluation efficiency is further improved by our opti-

mized processing pipeline.

• For Softmax function, its secure evaluation has not

yet been addressed by any previous work. We pro-

pose an Approximate Theorem to simplify calculation

for softmax function, based on which we implement

the first secure and efficient two-party softmax compu-

tation protocol.

2. Related Work

CryptoNets [15] inspired us to process neural network

models securely with leveled homomorphic encryption

(LHE). Since only LHE is used, CryptoNets needs to re-

place nonlinear activation and pooling functions with linear

functions and re-train the model. SecureML [23] proposed

protocols based on secure two-party computation for train-

ing several kinds of machine learning models between two

non-colluding servers. DeepSecure [25] used Yao’s Garbled

Circuits only to enable scalable execution of neural network

models between semi-trusted client and server. Chameleon

[24] used additively secret sharing [6], Yao’s Garbled Cir-

cuits [34], and GMW protocol [16] to implement secure

CNN evaluation. But it requires an extra semi-honest third

party. MiniONN [21] transformed a neural network model

into an oblivious version, and used additively homomor-

phic encryption to generate multiplication triplets first, and

then evaluated the model using secure two-party computa-

tion efficiently. GAZELLE [18] utilized the fully homomor-

phic encryption and designed efficient schemes for privacy-

preserving convolution and matrix-vector multiplication op-

erations. GAZELLE used homomorphic encryption in con-

volutional and fully-connected layers, and secure two-party

computation in ReLU and pooling layers. Since MiniONN

and GAZELLE outperform all previous work, we compare

FALCON with them to show our performance superiority.

2.1. Building Blocks

2.2. Fast Fourier Transform

In image processing, the well-known fast Fourier Trans-

form (FFT) is an algorithm that can convert an image from

its space domain to a representation in the frequency do-

main and vice versa [33]. Letting f(x, y) denote the pixel

value of an image at point (x, y), after FFT, f(x, y) will turn

to Ff (u, v), which is a complex number. For simplicity, we

denote the FFT of input x as F(x). An important property

of the FFT used in this paper is linearity, i.e. for two inputs

x and y, we have:

F(x) + F(y) = F(x + y). (1)

FFT also has an important Convolution Theorem: the

convolutions in the space domain are equivalent to point-

wise products in the frequency domain. Denoting F−1 as

the inverse FFT, the convolutions between x and y can be

computed by:

x ∗ y = F−1(F(x) · F(y)). (2)

2.2.1 Lattice-based Homomorphic Encryption.

To implement privacy-preserving convolutions in FAL-

CON, we require two kinds of homomorphic operations:

SIMDAdd and SIMDMul. The SIMD here means we can

pack a vector of plaintext elements into a ciphertext, and

perform calculations on ciphertexts corresponding to each

plaintext element, which reduces required ciphertext size

and evaluation time. The SIMDAdd represents homomor-

phic addition between two ciphertexts, while the SIMDMul

represents homomorphic multiplication between a cipher-

text and a plaintext. All these requirements can be satis-

fied by modern lattice-based homomorphic encryption sys-

tems [14, 12, 7]. There are three required parameters in

these schemes, namely number of plaintext slots n, plain-

text module p, and ciphertext module q. Parameter n is the

maximum number of data that can be processed in SIMD

style. Parameter p limits the range of plaintext data. Param-

eter q can be calculated from given n and p. In this paper,

we denote the ciphertext of x as [x].

2.2.2 Secure Two-Party Computation.

Secure two-party computation protocols allow two parties

to jointly evaluate functions on each other’s private data

while preserving their privacy. Functions are represented

as boolean circuits and then computed by these protocols.

Yao’s Garbled Circuits is a representative implementation

of such protocols and will be used in this paper for the se-

cure computation between a client and a server.

The ABY framework [10] is an open source library that

supports secure two-party computation, and we use this li-

brary to implement secure ReLU, Max Pooling and softmax

layer. This library has encapsulated several basic operations

8706

hf
w

h

Conv Layer

0

Activation Layer Pooling Layer

flatten
�

FC Layer

il

0l

logits

Softmax

Softmax Layer

c

wf

k
Pneumonia 0.61

Cardiopathy 0.15

ReLU

Figure 1. An example of convolutional neural networks.

for secure computation, and we here introduce the opera-

tions used in this paper (Note that, the term “share’ used in

what follows means Yao sharing, which is a type of sharing

used by Yao’s Garbled Circuits.):

– ADDGate(a, b) performs an arithmetic addition on input

shares a and b, and returns the result as a share.

– SUBGate(a, b) performs an arithmetic subtraction on in-

put shares a and b, and returns the result as a share.

– GTGate(a, b) performs a ternary operation “a > b ? 1 :
0”, and returns 1 if a > b, 0 otherwise.

–MUXGate(a, b, s) performs as a multiplexer, and returns a
if s is 1, returns b if s is 0.

3. FALCON Execution Flow

Consider such a scenario that a doctor wants to learn the

potential disease a patient might have from an X-Ray im-

age, only knowing the top label without the corresponding

probability may lead to unreliable diagnostic result. For ex-

ample, the output top label “Pneumonia” with probability

“0.9” and “0.1” definitely have different meanings for treat-

ment. In this section, we will outline the execution flow

using the convolutional neural network shown in Fig. 1.

System model. We consider a client C who wants to predict

an input (e.g. an X-Ray image) with a convolutional neural

network model held by a server S. For client C, the input

is private. For server S, the parameters of convolutional and

fully connected layers are also private. Our design goal is

to preserve privacy for both parties when evaluating CNN

models. We assume that both C and S are semi − honest.
That is, they adhere to the execution flow defined by FAL-

CON protocols, while trying to learn the other party’s pri-

vate information as much as possible.

Privacy guarantees. For server S, FALCON protects the

following information about the model: all the weight pa-

rameters of convolutional and fully-connected layers, and

the filter size of convolutional layers. FALCON does not

hide the model architecture, i.e., the type of layer, layer size

(the number of neurons in a layer), and the number of lay-

ers. For client C, FALCON leaks no information about the

input content but do not protect the input size.

Execution flow at a high leverl.

At the beginning, C holds an input vector x and the private

key, and S holds the neural network model. To evaluate the

first layer, which is mostly a convolutional layer, C encrypts

the FFT of x, denoted by [F(x)], and transfers it to S. Then,

S and C together do the following:

1. (Evaluate the Conv layer) S feeds the convolutional

layer with [F(x)] and obtains the output [F(y)], where

y is the plaintext output. In order to compute the next

activation layer, S and C will each hold an additive

share of y, i.e., xS + xC = y. This can be done by

the proposed translation method. (See details in Sec-

tion 4.2.)

2. (Evaluate the ReLU layer) For the ReLU layer, S and

C run the designed boolean circuits for the ReLU func-

tion. Note that, we still require that the output value is

additively shared by two parties. (See details in Section

4.3.2.)

3. (Evaluate the pooling layer) Evaluating the mean

pooling function on two additive shares is simple. We

can have these two parties perform mean pooling on

their shares respectively. For Max Pooling, we also de-

sign boolean circuits to realize it. Note that, the same as

ReLU, we need to ensure that S and C additively share

the output value. (See details in Section 4.3.3.)

4. (Evaluate the FC layer) Typically, a FC layer is treated

as matrix multiplication. In our design, we first convert

this layer into an equivalent Conv layer and then use

the same method in the convolutional layer to evaluate.

Note that the input to this layer is additively shared by S

and C, so we need to translate from shares to ciphertexts

as described in Section 4.1. (See details in Section 4.4.)

5. (Evaluate the softmax layer) The input to softmax

function is generally the output of a FC layer. In our

design, we first have S and C additively share the input.

Then we disassemble the softmax function into a max

and an inner product function to enable the client C to

efficiently obtain the target class with probability. (See

details in Section 4.5.)

4. FALCON Design

4.1. Setup

Before moving on to the implementation details of each

layer, we first introduce the encryption method and the

translation between a ciphertext and additive shares. At the

beginning, the client C holds the input x and needs to trans-

fer its ciphertext to the server S. In our design, all cipher-

texts correspond to plaintext data in the frequency domain.

8707

That is, for input x of size w × h, the client C first per-

forms FFT to obtain F(x), and then encrypts it to [F(x)].
The F(x) inherits the size of x, but every element of it is

a complex number, e.g. F(x)0,0 = a + bj where a and

b are real numbers. Note that we cannot apply homomor-

phic encryption directly to complex numbers. Thus, we let

the client C encrypt the real parts (e.g., a) and the imagi-

nary parts (e.g., b) into two ciphertexts respectively. That

is, for every element in F(x), C packs all the real parts into

a plaintext vector and encrypts this vector, which is denoted

as [F(x)R]. Accordingly, the ciphertext of all the imaginary

parts is denoted as [F(x)I]. All the ciphertexts involved in

the FALCON have this form.

The output of a linear layer, i.e., convolutional and fully

connected layer, is a ciphertext, while the input to a non-

linear layer is additive shares. Therefore, before feeding

the output of a linear layer into a non-linear layer, we need

to translate from a ciphertext to additive shares. Assume

that the output of a linear layer is [F(y)], which is actually

[F(y)R] and [F(y)I], the goal of server S and client C is

to respectively obtain xS and xC, satisfying xS + xC = y

and guaranteeing no information about y will be exposed

to either S or C. In order to achieve this goal, S generates a

random vector r of the same size to y, and performs the FFT

to obtain F(r)R and F(r)I . Using the SIMDAdd, S adds

these values to the ciphertext homomorphically to obtain

[F(y)R−F(r)R] and [F(y)I −F(r)I]. Recall the linearity

of the FFT shown in Eq. 1, we have [F(y)R − F(r)R] =
[F(y − r)R] and [F(y)I −F(r)I] = [F(y − r)I].

The client C decrypts them and combines the imaginary

parts with the real parts to obtain F(y − r), and then per-

forms the inverse FFT to get (y − r). Letting xS = r and

xC = (y − r), we have the y be additively shared.

To translate from additive shares to ciphertexts, namely

feed the output of non-linear layer to linear layer, we can

run the reverse of above process. Note that FALCON works

in Zp, where p is the selected plaintext module for ho-

momorphic encryption. For any intermediate value xm,

xm < ⌊p/2⌋ implies xm is positive, otherwise negative.

4.2. Secure Convolutional Layer

The input image (or feature map) to a Conv layer is x

of size w × h × c, where w and h are respectively width

and height and c is the number of channels. We assume

that there are a total of k filters (or kernels) in a Conv layer,

each of which has a size of fw×fh×c. In this part, we first

introduce a simple case where the input has single channel

(c = 1) and the layer has only one filter (k = 1) to present

our key idea. Then we describe a more general case where

c > 1 and k > 1.

Simple Case (c = 1, k = 1). Firstly, client C performs

FFT on input x of size w × h to obtain F(x)R and F(x)I ;

server S performs FFT on filter fi of size fw × fh to obtain

F(fi)R and F(fi)I . Secondly, client C encrypts FFT results

as [F(x)R] and [F(x)I], and sends them to server. Assum-

ing the convolution result of x and fi is y, server S does the

following calculations:

[F(y)R] = [F(x)R]⊗F(fi)R ⊕ [F(x)I]⊗ (−F(fi)I),

[F(y)I] = [F(x)R]⊗F(fi)I ⊕ [F(x)I]⊗F(fi)R,

where “⊗” represents SIMDMul, and “⊕” represents SIM-

DAdd. Then S generates a random vector r of size w × h,

and encrypts its FFT values as [−F(r)R] and [−F(r)I]. Fi-

nally, S sends the following two ciphertexts to C:

[F(y − r)R] = [F(y)R]⊕ [−F(r)R],

[F(y − r)I] = [F(y)I]⊕ [−F(r)I].

Client C decrypts the ciphertexts, combines the real parts

with the imaginary parts, and performs the inverse FFT to

obtain (y − r), which is set to C’s share xC. Then, server S

sets r to its share xS. At this point, the convolutional layer

has been evaluated, and the result y is additively shared by

S and C.

General Case. In order to present our idea clearly, we first

explain how to calculate the convolution in the plaintext do-

main and then the ciphertext domain.

(Plaintext domain) For the filter fi (i ∈ [1, k]) that contains

c channels fi1, fi2, · · · , fic, and the input x that contains c
channels x1, x2, · · · , xc, firstly, c × 2-D filters and c × 2-D

inputs are transformed using the FFT, then the correspond-

ing channels are multiplied to get c intermediate results. Fi-

nally, these intermediate results are added to obtain the final

output in the frequency domain.

(Ciphertext domain) Consider these 2-D filters and inputs

as c independent groups, server S applies the calculation

process shown in the simple case to these groups to get c
intermediate ciphertexts, and then returns them to client C

after masking with random vector r. C decrypts these ci-

phertexts and adds them up in the plaintext domain. Let y

denote real output values, then at this point, shares of S and

C are respectively r and y-r.

Security analysis. The input data of client C, weight pa-

rameters, and the size of filters require protection. Since

the input data remain encrypted during the evaluation of

server S, the data are protected. Client C only obtains the

masked convolutional result, and thus learns nothing about

the weight parameters. Because filters are padded into the

same size with the input, their size is also preserved.

4.3. Secure Activation Layer & Pooling Layer

In what follows, we first introduce the data preprocess-

ing, which translates additive shares to Yao sharing. It also

guarantees that Yao sharing lies in [0, p). Then we present

implementations for ReLU and Max Pooling.

8708

...

...

FFT

FFT

...

+

iFFT

convolution

Figure 2. The convolution operations for multiple channels in plaintext.

ADD

SUB

GT

MUX
x_C

x_S

p

Figure 3. Boolean circuits for data preprocessing.

Listing 1. Function description of data preprocessing.

4.3.1 Data preprocessing.

Assume that xC = {xC
1 , x

C
2 , · · · , x

C
N} and xS =

{xS
1, x

S
2, · · · , x

S
N} are the additive shares held by client C

and server S, respectively. Since both xC
i and xS

i belong to

[0, p), we have xC
i + xS

i belongs to [0, 2p). Since FALCON

works in Zp, we need to limit the sum of two input shares to

[0, p). The illustration of boolean circuits for data prepro-

cessing is shown in Fig. 3 and the pseudocode is shown in

Listing 1. We first use ADDGate to recover true value (line

4) and judge if it exceeds p or not (line 5). A MUXGate is

then used to select x or p − x (line 7). All calculations are

performed on Yao sharings and leak no information.

4.3.2 Secure ReLU layer.

Typically, Conv layers and non-last FC layers are followed

by ReLU layer, which is f(x) = max(x, 0). In our setting,

the input x is additively shared by client C and server S,

i.e. xC + xS = x. Our aim is to enable that C and S addi-

tively share max(x, 0). That is, C holds max(x, 0)− r while

S holds r, where r is randomly generated by S. The pseu-

docode is shown in Listing 2. The first GTGate performs a

great-than operation (>) (line 6), and the output is passed to

MUXGate to select the positive x or 0 as the result (line 7).

4.3.3 Secure pooling layer.

Pooling layer performs down-sampling by dividing the in-

put into rectangular pooling regions and computing the

mean or maximum of each region. To evaluate mean

pooling, we can simply let client C and server S com-

pute the mean value of their respective shares. Our fo-

cus is the evaluation of Max Pooling. Letting xregion =

Listing 2. Function description of ReLU.

{x1, x2, · · · , xk} be one of the rectangular pooling regions,

our aim is to calculate max(x1, x2, · · · , xk). The pseu-

docode of designed boolean circuits is shown in Listing 3.

Since the input has been limited from 0 to p/2 by ReLU,

we can iteratively compare two elements to obtain the max

element with GT and MUX circuits without considering the

existence of negative elements (line 11-14). Because com-

parisons are performed inside each region, we pack N ele-

ments into k vectors of size N/k via SubsetGate (line 9).

4.3.4 The Optimized ReLU and Max Pooling layers.

In a typical processing pipeline, a ReLU layer is followed

by a Max Pooling layer, and the basic operation of both is

max(). Assume that xregion = {x1, x2, · · · , xk} is one of

the rectangle pooling regions but has not applied to ReLU.

Then, the final output of the Max Pooling layer should be

max (max (x1, 0) ,max (x2, 0) , · · · ,max (xk, 0)) ,

where the inside max() corresponds to the ReLU function

while the outside is the Max Pooling function.We can find

that this process is equivalent to the following one:

max (max (x1, x2, · · · , xk) , 0) ,

where the inside max() can be considered as the Max Pool-

ing function while the outside as the ReLU. Based on this

observation, reversing the position of ReLU layer and Max

Pooling layer in the processing pipeline will reduce the

number of max() operations. An example is shown in

Fig. 4. In fact, this trick has been proposed in the study of

deep learning [1]. Nevertheless, due to the fact that ReLU

and Max Pooling functions are relatively much cheaper than

the heavy Conv and FC layers in the plaintext domain, this

optimization has been discarded. However, in the ciphertext

domain, all these functions have great impacts on the overall

performance. We report and utilize this optimization here to

further improve the FALCON performance. With this ap-

8709

Listing 3. Function description of Max Pooling.

Listing 4. Function description of our Max Pooling and ReLU.

proach, we can see that the number of max() operations in

the Max Pooling layer does not change, but the ReLU layer

is reduced greatly. For a Max Pooling layer with (2× 2) re-

gion with a stride of 2, our method can save 75% of ReLU

operations. The pseudocode is shown in Listing 4. We first

apply Max Pooling operations to obtain max values of each

region (line 9-14), and ReLU operations follow to filter out

all negative values (line 16-17).

-5 5 6 -3

3 12 -7 7

-2 -7 -3 -9

9 -6 -1 -6

ReLU

0 5 6 0

3 12 0 7

0 0 0 0

9 0 0 0

12 7

9 0

Max Pooling

-5 5 6 -3

3 12 -7 7

-2 -7 -3 -9

9 -6 -1 -6

12 7

9 -1

Max Pooling 12 7

9 0

ReLU

Original:

Ours:

Figure 4. Original ReLU and Max Pooling v.s. Ours.

4.3.5 Output circuits for ReLU and Max Pooling

The original outputs of ReLU or Max Pooling circuits are

in the form of Yao sharing. Our aim is to additively share

the result between C and S. This can be achieved by taking

the output y and a random vector (−r mod p) generated by

S as two inputs of data preprocessing circuits, the result of

which is (y − r mod p) and is sent to C.

Security analysis. Since ReLU and Max Pooling layers do

not have private model parameters, we only focus on the

confidentiality of the input. Due to the security of Yao’s

Garbled Circuits, the input data are hidden.

4.4. Secure Fully Connected Layer

Normally, a FC layer can be treated as multiplication of a

weight matrix and an input vector, and this can be executed

very fast in the plaintext domain. However, in the ciphertext

domain, this kind of multiplication is expensive. Inspired

by the observation that FC layers can be viewed as convo-

lutional layers with filters that cover the entire input regions

[22], we propose an efficient solution by transforming the

FC layer to the convolutional layer first, then utilizing the

acceleration method in Section 4.2 to evaluate the FC layer.

4.5. Secure Softmax Layer

In classification CNNs, the last FC layer is always fol-

lowed by a softmax layer to generate probability distribu-

tion over K different possible classes. However, to our best

knowledge, in all previous work, researchers presented that

the server can return logits to the client, who could obtain

probabilities by performing softmax function locally, e.g.

GAZELLE, or the client runs argmax using secure two-

party computation to only obtain the classification result

without knowing logits and probabilities, e.g. MiniONN.

The main reason why these schemes bypass the encrypted

computation is that implementing softmax function would

introduce high computation complexity, no matter using ho-

momorphic encryption or secure two-party protocols.

This high computation overhead is due to the division

and exponentiation operations in the softmax function and

we thus propose a division and exponentiation free protocol

in FALCON. We notice that in a client-server scenario, by

only accessing prediction results, C is able to extract model

information [32, 30, 26]. To tackle this issue, S can only

return necessary results, i.e., the class to which the input

belongs and its corresponding probability, to C. Softmax

function is given by

f(x)i =
exi

∑K

k=1 e
xk

, for i = 1, 2, · · · ,K,

where f(x)i is the probability that the input belongs to the

class i. Letting the target class be t, our aim is to calculate

pt = ext

∑
K

k=1
exk

. Before moving to the detailed protocols,

we first give the following theorem:

Theorem 1. (Approximation Theorem) For pt =
ext

∑
K

k=1
exk

,

where xt = max(x1, · · · , xK), and p′t = ext
∑

xk≥xt−m

exk
,

where m ≥ ln
[

(10l − 1)(K − 1)
]

and l ≥ 1, we have

|pt − p′t| ≤ 10−l.

(The proof can be found in the full version [20].)

This theorem shows that in the case of a precision re-

quirement of 10−l, we can replace pt with p′t. In another

word, we can set a threshold xt −m to filter all values less

than xt −m. Also, p′t can be written as

8710

p′t =
ext

∑

xk≥xt−m

exk

=
ext/ext−m

∑

xk≥xt−m

exk/ext−m

=
em

∑

xk≥xt−m

exk−(xt−m)
,

where all the intermediate values are limited to
[

e0, em
]

,

which enables us to use a small bit length to evaluate the

secure softmax with Yao’s Garbled Circuits. For example,

for l = 10−3 and K = 100, we have m ≥ ln(10−3 ∗ 100−
100) ≈ 11.52, and e12 takes only 18 bits, while the original

xt may reach up to > 100 [8] and e100 takes 145 bits. Based

on the above analysis, the outline protocol of our proposed

secure softmax is as follows:

1. Let [F(x)], where x = {x1, x2, · · · , xK} be the input

to the softmax layer. Server S masks it with a random

vector r, and sends [F(x − r)] to client C. Then S sets

its share to xS = r = {r1, r2, · · · , rK} mod p.

2. The client C decrypts [F(x − r)] and per-

forms the inverse FFT to obtain (x − r).
Then C sets its share to xC = x − r =
{x1 − r1, x2 − r2, · · · , xK − rK} mod p.

3. Now C and S interact with each other to find the maxi-

mum value xt and decide which xi can be ignored ac-

cording to the selected integer m, and set the ignored

one and the left xi to 0 and m − (xt − xi), respec-

tively. To be noted, the plaintext modulo is converted

to (m + 1), and there no longer exist negative values.

At the end of this procedure, C and S hold newly gen-

erated shares, xS = {r′1, r
′
2, · · · , r

′
K} mod (m+1) and

xC = {x′
1 − r′1, x

′
2 − r′2, · · · , x

′
K − r′K} mod m + 1,

where x′
i is 0 or m− (xt − xi) and r′i is randomly gen-

erated by S.

4. Next, to calculate the denominator of p′t, client C and

server S first calculate

exC

= {ex
′
1
−r′

1 , ex
′
2
−r′

2 , · · · , ex
′
K
−r′

K} and

exS

= {er
′
1 , er

′
2 , · · · , er

′
K}.

Then, they use Yao’s Garbled Circuits to calculate the

denominator of p′t. The boolean circuits used here for

Yao’s Garbled Circuits can be simply implemented

with ADDGate, MULGate and MUXGate, and we

ignore the details here. The xC and xS are used to

guarantee that every e(x
′
i
−r′

i
mod m+1)+(r′

i
mod m+1)

does not exceed em+1 and decide whether to drop it.

The final calculation result, i.e., the denominator of p′t,
will be obtained by C.

At this point, since the numerator em is public and C has

the denominator of pt, C is able to calculate p′t. Note that,

the potential leakage resulting from p′t is out of scope of this

paper. Actually, it is a general problem of neural networks

[27]. Since the numerator of p′t, i.e. em, is public and con-

tains no information about p′t, the possible information that

could infer from the denominator of p′t is equal to p′t.

Security analysis. The possible privacy leakages are from

x1, x2, · · · , xK as they are all that used by the client to cal-

culate the final result. In our design, xi, i ∈ [1,K] remains

shared throughout the calculation, which means the client

can only obtain xi−ri. Since ri is a random number gener-

ated and kept by the server, xi is protected from the client.

5. Performance Evaluation

We implemented FALCON in C++. For fast Fourier

Transform (FFT), we used FFTW library [13]. For

additively homomorphic encryption, we used the Fan-

Vercauteren (FV) scheme [5]. For secure two-party com-

puting, we used Yao’s Garbled Circuits implemented by the

ABY framework [10]. Specifically, the number of slots n,

the plaintext module p, and the ciphertext module q are

needed for the initialization of the FV scheme. We chose

n = 2048, which means we can process up to 2048 ele-

ments in parallel, and the ciphertext module q was set to

1152921504382476289. The plaintext module p was set to

1316638721, which has 30-bit length and is enough for all

the intermediate values.

We tested FALCON on two computers, both of which are

equipped with Intel i5-7500 CPU with 4 3.40 GHz cores and

8GB memory, and have Ubuntu 16.04 installed. We let one

be the client C and the other play as the server S. We took

experiments in the LAN setting similar to previous work

[21, 18]. Each experiment was repeated for 100 times and

we report the mean in this paper.

5.1. Benchmarks for Layers

Here we introduce the performance of FALCON on in-

dividual layers. Since GAZELLE is the best known related

work, we compare FALCON with it in all layers except the

softmax layer, which is not implemented by GAZELLE. For

benchmarking, all input data to each layers are randomly

sampled from [0, p). Parameters of Conv and FC layers are

chosen from the CIFAR-10 model stated in Section 5.2.

We present the benchmarks for Conv and FC layers in

different input sizes. As shown in Table 1, for Conv layers,

we show the online running time with input (w × h × c)
and filter (fw × fh × c, k) using different frameworks. For

fully-connected layers, we report the running time with the

input vector of length li and the output vector of length

lo. Note that, the setup phases involve performing FFT on

filters and encrypting random values for masking, and the

online phases take only the server’s computation into ac-

count. As one can see from Table 1, FALCON outperforms

GAZELLE in both setup and online phases. Especially for

8711

online phases, our efficient Conv and FC implementations

offer us over 10× less runtime.

Table 1. Benchmarks and Comparisons for Conv and FC.

Layer Input Filter/Output Framework
Time (ms)

setup online

Conv

Layer

(28× 28× 1) (5× 5× 1, 5)
GAZELLE

FALCON

11.4

3.1

9.2

0.25

(16× 16× 128) (3× 3× 128, 128)
GAZELLE

FALCON

3312

615

704

51.2

FC

Layer

2048 1
GAZELLE

FALCON

16.2

1.2

8.0

0.1

1024 16
GAZELLE

FALCON

21.8

9.6

7.8

0.8

In Table 2, we report the running time and commu-

nication overhead of setup and online phases for ReLU

and Max Pooling layers. Comparing to data preprocess-

ing, the online communication overhead of ReLU and Max

Pooling operations is almost negligible. We can also see

that the optimized Max Pooling and ReLU operations have

reduced the computation and communication overhead in

all phases. Therefore, in ReLU and MaxPooling layers,

FALCON which uses the optimized version outperforms

GAZELLE which uses the original version.

Table 2. Benchmarks for ReLU and Max Pooling.

Operation
Number of

Inputs

Time (ms) Comm (MB)

setup online setup online

Data

Preprocessing

1000

10000

32.3

265.5

14.5

136.4

4.82

48.2

1.45

14.9

ReLU
1000

10000

9.82

96.2

4.20

43.2

1.95

19.2

0.01

0.11

MaxPooling
1000

10000

12.1

100

5.6

45.5

1.94

20.0

0.01

0.12

ReLU+MaxPooling
1000

10000

21.9

196.3

9.8

88.7

3.89

39.2

0.02

0.23

Optimized

MaxPooling+ReLU

1000

10000

12.5

134.3

5.2

54.4

2.44

24.4

0.02

0.14

We tested the performance of our proposed protocol for

softmax function in different settings. As shown in Table 3,

both runtime and communication overhead of setup and on-

line phases grow with the precision l and the number of

classes K. These overhead is relatively small compared

with other layers in FALCON.

Table 3. Benchmarks for the Softmax.

Precision Classes
Time (ms) Comm (MB)

setup online setup online

10−2
10

100

1000

8.56

58.7

574.8

3.89

24.5

254.6

0.996

9.96

99.6

0.0294

0.294

29.4

10−4
10

100

1000

8.66

60.3

588.0

4.02

26.7

257.6

0.996

9.96

99.6

0.0294

0.294

29.4

5.2. Evaluations on Real Models

We evaluated the performance of FALCON on two

datasets, MNIST and CIFAR-10. CNN models for them

are both from [21]. The CNN model for MNIST takes a

gray scale image with size 28× 28 as input and has 2 Conv,

2 FC, 3 ReLU and 2 Max Pooling layers; The CNN model

for CIFAR-10 takes a three channel image of size 32×32×3
as input and has 7 Conv, 1 FC, 7 ReLU and 2 Mean Pooling

layers. We show runtime cost and communication overhead

in both setup and online phases. To be noted, for the fairness

of comparison, softmax layer is excluded in both models.

Table 4. Performance Comparison on MNIST and CIFAR-10.

CNN Framework
Time (s) Comm (MB)

setup online total setup online total

MNIST

MiniONN

GAZELLE

FALCON

3.58

1.09

0.64

5.74

0.28

0.18

9.32

1.37

0.82

20.9

40.5

40.5

636.6

21.6

21.6

657.5

62.1

62.1

CIFAR-10

MiniONN

GAZELLE

FALCON

472

15.5

10.5

72

4.25

3.31

544

19.8

13.8

3046

906

906

6226

372

372

9272

1278

1278

Since efficient and secure implementation for Conv and

FC layers are the main advantage in FALCON, in order to

highlight them, we replace implementations for ReLU and

Max Pooling in GAZELLE with the optimized version. The

results are shown in Table 4. When evaluating the online

overhead on both models, FALCON is running over 30×
faster than MiniONN while reducing communication over-

head by over 97%. The significant improvement in run-

ning time is due to the repeatedly use of FFT and lattice-

based homomorphic encryption, which saves many multi-

plications over ciphertexts.

5.3. Prediction Accuracy on Real Models

Since we treat decimal numbers as integers by proper

scaling, there might have accuracy concerns on the en-

crypted models. However, experimental results in Fig. 5

show that the loss of accuracy in FALCON is negligible,

and different schemes achieve nearly the same results.

Table 5. Prediction Accuracy on MNIST and CIFAR-10.
Plaintext MiniONN GAZELLE FALCON

MNIST 99.31% 99.0% 99.0 99.26%

CIFAR-10 81.61% 81.61 % 81.60 81.61%

6. Conclusion

In this paper, we presented a fast and secure evaluation

approach for CNN predictions. For linear layers including

Conv and FC, our FFt-based scheme achieves a low latency

performance. For non-linear layers including ReLU and

Max Pooling, we provided a detailed implementation for

our optimized processing pipeline. For the softmax layer

that has not been studied in previous work, we introduced

the first efficient and privacy-preserving protocol.

Acknowledgements This work is supported in part by the

National Natural Science Foundation of China under Grant

No. 61972371 and Youth Innovation Promotion Associ-

ation of the Chinese Academy of Sciences (CAS) under

Grant No. 2016394. K. Xue is the corresponding author

of this paper.

8712

References

[1] Execution order of relu and max-pooling. https:

//github.com/tensorflow/tensorflow/

issues/3180. Accessed Nov. 11, 2019.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang. Deep

learning with differential privacy. In Proceedings of the 23th

ACM Conference on Computer and Communications Secu-

rity (CCS’16), pages 308–318. ACM, 2016.

[3] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang,

Li Deng, Gerald Penn, and Dong Yu. Convolutional neural

networks for speech recognition. IEEE/ACM Transactions

on Audio, Speech, and Language Processing, 22(10):1533–

1545, 2014.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anub-

hai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper,

Bryan Catanzaro, Qiang Cheng, Guoliang Chen, et al. Deep

speech 2: End-to-end speech recognition in english and man-

darin. In Proceedings of the 33rd International Conference

on Machine Learning (ICML’16), pages 173–182, 2016.

[5] Jean-Claude Bajard, Julien Eynard, M Anwar Hasan, and

Vincent Zucca. A full rns variant of fv like somewhat ho-

momorphic encryption schemes. In Proceedings of the 23rd

International Conference on Selected Areas in Cryptography

(SAC’16), pages 423–442. Springer, 2016.

[6] Dan Bogdanov, Sven Laur, and Jan Willemson. Share-

mind: A framework for fast privacy-preserving computa-

tions. In Proceedings of the 13th European Symposium on

Research in Computer Security (ESORICS’08), pages 192–

206. Springer, 2008.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(leveled) fully homomorphic encryption without bootstrap-

ping. ACM Transactions on Computation Theory, 6(3):13:1–

13:36, 2014.

[8] Nicholas Carlini and David Wagner. Towards evaluating the

robustness of neural networks. In Proceedings of the 38th

IEEE Symposium on Security and Privacy (SP’17), pages

39–57, 2017.

[9] Google Cloud. Vision api - image content analysis. https:

//cloud.google.com/vision/, 2018. Accessed

Nov. 11, 2019.

[10] Daniel Demmler, Thomas Schneider, and Michael Zohner.

Aby-a framework for efficient mixed-protocol secure two-

party computation. In Proceedings of the 22nd An-

nual Network and Distributed System Security Sympo-

sium(NDSS’15), 2015.

[11] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko,

Susan M Swetter, Helen M Blau, and Sebastian Thrun.

Dermatologist-level classification of skin cancer with deep

neural networks. Nature, 542(7639):115–118, 2017.

[12] Junfeng Fan and Frederik Vercauteren. Somewhat practi-

cal fully homomorphic encryption. IACR Cryptology ePrint

Archive, 2012:144, 2012.

[13] FFTW. Fast fourier transform. http://www.fftw.org,

2018. Accessed Nov. 11, 2019.

[14] Craig Gentry, Shai Halevi, and Nigel P Smart. Fully ho-

momorphic encryption with polylog overhead. In Proceed-

ings of the 31st Annual International Conference on the The-

ory and Applications of Cryptographic Techniques (EURO-

CRYPT’12), pages 465–482. Springer, 2012.

[15] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin

Lauter, Michael Naehrig, and John Wernsing. Cryptonets:

Applying neural networks to encrypted data with high

throughput and accuracy. In Proceedings of the 33rd Inter-

national Conference on Machine Learning (ICML’16), pages

201–210, 2016.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. How

to play any mental game. In Proceedings of the 19th Annual

ACM Symposium on Theory of Computing (STOC’87), pages

218–229. ACM, 1987.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the 29th IEEE Conference on Computer Vision and

Pattern Recognition (CVPR’16), pages 770–778, 2016.

[18] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-

drakasan. GAZELLE: A low latency framework for se-

cure neural network inference. In Proceedings of the 27th

USENIX Security Symposium (USENIX Security’18), 2018.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems (NIPS’12), pages 1097–1105, 2012.

[20] Shaohua Li, Kaiping Xue, Chenkai Ding, Xindi Gao,

David SL Wei, Tao Wan, and Feng Wu. FALCON:

A fourier transform based approach for fast and secure

convolutional neural network predictions. arXiv preprint

arXiv:1811.08257, 2018.

[21] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. Oblivious neu-

ral network predictions via MiniONN transformations. In

Proceedings of the 24th ACM Conference on Computer and

Communications Security (CCS’17), pages 619–631. ACM,

2017.

[22] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition(CVPR’15), pages 3431–3440, 2015.

[23] Payman Mohassel and Yupeng Zhang. Secureml: A system

for scalable privacy-preserving machine learning. In Pro-

ceedings of the 38th IEEE Symposium on Security and Pri-

vacy (SP’17), pages 19–38. IEEE, 2017.

[24] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko,

Ebrahim M Songhori, Thomas Schneider, and Farinaz

Koushanfar. Chameleon: A hybrid secure computation

framework for machine learning applications. arXiv preprint

arXiv:1801.03239, 2018.

[25] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz

Koushanfar. Deepsecure: Scalable provably-secure deep

learning. arXiv preprint arXiv:1705.08963, 2017.

[26] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz,

and Michael Backes. Ml-leaks: Model and data indepen-

dent membership inference attacks and defenses on machine

learning models. arXiv preprint arXiv:1806.01246, 2018.

[27] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and

Michael K Reiter. Accessorize to a crime: Real and stealthy

8713

attacks on state-of-the-art face recognition. In Proceedings

of the 23rd ACM Conference on Computer and Communica-

tions Security (CCS’16), pages 1528–1540. ACM, 2016.

[28] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep

learning in medical image analysis. Annual Review of

Biomedical Engineering, 19:221–248, 2017.

[29] Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep

learning. In Proceedings of the 22nd ACM Conference on

Computer and Communications Security (CCS’15), pages

1310–1321. ACM, 2015.

[30] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly

Shmatikov. Membership inference attacks against machine

learning models. In Proceedings of the 38th IEEE Sympo-

sium on Security and Privacy (SP’17), pages 3–18, 2017.

[31] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov.

Machine learning models that remember too much. In Pro-

ceedings of the 24th ACM Conference on Computer and

Communications Security (CCS’17), pages 587–601. ACM,

2017.

[32] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and

Thomas Ristenpart. Stealing machine learning models via

prediction apis. In Proceedings of the 25th USENIX Security

Symposium (USENIX Security’16), pages 601–618, 2016.

[33] Shmuel Winograd. On computing the discrete fourier trans-

form. Mathematics of computation, 32(141):175–199, 1978.

[34] Andrew Chi-Chih Yao. How to generate and exchange se-

crets. In Proceedings of the 27th Annual Symposium on

Foundations of Computer Science (FOCS’86), pages 162–

167. IEEE, 1986.

8714

