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Abstract

Over the past few years, we have witnessed the success of

deep learning in image recognition thanks to the availabil-

ity of large-scale human-annotated datasets such as PAS-

CAL VOC, ImageNet, and COCO. Although these datasets

have covered a wide range of object categories, there are

still a significant number of objects that are not included.

Can we perform the same task without a lot of human anno-

tations? In this paper, we are interested in few-shot object

segmentation where the number of annotated training ex-

amples are limited to 5 only. To evaluate and validate the

performance of our approach, we have built a few-shot seg-

mentation dataset, FSS-1000, which consists of 1000 object

classes with pixelwise annotation of ground-truth segmen-

tation. Unique in FSS-1000, our dataset contains signifi-

cant number of objects that have never been seen or anno-

tated in previous datasets, such as tiny daily objects, mer-

chandise, cartoon characters, logos, etc.

We build our baseline model using standard backbone

networks such as VGG-16, ResNet-101, and Inception. To

our surprise, we found that training our model from scratch

using FSS-1000 achieves comparable and even better re-

sults than training with weights pre-trained by ImageNet

which is more than 100 times larger than FSS-1000. Both

our approach and dataset are simple, effective, and easily

extensible to learn segmentation of new object classes given

very few annotated training examples. Dataset is available

at https://github.com/HKUSTCV/FSS-1000

1. Introduction

Although unprecedented in the number of object cate-

gories when first released, contemporary image datasets for

training deep neural networks such as PASCAL VOC [5]

(19,740 images, 20 classes), ILSVRC [29] (1,281,167 im-

ages, 1,000 classes), and COCO [21] (204,721 images, 80

classes) are actually quite limited for visual recognition

tasks in the real world: a rough estimate of the number of

different objects on the Earth falls in the range of 500,000
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Council of the Hong Kong SAR under grant no. 1620818.

to 700,000, following the total number of nouns in the En-

glish language. While the exact total number of visual ob-

ject categories is smaller than these numbers, these large-

scale datasets contribute less than 1% in total. Extending a

new object category to existing datasets is a major under-

taking because a lot of human annotation effort is required:

in ImageNet, the mean number of images in a given class is

650. More importantly, observe that the number of images

within each object category in ImageNet for instance can

vary significantly, ranging from 1 to 3,047. This inevitably

introduces undesirable biases which may have a detrimen-

tal effect on important tasks solely relying on pre-trained

weights obtained using a dataset that is biased in both the

choice of object classes (small number) and images within a

given class (uneven distribution). Biases in existing datasets

have also been recently reported [9, 20].

Thus, Few-Shot Learning has emerged as an attractive

alternative for important computer vision tasks, especially

when the given new dataset is very small and dissimilar

so relying on the aforementioned pre-trained weights may

not work well. Particularly relevant is image segmenta-

tion which requires extremely labor-intensive, pixelwise la-

beling for supervised learning. In few-shot segmentation,

given an input consisting of a small support image set with

labels (5 in this paper) and a query image set without la-

bels, the learned model should properly segment the query

images, even the pertinent objects belong to an object class

unseen before.

There is no large-scale object dataset for few-shot seg-

mentation. Previous research on few-shot segmentation re-

lies on a manual split of the PASCAL VOC dataset to train

and evaluate a new model [31, 26], but only 20 and 80

classes in the PASCAL VOC and COCO datasets respec-

tively contain pixelwise segmentation information. Thus,

building a large-scale object segmentation dataset is neces-

sary to extensively and objectively evaluate the performance

of our and future few-shot models.

FSS-1000 is the first large-scale dataset for few-shot seg-

mentation with built-in object category hierarchy which em-

phasizes the number of object classes rather than the num-

ber of images. FSS-1000 is highly scalable: 10 new images

with ground-truth segmentation are all it takes for new ob-

ject class extension.
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Dataset Images Classes Classification Detection Segmentation Mean Stddev

SUN [37] 131,067 3,819 ✓ ✓ ✗ 39.22 717.68

ImageNet 3,200,000 5,247 ✓ ✓ ✗ 650.02 526.03

Open Image 9,052,839 7,186 ✓ ✓ ✗ 1409.62 14429.29

PASCAL VOC 2012 19,740 20 ✓ ✓ ✓ 215.90 164.07

MS COCO 204,721 80 ✓ ✓ ✓ 4492.13 7487.38

FSS-1000 10,000 1,000 ✓ ✓ ✓ 10 0

Table 1. Large-scale datasets comparison. Mean and standard deviation are based on the expected number of images in each class.
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Figure 1. Normalized image distribution. To make these datasets

comparable, we normalize each dataset respectively in the total

number of images (y-axis) and in the total number of object super-

categories (x-axis) such that the area under each curve is 1 to make

them comparable. All existing datasets are biased toward a number

of object categories except FSS-1000 (red).

Our baseline network architecture is constructed by ap-

pending a decoder module to the relation network [33],

which is a simple and elegant deep model effective and

originally designed for few-shot image classification only.

Reshaping the relation network into a fully-convolutional

U-Net architecture [24], our extensive experimental results

show that this baseline model trained from scratch on FSS-

1000, which is less than 1% of the size of contemporary

large-scale datasets, outperforms the model fine-tuned from

weights pre-trained on ImageNet/COCO dataset. In addi-

tion, without any fine-tuning / re-training, our trained base-

line network can be applied to any unseen classes directly

with decent performance. With its excellent segmentation

performance as well as extensibility, FSS-1000 and our

baseline model are expected to make a lasting contribution

to few-shot image segmentation. Please also refer to the

supplemental materials for our extensive experimental re-

sults.

2. Related Work

We first review the relationship and difference between

FSS-1000 and modern datasets aiming to solve image seg-

mentation and few-shot classification. Then we review con-

temporary research on few-shot learning and semantic seg-

mentation and discuss how we relate the few-shot segmen-

tation to previous research.

Large-Scale Datasets When deep learning had started to

become a dominating tool for computer vision, the impor-

tance of building large-scale datasets was emphasized for

training deep networks. The PASCAL VOC [5] was the

first to provide a challenging image dataset for object class

recognition and semantic segmentation. The latest version

VOC2012 contains 20 object classes and 9,993 images with

segmentation annotations. Despite the absence of segmen-

tation labels, the Imagenet [4] is built upon the backbone of

WordNet and provides image-level labels for 5,247 classes

for training, out of which a subset of 1,000 categories are

split out to form the ILSVRC [29] dataset. This challenge

has made a significant impact on the rapid progress in vi-

sual recognition task and computer vision in recent years.

The latest Open Image dataset [17] contains 7,186 trainable

distinct object classes for classification and 600 classes for

detection, making it the largest existing dataset with object

classes and location annotations. Following the PASCAL

VOC and ImageNet, the COCO segmentation dataset [21]

includes more than 200,000 images with instance-wise se-

mantic segmentation labels. There are 80 object classes and

over 1.5 million object instances in COCO dataset.

In this paper, we instead focus on broadening the num-

ber of object classes in a segmentation dataset rather than

increasing dataset size. Our FSS-1000 consists of 1,000 ob-

ject classes, wherein each class we label 10 images with

binary segmentation annotation. So in total, our dataset

contains 10,000 images with pixelwise segmentation labels.

We are particularly interested in segmentation due to its ob-

vious benefits: segmentation captures the essential feature

of an object without background; instance level segmenta-

tion can be ready from segmentation. The structure of our

dataset is similar to widely-used datasets for few-shot vi-

sual recognition. For example, the Omniglot dataset [18]

consists of 1,623 different handwritten characters of 50 dif-

ferent alphabets, which is equivalent to 1,623 object classes

with 50 images in each class. The MiniImageNet, first pro-

posed in [35], consists of 60,000 images with 100 classes

each having 600 examples. But none of these few-shot

learning datasets incorporate dense pixelwise segmentation

labels, which is essential in training a deep network model

for semantic segmentation.

Few-Shot Learning Recent research in few-shot classifi-

cation can be classified into 1) learn a good initial condition

for the network to be fine-tuned on extremely small training

set, as proposed in [8, 27]; 2) rely on memory properties

of RNN, introduced in [23, 30]; 3) learn a metric between

few-shot samples and queries, as in [2, 10, 18, 16, 33].

We choose to extend the relation network [33] for few-shot

segmentation because it is a simple, general and working

framework. By concatenating the CNN feature maps be-

tween support images and query images, the relation mod-

ule can consider the hidden relationship between these two

sets of images guided by the loss function. In the original

relation network, it uses the MSE loss to compare the fi-
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Figure 2. Example images and their corresponding segmentation in FSS-1000. For the 12 super-categories here, 5 examples are shown,

where the ground-truth segmentation map is overlaid in red in the corresponding image.

nal probability vector to the ground truth. In this paper, we

simply modify the loss to calculate pixelwise differences

between the segmentation ground truth and heatmap. In

OSLSM [31], the authors proposed a two-branch network

to solve few-shot segmentation. The network is quite com-

plex, and their training set was limited to the PASCAL VOC

dataset with only 20 object classes. Consequently, their

feature extractor may suffer severe bias making it hard to

be generalized to other objects. The guided network [26]

can also suffer the same limitation on their dataset choice.

Though point annotation can be used to guide the training of

few-shot segmentation, the sparse annotation can seriously

hamper accuracy.

Semantic Image Segmentation Previous research ex-

ploiting CNN to make dense prediction often relied on

patchwise training [3, 6, 25] and pre- and post-processing of

superpixels [6, 11]. In [22] the authors first proposed a sim-

ple and elegant fully convolutional network (FCN) to solve

semantic segmentation. Notably, this is the first work which

was trained end-to-end on a fully convolutional network for

dense pixel prediction, which showed that the last layer fea-

ture maps from a good backbone network such as VGG-

16 contain sufficient foreground features which can be de-

coded by the upsampling network to produce segmentation

results. Intuitively, that is also the guiding principle behind

our modification on relation network architecture. Though

modern network architectures [12, 14, 19] achieve high ac-

curacy in the COCO challenge by adding complex network

modules and branches, these models cannot be adapted eas-

ily to segment new classes with few training examples.

3. FSS-1000

Recent few-shot datasets [18, 35] support few-shot clas-

sification but there is no large-scale few-shot segmentation

dataset. In this section, we first introduce the details of

data collection and annotation, then discuss the properties

of FSS-1000. Table 1 and Figure 1 compare FSS-1000 with

existing popular datasets. FSS-1000 targets at solving gen-

eral objects few-shot segmentation problem. So datasets

only focusing on sub-domain object categories in the world

(e.g. handwritten characters, human faces and road scenes)

are not included in the comparison.

3.1. Data Collection

Object Classes We first referred to the classes in

ILSVRC [29] in our choice of object categories for FSS-

1000. Consequently, FSS-1000 has 584 classes out of

its 1,000 classes overlap with the classes in the ILSVRC

dataset. We find ILSVRC dataset heavily biases toward an-

imals, both in terms of the distribution of categories and

number of images. Therefore, we fill in the other 486 by

new classes unseen in any existing datasets. Specifically, we

include more daily objects so that network models trained

on FSS-1000 can learn from diverse artificial and man-

made objects/features in addition to natural and organic ob-

jects/features where the latter was emphasized by existing

large-scale datasets. Our diverse 1,000 object classes are

further arranged in a hierarchy to be detailed in section 3.2.

Raw Images To avoid bias, the raw images were re-

trieved by querying object keywords on three different In-

ternet search engines, namely, Google, Bing and Yahoo. We

downloaded the first 100 results returned (or less if less than

100 images were returned) from a given search engine. No

special criteria or assumption was used to select the candi-

dates, however, due to the bias of Internet search engines,

a large number of the images returned contain a single ob-

ject photographed with sharp focus. In the final step, we

intentionally included some images with a relatively small

object, multiple objects or other objects in the background

to balance the easy and hard examples of the dataset.

Images with aspect ratio larger than 2 or smaller than

0.5 were excluded. Since all images and their segmentation

maps were to be resized to 224×224, bad aspect ratio would

destroy important geometric properties after the resize op-

eration. For the same reason, images with height or width

less than 224 pixels were discarded because they would trig-

ger upsampling which would affect the image quality after

resizing.

Pixelwise Segmentation Annotation We used Photo-

shop’s “quick selection" tool which allows users to loosely

select an object automatically, and refined or corrected the

selected area to produce the desired segmentation. Figure 2

shows example images overlaid with their corresponding

segmentation maps in FSS-1000.

3.2. Properties

This section summarizes the three desirable properties of

FSS-1000:
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Figure 3. Hierarchy of FSS-1000. Arrow represents “is a subclass of" relationship.

Figure 4. Example of instance annotation in the FSS-1000 dataset.

Scalability To extend FSS-1000 to include a new class,

all it takes are 10 images with pixelwise binary segmen-

tation labels for the new class. This is significantly eas-

ier than other datasets such as PASCAL VOC and COCO.

First, the mean number of images in a given class is much

larger than 10 in these datasets. Second, in these large-scale

datasets the object classes need to be first pre-defined. Thus

we believe binary annotation is a better annotation strategy

in few-shot learning datasets, since it allows easy expansion

of new object classes without concerning old object classes

that have already been annotated.

Hierarchy Figure 3 shows examples of one sub-category

for each given super-category in the dataset to illustrate the

hierarchical structure of FSS-1000. The object classes are

arranged hierarchically following a 3-level structure, while

not every bottom-level subclass has a middle-level super-

class. The top of the object hierarchy consists of 12 super-

categories while the bottom contains the 1,000 classes as the

leaf nodes. Note that this is strictly not a tree structure be-

cause a given class may belong to more than one superclass

(e.g., an apple is both “fruit" and “food").

Instance FSS-1000 dataset supports instance-level seg-

mentation with instance segmentation labels in 758 out of

the 1,000 classes in the dataset, which are significantly more

classes than PASCAL VOC and MS COCO. One major

difference between our dataset and PASCAL VOC / MS

COCO instance level segmentation is that our dataset only

annotates one type of objects in one image, despite there

may be other object categories appearing in the background.

We annotate at most 10 instances in a single image, which

follows the same instance annotation principle adopted by

COCO. Figure 4 shows examples of instance annotations in

the dataset.

4. Methodology

4.1. Problem Formulation

In few-shot learning, the train-test split is on object

categories, thus, all testing categories are unseen during

training. In both training and testing, the input is divided

conv1
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features concat
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Output prediction

Pixelwise loss

Relation module Decoder module
Support Set
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Figure 5. Our baseline network architecture using VGG-16 as

backbone. The relation module is adapted from [33] where a de-

coder module is appended to produce the segmentation map. Both

support and query features are concatenated to the decoder module

via skip connection. More details of this standard architecture are

available in supplemental materials.

into two sets, namely, the support set and the query set. The

support set consists of samples with annotation, while the

query set contains samples without annotation. In few-shot

classification, the support set usually includes C classes

and K training examples. This setting is defined as C-way-

K-shot classification [7, 33]. In few-shot segmentation,

we adopt this notation but extend the query output to be

per-pixel classification of the query image, rather than a

single class label. Specifically, in few-shot segmentation,

the input-output pair is given by (X,Y ), where

L =
{

l(i,j); l ∈ {1, 2, ..., C}
}

X = {(Is, Ls, Iq); s ∈ {1, 2, ...,K}}

Y =
{

y(i,j)|Iq; y ∈ {1, 2, ..., C}
}

l(i,j) is the ground-truth class label and y(i,j) represents the

predicted class label for pixel (i, j) in a given image. Is is

the 3-channel RGB support image. For each support input

X with image and label pair (Is, Ls), the model predicts

a pixelwise classification map over query image Iq . Fol-

lowing the annotation strategy of FSS-1000, we set C = 2
and only focus on few-shot binary segmentation problem in

this paper. However, a general C-way-K-shot segmentation

could be solved by a union of C binary segmentation tasks.

4.2. Network Architecture

Pipeline Our network consists of three sub-modules: an

encoder module Eθ, a relation module Rφ and a decoder

module Dω . For a given input X to the network, the en-

coder Eθ encodes the support and query images respec-

tively into feature maps Eθ(Is) and Eθ(Iq). For K-shot

forwarding, we perform element-wise averaging over the

depth channels of support feature maps, so that the encoder
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module always produces support feature maps of the same

depth regardless of the size of the support set.

The support and query feature maps are then com-

bined in the relation module Rφ. We choose channel-wise

concatenation as the combination operation, while other

choices such as parameter regression and nearest neighbors

are possible and discussed in [26]. The relation module gen-

erates coarse segmentation results in low-resolution based

on the concatenated feature maps. Finally, the coarse re-

sult is fed into the decoder module to restore the prediction

map to the same resolution of the input. Figure 5 shows the

entire workflow. In summary, the output is defined by

Y = Dω(Rφ(
K
∑

s=1

Eθ(Is), Eθ(Iq))).

Loss function We use the cross entropy loss between the

query prediction output and the ground-truth annotation to

train our model. Specifically, under our binary few-shot

segmentation setting, binary cross entropy (BCE) loss is

adopted to optimize the parameters in the network:

θ∗, φ∗, ω∗ =

argmin
θ,φ,ω

∑

i

∑

j

−L(i,j) log y(i,j)+(1−L(i,j)) log(1−y(i,j))

Mean square error (MSE) is also a widely used objective

function for semantic segmentation task. Different from

BCE loss, MSE models the problem as regression to the tar-

get output. Our experiments show that BCE and MSE loss

achieve similar performance under our network setting.

4.3. Network Module Details

One can design his/her own or choose any popular fea-

ture extraction backbone such as VGG-16 [32], ResNet [13]

and Inception [34] as the encoder module inside the net-

work. The support and query features compose the com-

bined feature map whose depth is twice the channel num-

ber of the last-layer output of the encoder. The relation

module utilizes two 1× 1 convolutional layers on the com-

bined feature map to embed the relationship between the

support features and query features. The decoder module is

designed according to the number of downscale operations

in the encoder module, which applies equivalent upsample

blocks to restore the resolution back to the original input.

In each upsample block stands a nearest neighbor upsam-

pling layer and a convolutional layer. Skip connection is

adopted between encoder and decoder feature maps, follow-

ing the scheme proposed by U-Net [24]. We find it helpful

to produce fine details in segmentation when information in

the encoder feature maps are fused to the decoder module

by channel-wise concatenation. ReLU activation is applied

throughout the deep network except for the last layer’s acti-

vation where Sigmoid is used in order to scale the output to

a suitable range to calculate cross-entropy loss. More detail

parameters of our architecture are provided in the supple-

mental materials.

Method MeanIoU

VGG-16-BCEloss 80.12%

VGG-16-MSEloss 79.66%

ResNet-101-BCEloss 79.43%

ResNet-101-MSEloss 79.12%

InceptionV3-BCEloss 79.02%

InceptionV3-MSEloss 79.22%

Table 2. Different network settings to explore the best settings for

our network architecture.
Method MeanIoU

OSLSM-1shot [31] 70.29%

OSLSM-5shot 73.02%

Guided Network-1shot [26] 71.94%

Guided Network-5shot 74.27%

Ours-1shot 73.47%

Ours-5shot 80.12%

Table 3. Different few-shot segmentation networks trained and

tested on FSS-1000.
Method PASCAL-50 PASCAL-51 PASCAL-52 PASCAL-53 Mean

OSLSM [31] 34.2% 57.9% 43.2% 37.8% 43.3%

GN [26] 33.1% 58.9% 44.3% 39.9% 44.1%

Ours 37.4% 60.9% 46.6% 42.2% 46.8%

PANet [36] 51.8% 64.6% 59.8% 46.5% 55.7%

CANet [39] 55.5% 67.8% 51.9% 53.2% 57.1%

Ours* 50.6% 70.3% 58.4% 55.1% 58.6%

Table 4. Comparison of different models on PASCAL-5i. GN is

Guided Network and Ours* is our model trained on FSS-1000. All

models are using 5-shot setting.

5. Experiments

We conduct experiments to evaluate the practicability of

FSS-1000 and the performance of our method under few-

shot learning settings. We evaluate models with the same

network architecture but trained on different datasets to

show that FSS-1000 is effective for few-shot segmentation

task. Different support sets and their influence on query re-

sults will be discussed. Finally we illustrate that models

trained on FSS-1000 are capable to generalize the few-shot

segmentation knowledge to new unseen classes. The metric

we use is the intersection-over-union (IoU) of positive la-

bels in a binary segmentation map. IoU is a standard metric

and widely adopted in evaluating image segmentation meth-

ods. All the networks are implemented in PyTorch. We use

Adam solver [15] to optimize the parameters. The learning

rate is initially set to 10−3 (10−4 for fine-tuning) and halved

for every 50, 000 episodes. We train all the networks for

500, 000 episodes.

Network setting To explore the best settings for our net-

work, we train different models using a combination of dif-

ferent backbones and loss functions on FSS-1000. Table 2

tabulates the respective performance on VGG-16, ResNet-

101 and InceptionNet as backbone, and BCE and MSE as

loss function. Based on the result, we choose VGG-16 as

feature extractor and use BCE loss in our model throughout

the experimental section.

5.1. Benchmarks

5.1.1 FSS-1000

We train OSLSM and Guided Network on FSS-1000 to pro-

vide benchmarks and justify our dataset. Table 3 shows that
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No. ImageNet FSS fsCOCO FSS (test set) fsCOCO (test set)

I ✓ ✓ 71.34% 42.11%

II ✓ ✓ 79.30% 47.99%

III ✓ 80.12% 48.31%

IV ✓ ✓ 82.66% 50.56%

Table 5. Comparison of models trained and tested on different

datasets. Each model (row) shows the training stages, e.g., model I

uses the pre-trained weights from ImageNet then fine-tuned on

fsCOCO’s training classes, and finally tested on the novel test

classes in both FSS and fsCOCO. All learning rates are initially

set to 10
−4 except the model trained without using ImageNet pre-

trained weights, which is set to 10
−3.

Figure 6. MeanIoU of superclasses in FSS-1000 tested with mod-

els trained on fsPASCAL, fsCOCO and FSS-1000. Bars at the

bottom indicate the percentage of the number of categories over-

lapping with FSS-1000 in the corresponding dataset.

our adapted relation network achieves the best results on

FSS-1000. Moreover, ours is the only model whose 5-shot

training boosts the accuracy by over 10% compared to the

1-shot case. We believe that embedding multiple support

images at the input end of the network and encouraging the

feature extractor to consider correlation between multiple

support images and the query image is the appropriate way

to design k-shot (k > 1) segmentation network, rather than

simply combining 1-shot prediction [31] or merging high-

level features of multiple supports [26].

5.1.2 PASCAL-5i

To compare with previous few-shot methods, we train and

test our network on PASCAL-5i [31]. Table 4 shows

that our simple baseline model (Ours) marginally outper-

forms OSLSM and Guided Network. More importantly,

our model trained only on FSS-1000 without fine-tuning

on PASCAL-5i (Ours*) achieves much better results com-

pared to models trained on PASCAL-5i (Ours), exceeding

the state-of-the-art performance of the very recent [39, 36].

5.2. Effect of Pre­training

We compare our network model trained on different

datasets to demonstrate the effectiveness of FSS-1000 in

few-shot segmentation. Since there are no publicly avail-

able few-shot image segmentation datasets, we convert

PASCAL VOC 2012 and COCO datasets by setting the de-

sired foreground class label as positive and all others as

negative, followed by the identical clean-up stage described

in section 3.1 to the binarized labels. Two new datasets

Figure 7. Image results of our baseline model respectively trained

on fsPASCAL, fsCOCO and FSS-1000. Support labels and pre-

dicted segmentation are overlaid in red in corresponding support

images and query images. Ground truth labels for query images

are in green. The classes in the first two rows are present in fs-

PASCAL and fsCOCO whereas the rest are unique in FSS-1000.
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Figure 8. MeanIoU of superclasses in FSS-1000 tested with k-shot

models (k = 1,3,5,7).

are thus produced: fsPASCAL and fsCOCO. There are re-

spectively 4,318 image and label pairs in 20 object classes

in fsPASCAL, which consists of 15 training classes and 5

test classes, and 48,015 image and label pairs in 80 object

classes in fsCOCO, containing 60 training classes and 20

test classes. The generation of these datasets are in line with

the settings in [39].

For FSS-1000, we build the validation/test set by ran-

domly sampling 20 distinct sub-categories from the 12

super-categories; the other images and labels are used in

training. The train/validation/test split used in the experi-

ments consists of 5,200/2,400/2,400 image and label pairs.

Each test set of fsPASCAL, fsCOCO and FSS are designed

to be disjoint with all the training sets in terms of classes for

fair comparison.

Table 5 tabulates the performance of different models.

For each model (row), the ✓marks in sequence indicate the

dataset(s) used in pre-training stages with the last mark in-

dicating the dataset used in fine-tuning. Model III has only

one ✓indicating that it is exclusively trained on the dataset.

Using the pre-trained weights from ImageNet, Model II

trained on FSS-1000 outperforms the fsCOCO-trained

model I on both test sets by a large margin of 8% and 5.8%,

which is due to the FSS training set containing the COCO
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Support set raw 1-shot 5-shot GT

Figure 9. Effect of different support sets. The leftmost support of

each row is used to generate 1-shot results. For each class, we

show the result of a good support set followed by a bad support set

in the next row.

Human (PS) Human (GrabCut) CPU GPU

Time 180m32s 53m22s 9m13s 16.9s

95%+ IOU 100% 71.4% 58.4% 58.4%

90%+ IOU 100% 80.4% 70.4% 70.4%

80%+ IOU 100% 91.0% 87.4% 87.4%

70%+ IOU 100% 95.8% 90.2% 90.2%

Table 6. 500 test images are randomly sampled from FSS-1000 to

compare time and accuracy performance of labeling segmentation

data between humans and few-shot model.

training classes, but with more variety. Notably, without

using any pre-trained weights Model III achieves slightly

better results compared to Model II, which substantiate our

claim that bias in feature extractor does exist in models pre-

trained and/or trained on a dataset unevenly distributed in

object categories and images within each class.

Interestingly, Model IV pre-trained on FSS-1000 and

fine-tuned on fsCOCO achieves the best result on both test

sets, outperforming Model III exclusively trained on FSS

and the model I pre-trained on ILSRVC fine-tuned on fs-

COCO. We believe the former is due to the addition of more

data, and the latter is due to the difference in requirement of

feature maps ideal for classification and segmentation task.

Intuitively, semantic segmentation requires more accurate

low-level features to produce fine details in segmentation

map, while classification focuses on high-level features for

image understanding. Therefore, we argue that pre-training

with FSS-1000 serves as a good alternative for ImageNet

pre-training in few-shot semantic segmentation.

Overall, models trained on fsCOCO produce quite good

results in test classes that are similar to COCO training

classes. For these classes, sometimes their segmentation re-

sults are better in local details compared to the results pro-

duced by models trained on FSS-1000 due to more varia-

tions in the training set. However, it failed in classes signif-

icantly different from the 60 COCO training classes. The

somewhat limited variation in object categories in existing

datasets makes it hard for models trained on them to gen-

eralize to more unseen classes under the few-shot setting.

On the other hand, models trained on FSS-1000 classes can

handle these cases. Quantitative results and qualitative re-

sults are shown in Figure 6 and Figure 7 respectively. Re-

sults on fsPASCAL and further comparisons are provided

in supplementary material.

5.3. Effect of Support Set

We train four different models, using 1, 3, 5 and 7 sup-

port images respectively, to study how different number

of support images influence the accuracy of few-shot seg-

mentation. Two important observations can be summarized

from Figure 8.

First, more support images generally boost the segmen-

tation accuracy because more variations of color, pose, and

scale of the object are included. However, the performance

increase becomes negligible when more than 5 support im-

ages are given. Due to this bottleneck effect, we set up most

of the experiments under the 5-shot setting.

Second, the accuracy boost is different among different

classes. For easy cases (e.g. rigid objects), the improvement

is not obvious because a single support image is enough

for the deep network to capture and distinguish strong fea-

tures of the object. For hard cases (e.g. deformable objects),

more support images are essential for the network to learn

the complex shapes to make correct segmentation.

Figure 9 demonstrates the effect of support set, which

shows that scale and pose of the object to be segmented are

the most important characteristics to guide few-shot seman-

tic segmentation on FSS-1000. Since FSS-1000 does not

explicitly consider scale variations (future work), a tiny or

oversized object in the support set is not a good reference

for segmentation. Significant differences in scales can mis-

lead the network to capture wrong feature contents in the

query. Besides, significantly different poses in support and

query sets can result in bad segmentation results, due to the

intrinsic fragility to rotation in CNN features.

5.4. Auto­Labeling on Novel and Unseen Classes

Traditionally a large number of human-annotated images

are required to train a deep network for segmenting a new

class. Table 6 tabulates the tradeoff in time and accuracy for

annotating 500 test images in FSS-1000 by humans (using

Photoshop and GrabCut [28] algorithm) and our few-shot

segmentation.

With its good accuracy and time tradeoff, despite the

current limitations in scale invariance aforementioned, FSS-

1000 allows us to automatically segment a novel object cat-

egory by just providing a few support examples without re-

training or fine-tuning a given model. We pick a number

of very novel classes unseen by FSS-1000, and label 5 im-

ages of each class serving as the support set. Figure 10

shows the test results which demonstrates that our model

trained on FSS-1000 is capable of generalizing to these un-

seen classes. More extensive results on novel classes are

included in supplementary materials.
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Support Set Query Set

Figure 10. Test results for unseen classes. From top to bottom:

android robot; the river from UC Merced Land Use Dataset [38];

a large cell image cropped into patches; herds of sheep; penguin

from Oxford penguin counting dataset [1]; flock of wild goose;

different images of fields of sunflower depict various scales in the

presence of occlusion and perspective distortion.

For example, android robot is an unreal object unseen in

FSS-1000. In cartography from satellite images which often

come in overlapping image tiles, cartographers need to la-

bel only 5 images or tiles and our system can automatically

segment the rest, such as recognizing river in our exam-

ple where saliency detection does not work in general. The

cell example shows the good potential of FSS-1000 in in-

stance segmentation which significantly contributes to cell

counting in medical image analysis where, for instance, a

patient’s health directly correlates to his or her red blood

cell count. With the advance of whole slide images (WSI)

in which the width and height often exceed 100,000 pix-

els (and thus many cells to count), using our few-shot seg-

mentation trained on FSS-1000, pathologists only need to

label 5 image relevant regions and then the rest of the WSI

will be automatically labeled. Although manual corrections

for missed or wrong cells may still be necessary given the

current accuracy, comparing with exhaustive labeling which

requires hours or even days to complete, the potential con-

tribution of FSS-1000 is substantial. Similarly, the related

Support 1: IoU 72.87% Support 2: IoU 78.17%

Figure 11. Iterative few-shot segmentation. Left and right show

respectively the support sets and results before and after including

corrected failure cases in the support set. Complete testing set of

Eiffel Tower is available in the supplemental material.

animal examples of sheep, penguin and wild goose show

FSS-1000’s potential for large-scale instance segmentation.

Finally, our baseline backbone network is not very robust

to scale variance, occlusion and background noises (future

work). In sunflower, the segmentation results for instances

too big or too small (especially for images with depth of

field where faraway sunflowers are out of focus) become

incomplete or even totally omitted. Despite that, FSS-1000

still reports limited success.

5.5. Iterative Few­Shot Segmentation

Our few-shot segmentation successively benefits from

support sets improved easily by including failure cases after

correction in each pass. Consider the Eiffel Tower unseen

by FSS-1000 in Figure 11 where we manually label 200

images for quantitative evaluation (IoU). The first support

set (left) did not have sufficient view and scale variations

and did not see clearly the bottom part of the tower which

resulted in its incomplete segmentation in some test cases.

After mining a few of such hard cases, correcting and in-

cluding them in the second support set (right), the previous

hard cases could now be correctly segmented. We believe

that few-shot segmentation performed in stages can offer an

immediate performance boost.

6. Conclusion

Few-shot learning/segmentation is an emerging attrac-

tive alternative where only a few training examples are re-

quired. However, there is no existing large-scale dataset for

few-shot segmentation. In this paper, we address the lim-

itation of existing large-scale datasets in their biases and

lack of scalability, and build the first few-shot segmentation

dataset FSS-1000 emphasizing class diversity rather than

dataset size. We adapt the relation network architecture to

few-shot segmentation. This baseline few-shot segmenta-

tion model, trained exclusively on FSS-1000 without using

pre-trained weights, achieves higher accuracy than previous

methods including on test sets unseen by FSS-1000. We fur-

ther demonstrated the efficacy and potential of FSS-1000 in

large-scale segmentation on totally unseen classes without

re-training or fine-tuning, and showed its promise on few-

shot instance segmentation and iterative few-shot recogni-

tion tasks.
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