
GAN Compression: Efficient Architectures for Interactive Conditional GANs

Muyang Li1,3 Ji Lin1 Yaoyao Ding1,3 Zhijian Liu1 Jun-Yan Zhu2 Song Han1

lmxyy@mit.edu jilin@mit.edu yyding@mit.edu zhijian@mit.edu junzhu@adobe.com songhan@mit.edu

1Massachusetts Institute of Technology 2Adobe Research 3Shanghai Jiao Tong University

Input Ground Truth

GauGAN: 281G MACs Ours: 31.7G (8.8×)

Input CycleGAN: 56.8G MACs Ours: 2.67G (21.2×)

Input pix2pix: 56.8G MACs Ours: 4.81G (11.8×)

Figure 1: We introduce GAN Compression, a general-purpose method for compressing conditional GANs. Our method reduces

the computation of widely-used conditional GAN models including pix2pix, CycleGAN, and GauGAN by 9-21× while

preserving the visual fidelity. Our method is effective for a wide range of generator architectures, learning objectives, and both

paired and unpaired settings.

Abstract

Conditional Generative Adversarial Networks (cGANs)

have enabled controllable image synthesis for many com-

puter vision and graphics applications. However, recent

cGANs are 1-2 orders of magnitude more computationally-

intensive than modern recognition CNNs. For example, Gau-

GAN consumes 281G MACs per image, compared to 0.44G

MACs for MobileNet-v3, making it difficult for interactive

deployment. In this work, we propose a general-purpose

compression framework for reducing the inference time and

model size of the generator in cGANs. Directly applying ex-

isting CNNs compression methods yields poor performance

due to the difficulty of GAN training and the differences

in generator architectures. We address these challenges in

two ways. First, to stabilize the GAN training, we transfer

knowledge of multiple intermediate representations of the

original model to its compressed model, and unify unpaired

and paired learning. Second, instead of reusing existing

CNN designs, our method automatically finds efficient archi-

tectures via neural architecture search (NAS). To accelerate

the search process, we decouple the model training and

architecture search via weight sharing. Experiments demon-

strate the effectiveness of our method across different super-

vision settings (paired and unpaired), model architectures,

and learning methods (e.g., pix2pix, GauGAN, CycleGAN).

Without losing image quality, we reduce the computation of

CycleGAN by more than 20× and GauGAN by 9×, paving

the way for interactive image synthesis. The code and demo

are publicly available.

1. Introduction

Generative Adversarial Networks (GANs) [14] excel at

synthesizing photo-realistic images. Their conditional exten-

sion, conditional GANs [44, 27, 69], allows controllable im-

age synthesis and enables many computer vision and graph-

ics applications such as interactively creating an image from

a user drawing [45], transferring the motion of a dancing

video stream to a different person [57, 8, 1], or creating VR

facial animation for remote social interaction [59]. All of

these applications require models to interact with humans

and therefore demand low-latency on-device performance

for better user experience. However, edge devices (mobile

phones, tablets, VR headsets) are tightly constrained by

hardware resources such as memory and battery. This com-

putational bottleneck prevents conditional GANs from being

deployed on edge devices.

Different from image recognition CNNs [31, 53, 19,

25], image-conditional GANs are notoriously computation-

ally intensive. For example, the widely-used CycleGAN

model [69] requires more than 50G MACs∗, 100× more

∗We use the number of Multiply-Accumulate Operations (MAC) to

15284

than MobileNet [25]. A more recent model GauGAN [45],

though generating photo-realistic high-resolution images,

requires more than 250G MACs, 500× more than Mo-

bileNet [25, 49, 24].

In this work, we present GAN Compression, a general-

purpose compression method for reducing the inference time

and computational cost for conditional GANs. We observe

that compressing generative models faces two fundamental

difficulties: GANs are unstable to train, especially under

the unpaired setting; generators also differ from recognition

CNNs, making it hard to reuse existing CNN designs. To

address these issues, we first transfer the knowledge from the

intermediate representations of the original teacher generator

to its corresponding layers of its compressed student gener-

ator. We also find it beneficial to create pseudo pairs using

the teacher model’s output for unpaired training. This trans-

forms the unpaired learning to a paired learning. Second, we

use neural architecture search (NAS) to automatically find an

efficient network with significantly fewer computation costs

and parameters. To reduce the training cost, we decouple the

model training from architecture search by training a “once-

for-all network” that contains all possible channel number

configurations. The once-for-all network can generate many

sub-networks by weight sharing and enable us to evaluate the

performance of each sub-network without retraining. Our

method can be applied to various conditional GAN models

regardless of model architectures, learning algorithms, and

supervision settings (paired or unpaired).

Through extensive experiments, we show that our method

can reduce the computation of three widely-used conditional

GAN models including pix2pix [27], CycleGAN [69], and

GauGAN [45] by 9× to 21× regarding MACs, without

loss of the visual fidelity of generated images (see Figure 1

for several examples). Finally, we deploy our compressed

pix2pix model on a mobile device (Jetson Nano) and demon-

strate an interactive edges2shoes application [demo].

2. Related Work

Conditional GANs. Generative Adversarial Networks

(GANs) [14] are excel at synthesizing photo-realistic re-

sults [29, 5]. Its conditional form, conditional GANs [44, 27]

further enables controllable image synthesis, allowing a user

to synthesize images given various conditional inputs such

as user sketches [27, 50], class labels [44, 5], or textual de-

scriptions [47, 67]. Subsequent works further increased the

resolution and realism of the results [58, 45]. Later, sev-

eral algorithms were proposed to learn conditional GANs

without paired data [55, 51, 69, 30, 62, 38, 11, 26, 32].

The high-resolution, photo-realistic synthesized results

come at the cost of intensive computation. As shown in

quantify the computation cost. Modern computer architectures use fused

multiply–add (FMA) instructions for tensor operations. These instructions

compute a = a+ b× c as one operation. 1 MAC=2 FLOPs.

MACs (G)

28193

Params (M)

57

4.0

0.5

11

25

4.2MobileNet
ResNet-50

CycleGAN

GauGAN

Figure 2: Conditional GANs require two orders of magnitude

more computation than image classification CNNs, making

it prohibitive to be deployed on edge devices.

Figure 2, although the model size is of the same magnitude

as the size of image recognition CNNs [19], conditional

GANs require two orders of magnitudes more computations.

This makes it challenging to deploy these models on edge

devices given limited computational resources. In this work,

we focus on efficient image-conditional GANs architectures

for interactive applications.

Model acceleration. Extensive attention has been paid to

hardware-efficient deep learning for various real-world ap-

plications [18, 17, 68, 56, 16]. To reduce redundancy in

network weights, researchers proposed to prune the con-

nections between layers [18, 17, 60]. However, the pruned

networks require specialized hardware to achieve its full

speedup. Several subsequent works proposed to prune entire

convolution filters [21, 34, 39] to improve the regularity of

computation. AutoML for Model Compression (AMC) [20]

leverages reinforcement learning to determine the pruning ra-

tio of each layer automatically. Liu et al. [40] later replaced

the reinforcement learning by an evolutionary search algo-

rithm. Recently, Shu et al. [52] proposed co-evolutionary

pruning for CycleGAN by modifying the original Cycle-

GAN algorithm. This method is tailored for a particular

algorithm. The compressed model significantly increases

FID under a moderate compression ratio (4.2×). In contrast,

our model-agnostic method can be applied to conditional

GANs with different learning algorithms, architectures, and

both paired and unpaired settings. We assume no knowledge

of the original cGAN learning algorithm. Experiments show

that our general-purpose method achieves 21.1× compres-

sion ratio (5× better than CycleGAN-specific method [52])

while retaining the FID of original models.

Knowledge distillation. Hinton et al. [23] introduced the

knowledge distillation for transferring the knowledge in a

larger teacher network to a smaller student network. The stu-

dent network is trained to mimic the behavior of the teacher

network. Several methods leverage knowledge distillation

for compressing recognition models [43, 9, 33]. Recently,

Aguinaldo et al. [2] adopts this method to accelerate un-

conditional GANs. Different from them, we focus on con-

ditional GANs. We experimented with several distillation

methods [2, 63] on conditional GANs and only observed

marginal improvement, insufficient for interactive applica-

tions. Please refer to our arXiv for more details.

5285

c

h

w

Pre-trained Teacher Generator G'

“Once-for-all” Student Generator G

G'(x)

G(x)

Distill Loss
Recon.

Loss

GT

cGAN
LossD'

x

with Channel Number c1=[16, 32], c2=[16, 32], ..., cK=[16, 32], step=8

c c

c1 c2 cK

......

Candidate Generator Pool

Fine-tuning

Eval&select

①
②

③

Decouple
Training and Search

0 1

If Paired Model

...

...

Figure 3: GAN Compression: ➀ Given a pre-trained teacher generator G′, we distill a smaller “once-for-all” [6] student

generator G that contains all possible channel numbers through weight sharing. We sample different channel numbers {ck}
K
k=1

for G at each training step so that one generator can support all channel numbers. ➁ We then extract many sub-generators

with different channel numbers from the “once-for-all” generator and evaluate their performance. No retraining is needed,

which is the advantage of the “once-for-all” generator. ➂ Finally, we choose the best sub-generator given the compression

ratio target and performance target (FID or mAP), perform fine-tuning, and obtain the final compressed model.

Neural architecture search. Neural Architecture Search

(NAS) has successfully designed neural network architec-

tures that outperform hand-crafted ones for image recog-

nition tasks [71, 35, 36]. To reduce the search cost, re-

searchers recently proposed one-shot neural architecture

search [37, 7, 61, 15, 24, 4, 6] in which different sub-

networks can share the weights. However, little efforts has

been paid to search efficient GAN architectures. We study

efficient conditional GANs architectures using NAS.

3. Method

Compressing conditional generative models for interac-

tive applications is challenging for two reasons. Firstly, the

training dynamic of GANs is highly unstable by nature. Sec-

ondly, the architectural differences between recognition and

generative models make it hard to apply existing CNN com-

pression algorithms directly. To address these issues, we pro-

pose a new training protocol tailored for efficient generative

models (Section 3.1) and further increase the compression

ratio with neural architecture search (NAS) (Section 3.2).

The overall framework is illustrated in Figure 3.

3.1. Training Objective

Unifying unpaired and paired learning. Conditional

GANs aim to learn a mapping function G between a source

domain X and a target domain Y . They can be trained using

either paired data ({xi,yi}
N
i=1 where xi ∈ X and yi ∈ Y)

or unpaired data (source dataset {xi}
N
i=1 to target dataset

{yj}
M
j=1). Here, N and M denote the number of training im-

ages. For simplicity, we omit the subscript i and j. Several

learning objectives have been proposed to handle both paired

and unpaired settings (e.g., [27, 45, 58, 69, 38, 26]). The

wide range of training objectives makes it difficult to build

a general-purpose compression framework. To address this

limitation, we unify the unpaired and paired learning in the

model compression process, regardless of how the teacher

model is originally trained. Given the original teacher gen-

erator G′, we can transform the unpaired training setting to

the paired setting. In particular, for the unpaired setting, we

can view the original generator’s output as our ground-truth

and train our compressed generator G with a paired learning

objective. Our learning objective can be summarized as:

Lrecon =

{

Ex,y‖G(x)− y‖1 if paired cGANs,

Ex‖G(x)−G′(x)‖1 if unpaired cGANs.
(1)

Here we denote Ex , Ex∼pdata(x) and Ex,y , Ex,y∼pdata(x,y)

for simplicity. ‖‖1 denotes L1 norm. With such modifica-

tions, we can apply the same compression framework to

different types of cGANs. Furthermore, As shown in Sec-

tion 4.3, learning using the above pseudo pairs makes train-

ing more stable and yields much better results, compared to

the original unpaired training setting.

As the unpaired training has been transformed into paired

training, we will discuss the following sections in the paired

training setting unless otherwise specified.

Inheriting the teacher discriminator. Although we aim

to compress the generator, a discriminator D stores useful

knowledge of a learned GAN as D learns to spot the weak-

ness of the current generator [3]. Therefore, we adopt the

same discriminator architecture, use the pre-trained weights

from the teacher, and fine-tune the discriminator together

with our compressed generator. In our experiments, we

observe that a pre-trained discriminator is better than a ran-

domly initialized discriminator which leads to severe training

instability and the degradation of image quality. The GAN

objective is formalized as:

LcGAN = Ex,y[logD(x,y)]+Ex[log(1−D(x, G(x)))] (2)

where we initialize the student discriminator D using the

weights from teacher discriminator D′. G and D are trained

5286

using a standard minimax optimization [14].

Intermediate feature distillation. A widely-used method

for model compression is knowledge distillation, which

matches the distribution of the output layer’s logits [23, 43,

9, 63, 33, 46, 10]. However, conditional GANs [27, 69]

usually output a deterministic image, rather than a proba-

bilistic distribution. Therefore, it is difficult to distill the

dark knowledge from the teacher’s output pixels. Especially

for paired training setting, output images generated by the

teacher model essentially contains no additional information

compared to ground-truth target images. Experiments in our

arXiv show that for paired training, naively mimicking the

teacher model’s output brings no improvement.

To address the issue, we match the intermediate repre-

sentations of the teacher generator instead, as explored in

prior work [33, 66, 9]. The intermediate layers contain more

channels, provide richer information, and allow the student

model to acquire more information in addition to outputs.

The distillation objective can be formalized as:

Ldistill =

T
∑

t=1

‖Gt(x)− ft(G
′
t(x))‖2, (3)

where Gt(x) and G′
t(x) are the intermediate feature acti-

vations of the t-th chosen layer in the student and teacher

models, and T denotes the number of layers. ft is a 1 × 1
learnable convolution that maps the channels from the stu-

dent model to the teacher model, since they have different

channel numbers. We jointly optimize Gt and ft to min-

imize the distillation loss Ldistill. Our arXiv details which

layers we choose in practice.

Full objective. Our final objective is written as follows:

L = LcGAN + λreconLrecon + λdistillLdistill, (4)

where hyper-parameters λrecon and λdistill control the impor-

tance of each term. Refer to our arXiv for more details.

3.2. Efficient Generator Design Space

Choosing an efficient student generator architecture is es-

sential for knowledge distillation. We find naively shrinking

the channel numbers of the teacher model fails to produce a

compact student model: the performance starts to degrade

significantly above 4× computation reduction. The reason is

that existing generator architectures are adopted from image

recognition models [41, 19, 48, 41], which are not optimal

for image synthesis. We show how we derive a better archi-

tecture design space from an existing cGAN generator and

perform neural architecture search (NAS) within the space.

Convolution decomposition and layer sensitivity. Exist-

ing generators usually adopt vanilla convolutions to follow

the design of classification and segmentation CNNs. Recent

efficient CNN designs widely adopt a decomposed version

of convolutions (depthwise + pointwise) [25], which proves

to have a better performance-computation trade-off. We

find that using the decomposed convolution also benefits the

generator design in cGANs.

Unfortunately, our early experiments show that naively

applying decomposition to all the convolution layers (as

in classifiers) will significantly degrade the image quality.

Decomposing some of the layers will immediately hurt the

performance, while other layers are more robust. Further-

more, this layer sensitivity pattern is not the same as recog-

nition models. For example, in ResNet generator [19, 28],

the resBlock layers consume the majority of the model pa-

rameters and computation cost while is almost immune to

decomposition. On the contrary, the upsampling layers have

much fewer parameters, but are fairly sensitive to model

compression: moderate compression can lead to a large FID

degradation. Therefore, we only decompose the resBlock

layers. We conduct a comprehensive study regarding the

sensitivity of layers in Section 4.3.

Automated channel reduction with NAS. Existing gen-

erators use a hand-crafted (and mostly uniform) channel

numbers across all the layers, which contains redundancy

and is far from optimal. To further improve the compression

ratio, we select the channel width in the generators using

automated channel pruning [20, 39, 70, 42] to remove the

redundancy, which can reduce the computation quadratically.

We support fine-grained choices regarding the numbers of

channels. For each convolution layers, the number of chan-

nels can be chosen from multiples of 8, which balances

MACs and hardware parallelism [20].

Given the possible channel configurations

{c1, c2, ..., cK}, where K is the number of layers to

prune, our goal is to find the best channel configuration

{c∗1, c
∗
2, ..., c

∗
K} = argminc1,c2,...,cK L, s.t. MACs < Ft

using neural architecture search, where Ft is the com-

putation constraint. A straight-forward approach is to

traverse all the possible channel configuration, train it to

convergence, evaluate, and pick the generator with the best

performance. However, as K increases, the number of

possible configurations increases exponentially, and each

configuration might require different hyper-parameters

regarding the learning rates and weights for each term. This

trial and error process is far too time-consuming.

3.3. Decouple Training and Search

To address the problem, we decouple model training from

architecture search, following recent work in one-shot neu-

ral architecture search methods [7, 6, 15]. We first train

a “once-for-all” network [6] that supports different chan-

nel numbers. Each sub-network with different numbers of

5287

channels are equally trained and can operate independently.

Sub-networks share the weights with the “once-for-all” net-

work. Figure 3 illustrates the overall framework. We assume

that the original teacher generator has {c0k}
K
k=1 channels.

For a given channel number configuration {ck}
K
k=1, ck ≤ c0k,

we obtain the weight of the sub-network by extracting the

first {ck}
K
k=1 channels from the corresponding weight ten-

sors of “once-for-all” network, following Guo et al. [15].

At each training step, we sample a sub-network with a ran-

domly channel number configuration, compute the output

and gradients, and update the extracted weights using our

learning objective (Equation 4). Since the weights at the first

several channels are updated more frequently, they play a

more critical role among all the weights.

After the “once-for-all” network is trained, we find the

best sub-network by directly evaluating the performance of

each candidate sub-network on the validation set. Since the

“once-for-all” network is thoroughly trained with weight shar-

ing, no fine-tuning is needed. This approximates the model

performance when it is trained from scratch. In this manner,

we can decouple the training and search of the generator

architecture: we only need to train once, but we can evaluate

many different channel configurations without further train-

ing, and pick the best one as the search result. Optionally,

we fine-tune the selected architecture to further improve the

performance. We report both variants in Section 4.3.

4. Experiments

4.1. Models, Datasets, Evaluation Metrics

Models. We conduct experiments on three conditional

GAN models to demonstrate the generality of our method.

• CycleGAN [69], an unpaired image-to-image translation

model, uses a ResNet-based generator [19, 28] to trans-

form an image from a source domain to a target domain.

• Pix2pix [27] is a conditional-GAN based paired image-

to-image translation model. For this model, we replace

the original U-Net generator [48] by the ResNet-based

generator [28] as we observe that the ResNet-based gen-

erator achieves better results with less computation cost.

See our arXiv version for a detailed U-Net vs. ResNet

comparison.

• GauGAN [45] is a state-of-the-art paired image-to-image

translation model. It can generate a high-fidelity image

given a semantic label map.

Datasets. We use the following four datasets:

• Edges→shoes. 50,025 images from UT Zappos50K

dataset [64]. We evaluate pix2pix model on this dataset.

• Cityscapes. The dataset [12] contains the images of Ger-

man street scenes. The training set and the validation

set consists of 2975 and 500 images, respectively. We

evaluate pix2pix and GauGAN model on this dataset.

• Horse↔zebra. The dataset consists of 1,187 horse images

and 1,474 zebra images originally from ImageNet [13]

and used in CycleGAN [69]. We evaluate the CycleGAN

model on this dataset.

• Map↔aerial photo. The dataset contains 2194 images

scraped from Google Maps and used in pix2pix [27]. We

evaluate the pix2pix model on this dataset.

Evaluation Metrics.

• Fréchet Inception Distance (FID) [22]. The FID score

aims to calculate the distance between the distribution of

feature vectors extracted from real and generated images

using an InceptionV3 [54] network. A lower score in-

dicates a better quality of generated images. We use an

open-sourced FID evaluation code†.

• Semantic Segmentation Metrics. Following prior

work [27, 69, 45], we adopt a semantic segmentation met-

ric to evaluate the generated images on the Cityscapes

dataset. We run a semantic segmentation model on the

generated images and compare how well the segmentation

model performs. We use the Mean Average Precision

(mAP), and use DRN-D-105 [65] as our segmentation

model. Higher mAPs implies that the generated images

look more realistic and better reflects the input label map.

4.2. Results

Quantitative Results We report the quantitative results of

compressing CycleGAN, pix2pix, and GuaGAN on four

datasets in Table 1. By using the best performing sub-

network from the “once-for-all” network, GAN Compression

can compress state-of-the-art conditional GANs by 9-21×,

and reduce the model size by 5-33×, with only negligi-

ble degradation in the model performance. Specifically,

our proposed method shows a clear advantage of Cycle-

GAN compression compared to the previous Co-Evolution

method [52]. We can reduce the computation of CycleGAN

generator by 21.2×, which is 5× better compared to the

previous CycleGAN-specific method [52] while achieving a

better FID by more than 30.

Performance vs. Computation Trade-off Apart from the

large compression ratio, our method consistently improves

the performance at different model sizes. Taking the pix2pix

model as an example, we plot the performance vs. compu-

tation trade-off on Cityscapes and Edges→shoes dataset in

Figure 6. In the large model size regime, prune + distill

(without NAS) outperforms training from scratch, showing

the effectiveness of intermediate layer distillation. Unfor-

tunately, when the channels continue to shrink uniformly if

†https://github.com/mseitzer/pytorch-fid

5288

Model Dataset Method #Parameters MACs
Metric

FID (↓) mAP (↑)

CycleGAN horse→zebra

Original 11.3M – 56.8G – 61.53 – –
Shu et al. [52] – – 13.4G (4.2×) 96.15 (34.6 /) –
Ours (w/o fine-tuning) 0.34M (33.3×) 2.67G (21.2×) 64.95 (3.42 /) –
Ours 0.34M (33.3×) 2.67G (21.2×) 71.81 (10.3 /) –

edges→shoes
Original 11.3M – 56.8G – 24.18 – –
Ours (w/o fine-tuning) 0.70M (16.3×) 4.81G (11.8×) 31.30 (7.12 /) –
Ours 0.70M (16.3×) 4.81G (11.8×) 26.60 (2.42 /) –

Pix2pix cityscapes
Original 11.3M – 56.8G – – 35.62 –
Ours (w/o fine-tuning) 0.71M (16.0×) 5.66G (10×) – 29.27 (6.35 /)
Ours 0.71M (16.0×) 5.66G (10.0×) – 34.34 (1.28 /)

map→arial photo
Original 11.3M – 56.8G – 47.76 – –
Ours (w/o fine-tuning) 0.75M (15.1×) 4.68G (11.4×) 71.82 (24.1 /) –
Ours 0.75M (15.1×) 4.68G (11.4×) 48.02 (0.26 /) –

GauGAN cityscapes
Original 93.0M – 281G – – 58.89 –
Ours (w/o fine-tuning) 20.4M (4.6×) 31.7G (8.8×) – 56.75 (2.14 /)
Ours 20.4M (4.6×) 31.7G (8.8×) – 58.41 (0.48 /)

Table 1: Quantitative evaluation of GAN Compression: We use the mAP metric (the higher the better) for the Cityscapes

dataset and FID (the lower the better) for other datasets. Our method can compress state-of-the-art conditional GANs by 9-21×
in MACs and 5-33× in model size, with only minor performance degradation. For CycleGAN compression, our systematic

approach outperforms previous CycleGAN-specific Co-Evolution method [52] by a large margin.

Model CycleGAN Pix2pix GauGAN

Metric
FID (↓) 61.5→65.0 24.2→26.6 –

mAP (↑) – – 58.9 → 58.4

MAC Reduction 21.2× 11.8× 8.8×
Memory Reduction 2.0× 1.7× 1.8×

Xavier CPU 1.65s (18.5×) 3.07s (9.9×) 21.2s (7.9×)

Speedup GPU 0.026s (3.1×) 0.035s (2.4×) 0.10s (3.2×)

Nano CPU 6.30s (14.0×) 8.57s (10.3×) 65.3s (8.6×)

Speedup GPU 0.16s (4.0×) 0.26s (2.5×) 0.81s (3.3×)

1080Ti Speedup 0.005s (2.5×) 0.007s (1.8×) 0.034s (1.7×)

Xeon Silver 4114
0.11s (3.4×) 0.15s (2.6×) 0.74s (2.8×)CPU Speedup

Table 2: Measured memory reduction and latency speedup

on NVIDIA Jetson AGX Xavier, NVIDIA Jetson Nano, 1080

Ti GPU and Xeon CPU. CycleGAN, pix2pix, and GauGAN

are trained on horse→zebra, edges→shoes and Cityscapes.

without NAS, some sensitive channels are pruned too much.

As a result, the knowledge from the teacher may be too lit-

tle for the student, in which case the distillation may even

have negative effects on the student model. On the contrary,

our training strategy allows us to automatically find the best

channel number, leading to a smaller gap between the student

and teacher model.

Qualitative Results Figure 4 shows several example re-

sults. We provide the input, its ground-truth (except for

unpaired setting), the output of the original model, and the

output of our compressed model. Our compression method

well preserves the visual fidelity of the output image even

under a large compression ratio. For CycleGAN, we also

provide the output of a baseline model (0.25 CycleGAN:

14.9×). The baseline model 0.25 CycleGAN contains 1
4

channels and has been trained from scratch. Our advantage

is distinct: the baseline model can hardly create a zebra pat-

tern on the output image, given a much smaller compression

Model ngf FID MACs #Parameters

Original 64 61.75 56.8G 11.38M

Only change downsample 64 68.72 55.5G 11.13M
Only change upsample 64 61.04 48.3G 11.05M
Only change resBlocks 64 62.95 18.3G 1.98M

Only change downsample 16 74.77 3.6G 0.70M
Only change upsample 16 95.54 3.3G 0.70M
Only change resBlocks 16 79.49 1.4G 0.14M

Table 3: We report the performance after applying convolu-

tion decomposition in each of the three parts (Downsample,

ResBlocks, and Upsample) of the ResNet generator respec-

tively on the horse→zebra dataset. ngf denotes the number

of the generator’s filters. Both computation and model size

are proportional to ngf2. We evaluate two settings ngf=64

and ngf=16. We observe that modifying ResBlock blocks

shows a significantly better performance vs. computation

trade-off, compared to modifying other parts of the network.

ratio. There might be some cases where compressed models

show a small degradation (e.g., the leg of the second zebra

in Figure 4), but compressed models sometimes surpass the

original one in other cases (e.g., the first and last shoe images

have a better leather texture). Generally, GAN models com-

pressed by our method performs comparatively compared to

the original model, as shown by quantitative results.

Accelerate Inference on Hardware For real-world inter-

active applications, inference acceleration on hardware is

more critical than the reduction of computation. To verify

the practical effectiveness of our method, we measure the

inference speed of our compressed models on several de-

vices with different computuatoinal powers. The results are

shown in Table 2. The inference speed of compressed Cy-

cleGAN generator on Jetson Xavier GPU can achieve about

5289

Input

Ground

-truth

Original

Model

(GauGAN)

mAP: 58.9

GAN

Compression

(8.8×)

mAP: 58.4

Input

Ground

-truth

Original

Model

(pix2pix)

FID: 24.2

GAN

Compression

(11.8×)

FID: 26.6

Input

Original

Model

(CycleGAN)

FID: 61.5

GAN

Compression

(21.2×)

FID: 64.9

0.25

CycleGAN

(14.9×)

FID: 106.4

Figure 4: Qualitative compression results on Cityscapes, Edges→Shoes and Horse→Zebra. GAN Compression preserves the

fidelity while significantly reducing the computation. In contrast, directly training a smaller model (e.g., 0.25 CycleGAN,

which linearly scales each layer to 25% channels) yields poor performance.

40 FPS, meeting the demand of interactive applications. The

acceleration on GPU is less significant compared to CPU,

mainly due to the large degree of parallelism. Nevertheless,

we focus on on edge devices where powerful GPUs might

not be available.

4.3. Ablation Study

Below we perform several ablation studies regarding our

individual system components and design choices.

Advantage of unpaired-to-paired transform. We first

analyze the advantage of transforming unpaired conditional

GANs into a pseudo paired training setting using the teacher

model’s output. Figure 7a shows the comparison of per-

formance between the original unpaired training and our

pseudo paired training. As our computation budget reduces,

the quality of images generated by the unpaired training

method degrades dramatically, while our pseudo paired train-

ing method remains relatively stable. The unpaired training

requires the model to be strong enough to capture the compli-

cated and ambiguous mapping between the source domain

and the target domain. Once the mapping is learned, our stu-

dent model can learn it from the teacher model directly. Ad-

ditionally, the student model can still learn extra information

on the real target images from the inherited discriminator.

Effectiveness of convolution decomposition. We system-

atically analyze the sensitivity of conditional GANs regard-

ing the convolution decomposition transform. We take the

ResNet-based generator from CycleGAN to test its effective-

ness. We divide the structure of ResNet generator into three

parts according to its network structure: Downsample (3

convolutions), ResBlocks (9 residual blocks), and Upsample

(the final two deconvolutions). To validate the sensitivity

of each stage, we replace all the conventional convolutions

in each stage into separable convolutions [25]. The perfor-

mance drop is reported in Table. 3. The ResBlock part takes

a fair amount of computation cost, so decomposing the con-

5290

Input Image

Original Model

MACs: 56.8G

FID: 61.62

Training with Unpaired Data

14.5G (3.9×) 3.8G (14.9×) 1.0G (56.8×)

FID: 67.45

Training with Pseudo Paired Data

FID: 106.41 FID: 127.65

FID: 61.53 FID: 61.45 FID: 62.50 FID: 64.32 FID: 94.63

32.2G (1.8×)

Figure 5: The comparison between training with unpaired data (naive) and training with pseudo paired data (proposed). The

latter consistently outperforms the former, especially for small models. The generator’s computation can be compressed by

14.9× without hurting the fidelity using the proposed pseudo pair method. In order to only compare the effectiveness of

unpaired vs. paired training, both methods do not use automated channel reduction and convolution decomposition.

F
ID

 (
↓)

23

27

31

35

39

4 5 6 7 8 9 10 11

MACs (G)

(a) Edge → shoes.

m
A

P
 (
↑)

28

30

32

34

36

4 5 6 7 8 9 10 11

From Scratch
Prune+Distill
GAN Compression

MACs (G)

(b) Cityscapes.

Figure 6: Uniform channel pruning + distillation (without

NAS) outperforms training from scratch for larger models,

but works poorly when the model is aggressively shrunk.

GAN Compression consistently improves the performance

vs. computation trade-off at various scales.

volutions in the ResBlock can notably reduce computation

costs. By testing both the architectures with ngf=64 and

ngf=16, the ResBlock-modified architecture shows better

computation costs vs. performance trade-off. We further

explore the computation costs vs. performance trade-off of

the ResBlock-modified architecture on Cityscapes dataset.

Figure. 7b illustrates that such Mobilenet-style architecture

is consistently more efficient than the original one, which

has already reduced about half of the computation cost.

5. Conclusion

We proposed a general-purpose compression framework

for reducing the computational cost and model size of gen-

erators in conditional GANs. We first unify unpaired and

paired training with our proposed training protocol. Then

F
ID

 (
↓)

50

70

90

110

130

0 5 10 15 20 25 30 35

Unpaired
Unpaired→Paired

MACs (G)

(a) Unpaired vs. paired training.

m
A

P
 (
↑)

26

29

32

35

38

0.0 7.5 15.022.5 30.0 37.5 45.0 52.560.0

Orignial Generator
MobileNet Generator

MACs (G)

(b) Normal vs. mobile conv.

Figure 7: (a) Transforming unpaired training into paired

training (using the pseudo pairs generated by the teacher

model, without NAS) significantly improves the performance

of efficient models. (b) Decomposing the convolutions in

the original ResNet-based generator into a channel-wise and

depth-wise convolutions (MobileNet generator) improves

the performance vs. computation trade-off.

we use knowledge distillation and neural architecture search

to alleviate the training instability and increase the model ef-

ficiency. Extensive experiments have shown that our method

can compress several conditional GAN models while pre-

serving the visual quality.

Acknowledgments We thank NSF Career Award

#1943349, MIT-IBM Watson AI Lab, Adobe, Intel,

Samsung and AWS machine learning research award for

supporting this research. We thank Ning Xu, Zhuang Liu,

and Antonio Torralba for helpful comments. We thank

NVIDIA for donating the Jetson AGX Xavier that is used in

our demo.

5291

References

[1] Kfir Aberman, Rundi Wu, Dani Lischinski, Baoquan Chen,

and Daniel Cohen-Or. Learning character-agnostic motion

for motion retargeting in 2d. In SIGGRAPH, 2019. 1

[2] Angeline Aguinaldo, Ping-Yeh Chiang, Alex Gain, Ameya

Patil, Kolten Pearson, and Soheil Feizi. Compressing gans us-

ing knowledge distillation. arXiv preprint arXiv:1902.00159,

2019. 2

[3] Samaneh Azadi, Catherine Olsson, Trevor Darrell, Ian Good-

fellow, and Augustus Odena. Discriminator rejection sam-

pling. In ICLR, 2019. 3

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In ICML, 2019. 3

[5] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis. In

ICLR, 2019. 2

[6] Han Cai, Chuang Gan, and Song Han. Once for all: Train

one network and specialize it for efficient deployment. ICLR,

2020. 3, 4

[7] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 3, 4

[8] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A

Efros. Everybody dance now. In ICCV, 2019. 1

[9] Guobin Chen, Wongun Choi, Xiang Yu, Tony Han, and Man-

mohan Chandraker. Learning efficient object detection mod-

els with knowledge distillation. In NeurIPS, 2017. 2, 4

[10] Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Darkrank:

Accelerating deep metric learning via cross sample similari-

ties transfer. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018. 4

[11] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,

Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-

tive adversarial networks for multi-domain image-to-image

translation. In CVPR, 2018. 2

[12] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,

Stefan Roth, and Bernt Schiele. The cityscapes dataset for

semantic urban scene understanding. In CVPR, 2016. 5

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 5

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

2014. 1, 2, 4

[15] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. arXiv

preprint arXiv:1904.00420, 2019. 3, 4, 5

[16] Song Han, Han Cai, Ligeng Zhu, Ji Lin, Kuan Wang, Zhijian

Liu, and Yujun Lin. Design automation for efficient deep

learning computing. arXiv preprint arXiv:1904.10616, 2019.

2

[17] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In ICLR, 2015. 2

[18] Song Han, Jeff Pool, John Tran, and William Dally. Learning

both weights and connections for efficient neural network. In

NeurIPS, 2015. 2

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

1, 2, 4, 5

[20] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and

Song Han. Amc: Automl for model compression and acceler-

ation on mobile devices. In ECCV, 2018. 2, 4

[21] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for

accelerating very deep neural networks. In ICCV, 2017. 2

[22] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-

hard Nessler, and Sepp Hochreiter. GANs trained by a two

time-scale update rule converge to a local Nash equilibrium.

In NeurIPS, 2017. 5

[23] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network. In NeurIPS Workshop, 2015.

2, 4

[24] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. arXiv preprint arXiv:1905.02244, 2019. 2, 3

[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 1, 2, 4, 7

[26] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. ECCV,

2018. 2, 3

[27] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.

Image-to-image translation with conditional adversarial net-

works. In CVPR, 2017. 1, 2, 3, 4, 5

[28] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual

losses for real-time style transfer and super-resolution. In

ECCV, 2016. 4, 5

[29] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019. 2

[30] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee,

and Jiwon Kim. Learning to discover cross-domain relations

with generative adversarial networks. In ICML, 2017. 2

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-

agenet classification with deep convolutional neural networks.

In NeurIPS, 2012. 1

[32] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh

Singh, and Ming-Hsuan Yang. Diverse image-to-image trans-

lation via disentangled representations. In ECCV, 2018. 2

[33] Tianhong Li, Jianguo Li, Zhuang Liu, and Changshui Zhang.

Knowledge distillation from few samples. arXiv preprint

arXiv:1812.01839, 2018. 2, 4

[34] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime

neural pruning. In NeurIPS, 2017. 2

5292

[35] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens,

Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan Huang,

and Kevin Murphy. Progressive neural architecture search. In

ECCV, 2018. 3

[36] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fer-

nando, and Koray Kavukcuoglu. Hierarchical representations

for efficient architecture search. In ICLR, 2018. 3

[37] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In ICLR, 2019. 3

[38] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised

image-to-image translation networks. In NeurIPS, 2017. 2, 3

[39] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017. 2, 4

[40] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin

Yang, Tim Kwang-Ting Cheng, and Jian Sun. Metapruning:

Meta learning for automatic neural network channel pruning.

In ICCV, 2019. 2

[41] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In CVPR,

pages 3431–3440, 2015. 4

[42] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter

level pruning method for deep neural network compression.

In Proceedings of the IEEE international conference on com-

puter vision, pages 5058–5066, 2017. 4

[43] Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, and Xi-

aoou Tang. Face model compression by distilling knowledge

from neurons. In AAAI, 2016. 2, 4

[44] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014. 1, 2

[45] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In CVPR, pages 2337–2346, 2019. 1, 2, 3, 5

[46] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model

compression via distillation and quantization. arXiv preprint

arXiv:1802.05668, 2018. 4

[47] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative adver-

sarial text to image synthesis. In ICML, 2016. 2

[48] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, pages 234–241, 2015. 4, 5

[49] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages

4510–4520, 2018. 2

[50] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and

James Hays. Scribbler: Controlling deep image synthesis

with sketch and color. In CVPR, pages 5400–5409, 2017. 2

[51] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Josh

Susskind, Wenda Wang, and Russ Webb. Learning from

simulated and unsupervised images through adversarial train-

ing. In CVPR, 2017. 2

[52] Han Shu, Yunhe Wang, Xu Jia, Kai Han, Hanting Chen,

Chunjing Xu, Qi Tian, and Chang Xu. Co-evolutionary com-

pression for unpaired image translation. In ICCV, 2019. 2, 5,

6

[53] Karen Simonyan and Andrew Zisserman. Very deep convolu-

tional networks for large-scale image recognition. In ICLR,

2015. 1

[54] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception archi-

tecture for computer vision. In CVPR, 2016. 5

[55] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised

cross-domain image generation. In ICLR, 2017. 2

[56] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han.

Haq: Hardware-aware automated quantization with mixed

precision. In CVPR, 2019. 2

[57] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,

Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-video

synthesis. In NeurIPS, 2018. 1

[58] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,

Jan Kautz, and Bryan Catanzaro. High-resolution image

synthesis and semantic manipulation with conditional gans.

In CVPR, 2018. 2, 3

[59] Shih-En Wei, Jason Saragih, Tomas Simon, Adam W Harley,

Stephen Lombardi, Michal Perdoch, Alexander Hypes, Dawei

Wang, Hernan Badino, and Yaser Sheikh. Vr facial anima-

tion via multiview image translation. ACM Transactions on

Graphics (TOG), 38(4):67, 2019. 1

[60] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai

Li. Learning structured sparsity in deep neural networks. In

NeurIPS, 2016. 2

[61] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, 2019. 3

[62] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan:

Unsupervised dual learning for image-to-image translation.

In ICCV, 2017. 2

[63] Junho Yim, Donggyu Joo, Jihoon Bae, and Junmo Kim. A

gift from knowledge distillation: Fast optimization, network

minimization and transfer learning. In CVPR, pages 4133–

4141, 2017. 2, 4

[64] Aron Yu and Kristen Grauman. Fine-grained visual compar-

isons with local learning. In CVPR, 2014. 5

[65] Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated

residual networks. In CVPR, 2017. 5

[66] Sergey Zagoruyko and Nikos Komodakis. Paying more at-

tention to attention: Improving the performance of convolu-

tional neural networks via attention transfer. arXiv preprint

arXiv:1612.03928, 2016. 4

[67] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-

gang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-

gan++: Realistic image synthesis with stacked generative

adversarial networks. PAMI, 2018. 2

[68] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally.

Trained ternary quantization. In ICLR, 2017. 2

[69] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.

Unpaired image-to-image translation using cycle-consistent

adversarial networks. In ICCV, 2017. 1, 2, 3, 4, 5

5293

[70] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,

Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.

Discrimination-aware channel pruning for deep neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 875–886, 2018. 4

[71] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. In ICLR, 2017. 3

5294

