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Abstract

In this paper, we analyze two popular network compres-

sion techniques, i.e. filter pruning and low-rank decompo-

sition, in a unified sense. By simply changing the way the

sparsity regularization is enforced, filter pruning and low-

rank decomposition can be derived accordingly. This pro-

vides another flexible choice for network compression be-

cause the techniques complement each other. For example,

in popular network architectures with shortcut connections

(e.g. ResNet), filter pruning cannot deal with the last con-

volutional layer in a ResBlock while the low-rank decom-

position methods can. In addition, we propose to compress

the whole network jointly instead of in a layer-wise man-

ner. Our approach proves its potential as it compares fa-

vorably to the state-of-the-art on several benchmarks. Code

is available at https://github.com/ofsoundof/

group_sparsity .

1. Introduction

During the past years, convolutional neural networks

(CNNs) have reached state-of-the-art performance in a va-

riety of computer vision tasks [22, 12, 17, 32, 6, 39, 53, 28].

However, millions of parameters and heavy computational

burdens are indispensable for new advances in this field.

This is not practical for the deployment of neural network

solutions on edge devices and mobile devices.

To overcome this problem, neural network compression

emerges as a promising solution, aiming at a lightweight

and efficient version of the original model. Among the var-

ious network compression methods, filter pruning and filter

decomposition (also termed low-rank approximation) have

been developing steadily. Filter pruning nullifies the weak

filter connections that have the least influence on the accu-

racy of the network while low-rank decomposition converts

a heavy convolution to a lightweight one and a linear combi-

nation [15, 13, 26]. Despite their success, both the pruning-

based and decomposition-based approaches have their re-

spective limitations. Filter pruning can only take effect in

pruning output channels of a tensor and equivalently can-

celling out inactive filters. This is not feasible under some

circumstances. The skip connection in a block is such a

case where the output feature map of the block is added to

the input. Thus, pruning the output could amount to can-

celling a possible important input feature map. This is the

reason why many pruning methods fail to deal with the sec-

ond convolution of the ResNet [12] basic block. As for filter

decomposition, it always introduces another 1 × 1 convo-

lutional layer, which means additional overhead of calling

CUDA kernels.

Previously, filter pruning and decomposition were devel-

oped separately. In this paper, we unveil the fact that fil-

ter pruning and decomposition are highly related from the

viewpoint of compact tensor approximation. Specifically,

both filter pruning and filter decomposition seek a compact

approximation of the parameter tensors despite their differ-

ent operation forms to cope with the application scenarios.

Consider a vectorized image patch x ∈ R
m×1 and a group

of n filters W = {w1, . . . ,wn} ∈ R
m×n. The pruning

methods remove output channels and approximate the orig-

inal output xTW as xTC, where C ∈ R
m×k only has

k output channels. Filter decomposition methods approx-

imate W as two filters A ∈ R
m×k and B ∈ R

k×n and AB

is the rank k approximation of W. Thus, both the prun-

ing and decomposition based methods seek a compact ap-

proximation to the original network parameters, but adopt

different strategies for the approximation.

The above observation shows that filter pruning and de-

composition constitute complementary components of each

other. This fact encourages us to design a unified frame-

work that is able to incorporate the pruning-based and

decomposition-based approaches simultaneously. This sim-

ple yet effective measure can endow the devised algorithm

with the ability of flexibly switching between the two oper-

ation modes, i.e. filter pruning and decomposition, depend-

ing on the layer-wise configurations. This makes it possible

to leverage the benefits of both methods.

The hinge point between pruning and decomposition is
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Figure 1: A sparsity-inducing matrix A is attached to a normal convolution. The matrix acts as the hinge between filter

pruning and decomposition. By enforcing group sparsity to the columns and rows of the matrix, equivalent pruning and

decomposition operations can be obtained. For pruning, the product of W and the column-reduced matrix Ac, i.e. Wc acts

as the new convolutional filter. To save computation after filter decomposition the reduced matrices Wr and Ar are used as

two convolutional filters.

group sparsity, see Fig. 1. Consider a 4D convolutional fil-

ter, reshaped into a 2D matrix W ∈ R
features×outputs. Group

sparsity is added by introducing a sparsity-inducing matrix

A. By applying group sparsity constraints on the columns

of A, the output channel of the sparsity-inducing matrix A

and equivalently of the matrix product W × A can be re-

duced by solving an optimization problem. This is equiva-

lent to filter pruning. On the other hand, if the group spar-

sity constraints are applied on the rows of A, then the inner

channels of the matrix product W ×A, namely, the output

channel of W and the input channel of A, can be reduced.

To save the computation, the single heavyweight convolu-

tion W is converted to a lightweight and a 1×1 convolution

with respect to the already reduced matrices Wr and Ar.

This breaks down to filter decomposition.

Thus, the contribution of this paper is four-fold.

I Starting from the perspective of compact tensor ap-

proximation, the connection between filter pruning

and decomposition is analyzed. Although this perspec-

tive is the core of filter decomposition, it is still novel

for network pruning. Actually, both of the methods

approximate the weight tensor with compact represen-

tation that keeps the accuracy of the network.

II Based on the analysis, we propose to use sparsity-

inducing matrices to hinge filter pruning and decom-

position and introduce a unified formulation. This

square matrix is inspired by filter decomposition and

corresponds to a 1 × 1 convolution. By changing the

way how the sparsity regularizer is applied to the ma-

trix, our algorithm can achieve equivalent effect of ei-

ther filter pruning or decomposition or both. To the

best of our knowledge, this is the first work that ana-

lyzes the two methods under the same umbrella.

III The third contribution is the development of binary

search, gradient based learning rate adjustment,

layer balancing, and annealing methods. All are

important for the success of the proposed algorithm.

These details are obtained by observing the influence

of the proximal gradient method on the filter during the

optimization.

IV The proposed method can be applied to various CNNs.

We apply this method to VGG [40], ResNet [12],

ResNeXt [46], WRN [51], and DenseNet [17]. The

proposed network compression method achieves state-

of-the-art performance on these networks.

The rest of the paper is organized as follows. Sec. 2 dis-

cusses the related work. Sec. 3 explains the proposed net-

work compression method. Sec. 4 describes the implemen-

tation considerations. The experimental results are shown

in Sec. 5 and Sec. 6 concludes this paper.

2. Related Work

In this section, we firstly review the closely related work

including pruning-based and decomposition-based com-

pression methods. Then, we list other categories of network

compression works.

2.1. Parameter Pruning for Network Compression

Non-structural pruning. To compress neural networks,

network pruning disables the weak connections in a net-

work that have a small influence on its prediction accu-

racy. Earlier pruning methods explore unstructured network

weight pruning by deactivating connections corresponding

to small weights or by applying sparsity regularization to

the weight parameters [10, 30, 11]. The resulting irregular

weight parameters of the network are not implementation-

friendly, which hinders the real acceleration rate of the

pruned network over the original one.

Structural pruning. To circumvent the aforementioned

problem, structural pruning aims at zeroing out structured
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Figure 2: The flowchart of the proposed algorithm.

groups of the convolutional filters [15, 14]. Specifically,

group sparsity regularization has been investigated in re-

cent works for the structural pruning of network parame-

ters [56, 45, 1]. Wen et al. [45] and Alvarez et al. [1] pro-

posed to impose group sparsity regularization on network

parameters to reduce the number of feature map channels in

each layer. The success of this method triggered the stud-

ies of group sparsity based network pruning. Subsequent

works improved group sparsity based approaches in differ-

ent ways. One branch of works combined the group sparsity

regularizer with other regularizers for network pruning. A

low-rank regularizer [2] as well as an exclusive sparsity reg-

ularizer [49] were adopted for improving the pruning per-

formance. Another branch of research investigated a better

group-sparsity regularizer for parameter pruning including

group ordered weighted ℓ1 regularizer [52], out-in-channel

sparsity regularization [25] and guided attention for spar-

sity learning [42]. In addition, some works also attempted

to achieve group-sparse parameters in an indirect manner.

In [31] and [18], scaling factors were introduced to scale

the outputs of specific structures or feature map channels to

structurally prune network parameters.

2.2. Filter Decomposition for Network Compression

Another category of works compresses network pa-

rameters through tensor decomposition [8, 23, 19, 54,

26]. Specifically, the original filter is decomposed into a

lightweight one and a linear projection which contain much

fewer parameters than the original, thus resulting in the re-

duction of parameters and computations. Early works ap-

ply matrix decomposition methods such as SVD [8] or CP-

decomposition [23] to decompose 2D filters. In [19], Jader-

berg et al. proposed to approximate the 2D filter set by a

linear combination of a smaller basis set of 2D separable

filters. Subsequent filter basis decomposition works pol-

ished the approach in [19] by using a shared filter basis [41]

or by enabling more flexible filter decomposition. In addi-

tion, Zhang et al. [54] took the input channel as the third

dimension and directly compress the 3D parameter tensor.

2.3. Other methods

Other network compression methods include network

quatization and knowledge distillation. Network quantiza-

tion aims at a low-bit representation of network parameters

to save storage and to accelerate inference. This method

does not change the architecture of the fully-fledged net-

work [44, 36]. Knowledge distillation transfers the knowl-

edge of a teacher network to a student network [16]. Current

research in this direction focuses on the architectural design

of the student network [5, 3] and the loss function [43].

3. The proposed method

This section explains the proposed method (Fig. 2).

Specifically, it describes how group sparsity can hinge fil-

ter pruning and decomposition. The pair {x,y} denotes the

input and target of the network. Without loss of clarity, we

also use x to denote the input feature map of a layer. The

output feature map of a layer is denoted by z. The filters

of a convolutional layer are denoted by W while the intro-

duced group sparsity matrix is denoted by A. The rows and

columns of A are denoted by Ai, and Aj , respectively. The

general structured groups of A are denoted by Ag .

3.1. Group sparsity

The convolution between the input feature map x and the

filters can be converted to a matrix multiplication, i.e.,

Z = X×W, (1)

where X ∈ R
N×cwh, W ∈ R

cwh×n, and Z ∈ R
N×n are

the reshaped input feature map, output feature map, and

convolutional filter, c, n, w × h, and N denotes the input

channel, number of filters, filter size, and number of re-

shaped features, respectively. For the sake of brevity, the

bias term is omitted here. The weight parameters W are

usually trained with some regularization such as weight de-

cay to avoid overfitting the network. To get structured prun-

ing of the filter, structured sparsity regularization is used to

constrain the filter, i.e.

min
W

L(y, f(x;W)) + µD(W) + λR(W), (2)

where D(·) andR(·) are the weight decay and sparsity reg-

ularization, µ and λ are the regularization factors.

Different from other group sparsity methods that directly

regularize the matrix W [49, 25], we enforce group spar-

sity constraints by incorporating a sparsity-inducing matrix

A ∈ R
n×n, which can be converted to the filter of a 1 × 1

convolutional layer after the original layer. Then the origi-

nal convolution in Eqn. (1) becomes Z = X × (W ×A).
To obtain a structured sparse matrix, group sparsity regular-

ization is enforced on A. Thus, the loss function becomes

min
W,A

L(y, f(x;W,A)) + µD(W) + λR(A). (3)

Solving the problem in Eqn. (3) results in structured group

sparsity in matrix A. By considering matrix W and A to-

gether, the actual effect is that the original convolutional

filter is compressed.
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(a) Group sparsity enforced on column. (b) Group sparsity enforced on row.

Figure 3: Group-sparsity regularization enforcement: (a) the columns of the sparsity-inducing matrix are regularized. This

results in nullified filters and the corresponding output feature maps are removed. (b) the rows are regularized and some are

zeroed out. The filters of the previous layer and also the feature maps are removed.

In comparison with the filter selection method [31, 18],

the proposed method not only selects the filters in a layer,

but also makes linear combinations of the filters to mini-

mize the error between the original and the compact filter.

On the other hand, different from other group sparsity con-

straints [49, 25], there is no need to change the original fil-

ters W of the network too much during optimization of the

sparsity problem. In our experiments, we set a much smaller

learning rate for the pretrained weight matrix W.

3.2. The hinge

The group sparsity term in Eqn. (3) controls how the net-

work is compressed. This term has the form

R(A) = Φ(‖Ag‖2), (4)

where Ag denotes the different groups of A, ‖Ag‖2 is the

ℓ2 norm of the group, and Φ(·) is a function of the group ℓ2
norms.

If group sparsity regularization is added to the columns

of A as in Fig. 3a, i.e., R(A) = Φ(‖Aj‖2), a column

pruned version Ac is obtained and the output channels of

the corresponding 1 × 1 convolution are pruned. In this

case, we can multiply W and Ac and use the result as the

filter of the convolutional layer. This is equivalent to prun-

ing the output channels of the convolutional layer with the

filter W.

On the other hand, group sparsity can be also applied

to the rows of A, i.e. R(A) = Φ(‖Ai‖2). In this case,

a row-sparse matrix Ar is derived and the input channels

of the 1 × 1 convolution can be pruned (See Fig. 3b). Ac-

cordingly, the corresponding output channels of the former

convolution with filter W can be also pruned. However,

since the number of output channel of the later convolution

is not changed, multiplying out the two compression ma-

trices does not save any computation. So a better choice

Algorithm 1: The optimization algorithm used to

solve the problem defined in Eqn. (3).

Data: training dataset

Result: the compressed network

initialization: the current compression ratio γc = 1;

the target compression ratio γ∗, the nullifying

threshold of the group ℓ2 norm T ;

while γc − γ∗ <= α do

start a a new epoch;

for batch ∈ training dataset do

Wt+1 = Wt − ηs∇G(Wt);
At+∆ = At − η∇H(At);
At+1 = proxληR(At+∆);

end

compress the network with the threshold T ;

compute the compression ratio γc
end

is to leave them as two separate convolutional layers. This

tensor manipulation method is equivalent to filter decom-

position where a single convolution is decomposed into a

lightweight one and a linear combination. In conclusion, by

enforcing group sparsity to the columns and rows of the in-

troduced matrix A, we can derive two tensor manipulation

methods that are equivalent to the operation of filter pruning

and decomposition, respectively. This provides a degree of

freedom to choose the tensor manipulation method depend-

ing on the specifics of the underlying network.

3.3. Proximal gradient solver

To solve the problem defined by Eqn. (3), the pa-

rameter W can be updated with stochastic gradient de-

scent (SGD) but with a small learning rate, i.e. Wt+1 =
Wt − ηs∇G(Wt), where G(Wt) = L(· , f(· ;Wt, ·)) +
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Algorithm 2: Binary search of the threshold T .

Result: the nullifying threshold T ∗ = g−1(γ∗)
initialization: the target compression ratio γ∗, the

initial step s, the stop criterion C, and T = T0;

while |γn − γ∗| > C do

compress the network with the threshold T ;

calculate the current compression ratio γn;

if (γn−1 >= γ∗) == (γn < γ∗) then s← s/2;

if γn > γt then

T ← T + s;

else

T ← T − s;

end

end

µD(Wt). This is because it is undesirable to modify the

pretrained parameters too much during the optimization

phase. The focus should be on the sparsity matrix A.

The proximal gradient algorithm [37] is used to optimize

the matrix A in Eqn. (3). It consists of two steps, i.e. gradi-

ent descent and proximal operator. The parameters in A are

first updated by SGD with the gradient of the loss function

H(A) = L(y, f(x;W,A)), namely,

At+∆ = At − η∇H(At), (5)

where η is the learning rate and η >> ηs. Then the prox-

imal operator chooses a neighborhood point of At+∆ that

minimizes the group sparsity regularization, i.e.

At+1 = proxληR(At+∆) (6)

= argmin
A

{

R(At+∆) +
1

2λη
‖A−At+∆‖

2
2

}

.

The sparsity regularizer Φ(·) can have different forms,

e.g., ℓ1 norm [37], ℓ1/2 norm [47], ℓ1−2 norm [48], or

logsum [9]. All of them try to approximate the ℓ0 norm.

In this paper, we mainly use {ℓp : p = 1, 1/2} regularizers

while we also include the ℓ1−2 and logsum regularizers in

the ablation studies. The proximal operators of the four reg-

ularizers have a closed-form solution. Briefly, the solution

is the soft-thresholding operator [4] for p = 1 and the half-

thresholding operator for p = 1/2 [47]. The solutions are

appended in the supplementary material. The gradient step

and proximal step are interleaved in the optimization phase

of the regularized loss until some predefined stopping cri-

terion is achieved. After each epoch, groups with ℓ2 norms

smaller than a predefined threshold T are nullified. And the

compression ratio in terms of FLOPs is calculated. When

the difference between the current and the target compres-

sion ratio γc and γ∗ is lower than the stopping criterion α,

the compression phase stops. The detailed compression al-

gorithm that utilizes the proximal gradient is shown in Al-

gorithm 1.

3.4. Binary search of the nullifying threshold

After the compression phase stops, the resulting com-

pression ratio is not exactly the same as the target compres-

sion ratio. To fit the target compression ratio, we use a bi-

nary search algorithm to determine the nullifying threshold

T . The compression ratio γ is actually a monotonous func-

tion of the threshold T , i.e. γ = g(T ). However, the explicit

expression of the function g(·) is not known. Given a target

compression threshold γ∗, we want to derive the threshold

needed to nullify the sparse groups, i.e. T ∗ = g−1(γ∗),
where g−1(·) is the inverse function of g(·). The binary

search approach shown in Algorithm 2 starts with an initial

threshold T0 and a step s. It adjusts the threshold T accord-

ing to the values of the current and target compression ratio.

The step s is halved if the target compression ratio sits be-

tween the previous one γn−1 and the current one γn. The

searching procedure stops as soon as the final compression

ratio γn is close enough to the target, i.e., |γn − γ∗| ≤ C.

3.5. Gradient based adjustment of learning rate

In the ResNet basic block, both of the two 3 × 3 convo-

lutional layers are attached a sparsity-inducing matrix A1

and A2, namely, 1×1 convolutional layers. We empirically

find that the gradient of the first sparsity-inducing matrix

is larger than that of the second. Thus, it is easier for the

first matrix to jump to a point with larger average group ℓ2
norms. This results in unbalanced compression of the two

sparsity-inducing matrices since the same nullifying thresh-

old is used for all of the layers. Thus, much more channels

of A2 are compressed than channels of A1. This is an unde-

sirable compression approach since both of the two layers

are equally important. Hence, a balanced compression be-

tween them is preferable.

To solve this problem, we adjust the learning rate of

the first and second sparsity-inducing matrices according to

their gradients. Let the ratio of the average group ℓ2 norm

between the gradients of the matrices be

ρ =
∑

g

(

∇A1
)

g
/
∑

g

(

∇A2
)

g
. (7)

Then the learning rate of the first convolution is divided by

ρm. We empirically set m = 1.35.

3.6. Group ℓ2 norm based layer balancing

The proximal gradient method depends highly on the

group sparsity term. That is, if the initial ℓ2 norm of a

group is small, then it is highly likely that this group will be

nullified. The problem is that the distribution of the group

ℓ2 norm across different layers can be very diverse, which

can result in unbalanced compression of the layers. In this

case, a narrow bottleneck could appear in the compressed

network that would hamper the performance. To solve this
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problem, we use the mean of the group ℓ2 norm of a layer

to recalibrate the regularization factor of the layer. That is,

λl = λ
1

G

G
∑

g=1

‖Ag‖2, (8)

where λl is the regularization factor of the l-th layer. In this

way, the layers with larger average group ℓ2 norm obtain a

larger penalty.

3.7. Regularization factor annealing

The compression procedure starts with a fixed regular-

ization factor. However, towards the end of the compres-

sion phase, the fixed regularization factor may be so large

that more than the desired groups are nullified in one epoch.

Thus, to solve the problem, we anneal the regularization

factor when the average group ℓ2 norm shrinks below some

threshold. The annealing also impacts the proximal step but

has less influence while the gradient step plays a more ac-

tive role in finding the local minimum.

3.8. Distillation loss in the finetuning phase

In Eqn. (3), the prediction loss and the groups sparsity

regularization are used to solve the compression problem.

After the compression phase, the derived model is further

finetuned. During this phase, a distillation loss is exploited

to force similar logit outputs of the original network and the

pruned one. The vanilla distillation loss is used, i.e.

L = (1− α)Lce(y, σ(zc))

+ 2αT 2Lce

(

σ
(zc

T

)

, σ
(zo

T

))

,
(9)

whereLce(·) denotes the cross-entropy loss, σ(·) is the soft-

max function, zc and zo are the logit outputs of the com-

pressed and the original network. For the sake of simplicity,

the network parameters are omitted. We use a fixed balanc-

ing factor α = 0.4 and temperature T = 4.

4. Implementation Considerations

4.1. Sparsityinducing matrix in network blocks

In the analysis of Sec. 3, a 1×1 convolutional layer with

the sparsity-inducing matrix is appended after the uncom-

pressed layer. When it comes to different network blocks,

we tweak it a little bit. As stated, both of the 3 × 3 con-

volutions in the ResNet [12] basic block are appended with

a 1 × 1 convolution. For the first sparsity-inducing matrix,

group sparsity regularization can be enforced on either the

columns or the rows of the matrix. As for the second matrix,

group sparsity is enforced on its rows due to the existence

of the skip connection.

The ResNet [12] and ResNeXt [46] bottleneck block has

the structure of 1 × 1 → 3 × 3 → 1 × 1 convolutions.

Here, the natural choice of sparsity-inducing matrices are

the leading and the ending convolutions. For the ResNet

bottleneck block, the two matrices select the input and out-

put channels of the middle 3 × 3 convolution, respectively.

Things become a little bit different for the ResNeXt bottle-

neck since the middle 3×3 convolution is a group convolu-

tion. So the aim becomes enforcing sparsity on the already

existing groups of the group convolution. In order to do

that, the parameters related to the groups in the two sparsity-

inducing matrices are concatenated. Then group sparsity is

enforced on the new matrix. After the compression phase,

a whole group can be nullified.

4.2. Initialization of W and A

For the ResNet and ResNeXt bottleneck block, 1 × 1
convolutions are already there. So the original network pa-

rameters are used directly. However, it is necessary to ini-

tialize the newly added sparsity-inducing matrix A. Two

initialization methods are tried. The first one initializes W

and A with the pretrained parameters and identity matrix,

respectively. The second method first calculates the singu-

lar value decomposition of W, i.e. W = USVT . Then the

left eigenvector U and the matrix SVT are used to initialize

W and A. Note that the singular values are annexed by the

right eigenvector. Thus, the columns of W, i.e. the filters of

the convolutional layer lie on the surface of the unit sphere

in the high-dimensional space.

5. Experimental Results

In this section, the proposed method is validated on

three image classification datasets including CIFAR10, CI-

FAR100 [21], and ImageNet2012 [7]. The network com-

pression method is applied to ResNet [12], ResNeXt [46],

VGG [40], and DenseNet [17] on CIFAR10 and CIFAR100,

WRN [51] on CIFAR100, and ResNet50 on ImageNet2012.

For ResNet20 and ResNet56 on CIFAR dataset, the residual

block is the basic ResBlock with two 3 × 3 convolutional

layers. For ResNet164 on CIFAR and ResNet50 on Ima-

geNet, the residual block is a bottleneck block. The investi-

gated models of ResNeXt are ResNeXt20 and ResNeXt164

with carlinality 32, and bottleneck width 1. WRN has 16

convolutional layers with widening factor 10.

The training protocol of the original network is as fol-

lows. The networks are trained for 300 epochs with SGD

on CIFAR dataset. The momentum is 0.9 and the weight

decay factor is 10−4. Batch size is 64. The learning rate

starts with 0.1 and decays by 10 at Epoch 150 and 225.

The ResNet50 model is loaded from the pretrained PyTorch

model [38]. The models are trained with Nvidia Titan Xp

GPUs. The proposed network compression method is im-

plemented by PyTorch. We fix the hyper parameters of the

proposed method by empirical studies. The stop criterion α
in Algorithm 1 is set to 0.1. The threshold T is set to 0.005.
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Figure 4: (a) FLOP and (b) parameter comparison between

KSE [27] and Hinge under different compression ratio.

ResNet56 is compressed. Top-1 error rate is reported.
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Figure 5: Comparison between SSS [18] and the proposed

method. Top-1 error rate is reported for CIFAR100.

Unless otherwise stated, ℓ1 regularizer is used and the reg-

ularization factor is set to 2 · 10−4. As already mentioned,

during the compression step, we set different learning rates

for W and A. The ratio between ηs and η is 0.01.

5.1. Results on CIFAR10

The experimental results on CIFAR10 are shown in Ta-

ble. 1. The Top-1 error rate, the percentage of the remain-

ing FLOPs and parameters of the compressed models are

listed in the table. For ResNet56, two operating points are

reported. The operating point of 50% FLOP compression

is investigated by a bunch of state-of-the-art compression

methods. Our proposed method achieves the best perfor-

mance under this constraint. At the compression ratio of

24%, our approach is clearly better than KSE [27]. For

ResNet and ResNeXt with 20 and 164 layers, our method

shoots a lower error rate than SSS. For VGG and DenseNet,

the proposed method reduces the Top-1 error rate by 0.41 %

and 1.51 % compared with [55]. In Fig. 4, we compare the

FLOPs and number of parameters of the compressed model

by KSE and the proposed method under different compres-

sion ratios. As shown in the figure, our compression method

outperforms KSE easily. Fig. 6a and 6b show further com-

parisons between SSS and our method on CIFAR10. Our

method establishes a lower bound for SSS.

The ablation study on ResNet56 is shown in Table 3.

Different combinations of the hyper parameters T and α
are investigated. There are only slight changes in the re-

sults for different combinations. Anyway, when T = 0.005

Model Method Top-1 / BL (%) FLOPs (%) Params (%)

ResNet-
56

[55] 7.74/6.96 79.70 79.51

GAL-0.6 [29] 6.62/7.64 63.40 88.20

[24] 6.94/6.96 62.40 86.30

NISP [50] 6.99/6.96 56.39 57.40

CaP [34] 6.78 / 6.49 50.20 –

ENC [20] 7.00 / 6.90 50.00 –

AMC [13] 8.10 / 7.20 50.00 –

KSE [27] 6.77 / 6.97 48.00 45.27

FPGM [14] 6.74 / 6.41 47.70 –

Hinge (ours) 6.31 / 7.05 50.00 48.73

KSE [27] 8.00 / 6.97 24.00 –

Hinge (ours) 7.35 / 7.05 24.00 20.80

ResNet-
20

[55] 8.34 / 7.99 83.53 79.59

SSS [18] 9.15 / 7.47 45.16 83.41

Hinge (ours) 8.16 / 7.46 45.50 44.55

ResNet-
164

SSS [18] 5.78 / 5.18 53.53 84.75

Hinge (ours) 5.4 / 4.97 53.61 70.34

ResNeXt-
20

SSS [18] 8.49 / 7.08 59.21 76.57

Hinge (ours) 8.04 / 7.46 59.00 63.95

ResNeXt-
164

SSS [18] 5.42 / 6.41 44.38 64.38

Hinge (ours) 5.13 / 4.82 44.42 50.53

VGG16

[55] 6.82 / 6.75 60.90 26.66

GAL-0.1 [29] 6.58 / 6.04 54.80 17.80

Hinge (ours) 6.41 / 5.98 60.93 19.95

DenseNet-
12-40

GAL-0.01 [29] 5.39 / 5.19 64.70 64.40

[55] 6.84 / 5.89 55.22 40.33

Hinge (ours) 5.33 / 5.26 55.60 72.46

Table 1: Comparison of CIFAR10 compression results.

“FLOPs” and “Params” denote the remaining percentage of

FLOP and parameter quantities of the compressed models

and the lower the better. The other tables and figures fol-

lows the same convention.

Model Method Top-1 / BL (%) FLOPs (%) Params (%)

WRN

CGES [49] 21.97 / 21.62 75.56 –

Hinge-NA 23.61 / 21.58 75.59 84.31

Hinge (ours) 21.79 / 21.58 75.61 83.29

CGES [49] 22.75 / 21.62 57.31 –

Hinge-NA 23.13 / 21.58 57.41 68.72

Hinge (ours) 22.06 / 21.58 57.39 67.80

ResNet20
SSS [18] 34.42 / 30.91 32.98 54.42

Hinge (ours) 33.66 / 31.17 32.94 33.64

ResNet164
SSS [18] 24.42 / 23.31 55.33 86.75

Hinge (ours) 23.12 / 23.22 55.32 76.57

ResNeXt20
SSS [18] 30.60 / 28.00 53.51 76.34

Hinge (ours) 28.74 / 28.05 53.59 65.24

ResNeXt164
SSS [18] 26.71 / 23.18 47.69 72.47

Hinge (ours) 22.56 / 23.13 47.75 58.49

Table 2: Comparison of CIFAR100 compression results.

For a fair comparison, the model size from different meth-

ods is kept to the same level. Hinge-NA stands for our hinge

method without regularization factor annealing during the

compression phase.

and α = 0.01, our method achieves the lowest error rate.

And we use this combination for the other experiments. As

for the different regularizers, ℓ1 and ℓ1/2 regularization are

clearly better than ℓ1−2 and logsum. Due to the simplicity

of the ℓ1 proximal operator in contrast to the ℓ1/2, we use
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Figure 6: Comparison between SSS [18] and the proposed method. Top-1 error rate is reported. (a) and (b) shows the results

on CIFAR10 while (c) and (d) shows the results on CIFAR100.

Regularizer Threshold T α Top-1 error (%)

ℓ1 0.001 0.05 6.54

ℓ1 0.005 0.1 6.53

ℓ1 0.001 0.05 6.66

ℓ1 0.005 0.01 6.37

logsum 0.005 0.01 6.53

ℓ1/2 0.005 0.01 6.31

ℓ1−2 0.005 0.01 6.56

Table 3: Ablation study: the proposed compression method

is applied to ResNet56 and tested on CIFAR10. The com-

pression ratio is fixed to 50%. Different regularizers and

hyper parameters T and α are examined.

ℓ1 instead of ℓ1/2 in the other experiments.

5.2. Results on CIFAR100

Table 2 shows the compression results on CIFAR100.

For the compression of WRN, we analyze the influence

of regularization factor annealing during the compression

phase. It is clear that with the annealing mechanism, the

proposed method achieves much better performance. This

is because towards the end of the compression phase, the

proximal gradient solver has found quite a good neighbor

of the local minimum. In this case, the regularization factor

should diminish in order for a better exploration around the

local minimum. Compared with the previous group sparsity

method CGES [49], our hinge method with the annealing

mechanism results in better performance.

Fig. 5 compares the SSS and our method for the 164-

layer networks. Even without the distillation loss, our

method is already better than SSS. When the distillation loss

is utilized, the proposed method brings the Top-1 error rate

to an even lower level. The corresponding results for the 20-

layer networks are shown in Fig. 6c and 6d, respectively.

5.3. Results on ImageNet

The comparison results of compressing ResNet50 on the

ImageNet2012 dataset is shown in Table 4. Since differ-

ent methods compare the compressed models under differ-

Method Top-1 Error FLOPs (%)

SSS [18] 25.82 68.55

ThinNet-70 [33] 27.96 63.21

NISP [50] 28.01 55.99

Taylor-56% [35] 25.50 55.01

FPGM [14] 25.17 47.50

Hinge (ours) 25.30 46.55

RRBP [57] 27.00 45.45

GAL [29] 28.20 44.98

Table 4: Results of compressing ResNet50 on Ima-

geNet2012. Entries are sorted according to FLOPs.

ent FLOP compression rates, it is only possible to compare

different methods under roughly comparable compression

rates. Compared with those methods, our method achieves

state-of-the-art trade-off performance between Top-1 error

rate and FLOP compression ratio.

6. Conclusion

In this paper, we propose to hinge filter pruning and

decomposition via group sparsity. By enforcing group

sparsity regularization on the different structured groups,

i.e., columns and rows of the sparsity-inducing matrix, the

manipulation of the tensor breaks down to filter pruning

and decomposition, respectively. The unified formulation

enables the devised algorithm to flexibly switch between

the two modes of network compression, depending on the

specific circumstances in the network. Proximal gradient

method with gradient based learning rate adjustment, layer

balancing, and regularization factor annealing are used to

solve the optimization problem. Distillation loss is used in

the finetuning phase. The experimental results validate the

proposed method.
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