
Improving One-shot NAS by Suppressing the Posterior Fading

Xiang Li∗

Brown University

xiang li 1@brown.edu

Chen Lin∗, Chuming Li, Ming Sun, Wei Wu, Junjie Yan

SenseTime Group Limited

{linchen,lichuming,sunming1,wuwei,yanjunjie}@sensetime.com

Wanli Ouyang

The University of Sydney

wanli.ouyang@sydney.edu.au

Abstract

Neural architecture search (NAS) has demonstrated

much success in automatically designing effective neural

network architectures. To improve the efficiency of NAS,

previous approaches adopt weight sharing method to force

all models share the same set of weights. However, it has

been observed that a model performing better with shared

weights does not necessarily perform better when trained

alone. In this paper, we analyse existing weight sharing

one-shot NAS approaches from a Bayesian point of view

and identify the Posterior Fading problem, which com-

promises the effectiveness of shared weights. To alleviate

this problem, we present a novel approach to guide the

parameter posterior towards its true distribution. More-

over, a hard latency constraint is introduced during the

search so that the desired latency can be achieved. The

resulted method, namely Posterior Convergent NAS (PC-

NAS), achieves state-of-the-art performance under stan-

dard GPU latency constraint on ImageNet.

1. Introduction

Neural network design requires extensive experiments

by human experts. In recent years, there has been a growing

interest in developing algorithmic NAS solutions to auto-

mate the manual process of architecture design [39, 16, 18].

Despite remarkable results [21, 38], early works on NAS

[28, 12] are limited to searching only using proxy or sub-

sampled dataset due to the exorbitant computational cost.

To overcome this difficulty, [3, 27] attempted to improve

search efficiency via sharing weights across models. These

approaches utilize an over-parameterized network (super-

graph) containing every single model, which can be further

divided into two categories.

∗Equal Contribution

The first category is continuous relaxation method [23,

6], which keeps a set of so called architecture parameters

to represent the model, and updates these parameters alter-

natively with supergraph weights. The resulting model is

obtained using the architecture parameters at convergence.

The continuous relaxation method suffers from the rich-get-

richer problem [1], which means that a better-performed

model at the early stage would be trained more frequently

(or have larger learning rates). This introduces bias and in-

stability to the search process.

The other category is referred to as one-shot method

[5, 13, 3, 9], which divides the NAS procedure into a train-

ing stage and a searching stage. In the training stage, the su-

pergraph is optimized along with either dropping out each

operator with certain probability or sampling uniformly

among candidate architectures. In the search stage, a search

algorithm is applied to find the architecture with the highest

validation accuracy with shared weights. The one-shot ap-

proach ensures the fairness among all models by sampling

architecture or dropping out operator uniformly. However,

as identified in [1, 9, 3], the problem of one-shot method

is that the validation accuracy of the model with shared

weights is not predictive to its true performance.

In this paper, we formulate NAS as a Bayesian model se-

lection problem [8]. This formulation is especially helpful

in understanding the one-shot approaches in a theoretical

way, which in turn provides us a guidance to fundamentally

addressing one of the major issues of one-shot approaches.

Specially, we show that shared weights are actually a max-

imum likelihood estimation of a proxy distribution to the

true parameter distribution. Most importantly, we identify

the common issue of weight sharing, which we call Poste-

rior Fading, i.e., as the number of models in the supergraph

increases, the KL-divergence between true parameter poste-

rior and proxy posterior also increases.

To alleviate the Posterior Fading problem, we proposed

a practical approach to guide the convergence of the proxy

13836

distribution towards the true parameter posterior. Specifi-

cally, we divide the training of supergraph into several in-

tervals and maintain a pool of high potential partial models

and progressively update this pool after each interval . At

each training step, a partial model is sampled from the pool

and complemented to a full model, where full model means

an architecture that has full number of layers provided by

the search. To update the partial model pool, we first gener-

ate candidates by extending each partial model and evaluate

their potentials. The top ones among them form the new

pool. The search space is effectively shrunk in the upcom-

ing training interval. Consequently, the parameter posterior

get closer to the desired true posterior during this procedure.

Main contributions of our work is concluded as follows:

• We for the first time analyse one-shot approach from a

theoretical point of view and identify the real problem

of this method, which we call Posterior Fading. This

perspective will provide insights for further study.

• Guided by our Bayesian result, we introduce a novel

NAS algorithm fundamentally different from existing

ones, which guides the proxy distribution to converge

towards the true parameter posterior.

• We benchmark our method’s performance on Ima-

geNet [30] against the existing models and a new

powerful architecture, PC-NAS, is discovered. In

one typical search space [6], our PC-NAS-S attains

76.8% top-1 accuracy, 0.5% higher and 20% faster

than EfficientNet-B0 [33], which is the current state-

of-the-art model in mobile setting. To further demon-

strate the advantage of our method, we test it on a

larger space and our PC-NAS-L boosts the accuracy

to 78.1%.

2. Related work

Early neural architecture search (NAS) [24, 22, 29, 39,

2, 35] methods normally involves reinforcement learning

or neuro-evolution. This type of NAS is typically consid-

ered as an agent-based explore and exploit process, where

an agent (e.g. an evolution mechanism or a recurrent neural

network(RNN)) is introduced to explore a given architec-

ture space with training a network in the inner loop to get an

evaluation for guiding exploration. Such methods are com-

putationally expensive and hard to be used on large-scale

datasets, e.g. ImageNet.

Recent works [27, 4, 23, 6] try to alleviate this compu-

tation cost via modeling NAS as a single training process of

an over-parameterized network that comprises all candidate

models, in which weights of the same operators in different

models are shared. ENAS [27] reduces the computation

cost by orders of magnitude, while requires an RNN agent

and focuses on small-scale datasets (e.g. CIFAR10). One-

shot NAS [5] trains the over-parameterized network along

with dropping out each operator with increasing probabil-

ity. Then it uses the pre-trained over-parameterized network

to evaluate randomly sampled architectures. DARTS [23]

additionally introduces a real-valued architecture parame-

ter for each operator and alternately train operator weights

and architecture parameters by back-propagation. Proxy-

lessNAS [6] binarizes the real-value parameters in DARTS

to save the GPU computation and memory for training the

over-parameterized network. SNAS [37] employs Gumbel

random variables to directly optimize the NAS objective.

[11] develops a differentiable sampler over the search space

to achieve impressive speed.

The paradigm of ProxylessNAS [6] and DARTS [23]

introduce unavoidable bias since operators of models per-

forming well in the beginning will easily get trained more

and normally keep being better than other. But they are not

necessarily superior than others when trained from scratch.

Other relevant works are ASAP [26] and XNAS

[25], which introduce pruning during the training of

over-parameterized networks to improve the efficiency of

NAS. Similar to these approaches, we start with an over-

parameterized network and then reduce the search space to

derive the optimized architecture. Instead of focusing on

the speed-up of training, we further improve the rankings of

models and evaluate operators directly on validation set.

3. Methods

In this section, we first formulate neural architecture

search in a Bayesian manner. Utilizing this setup, we in-

troduce the PC-NAS algorithm and analyse its advantage

comparing to previous approaches. Finally, we discuss the

search algorithm combined with latency constraint.

3.1. A Probabilistic Setup for Model Uncertainty

The Bayesian setup of model comparison simply in-

volves the use of probabilities to represent uncertainty in the

choice of model, along with a consistent application of the

sum and product rules of probability. Suppose we want to

compare a set of K different models M = {m1, ...,mK}.

Here a model refers to a probability distribution over the

observed data D and p(D|θk,mk) describes the probability

density of data D given model mk and its associated pa-

rameters θk. The Bayesian approach proceeds by assigning

a prior probability distribution p(θk|mk) to the parameters

of each model, and a prior probability p(mk) to each model.

In order to ensure fairness among all models, we set the

model prior p(mk) a uniform distribution. Under previous

setting, we can drive

p(mk|D) =
p(D|mk)p(mk)

∑

k p(D|mk)p(mk)
, (1)

13837

where

p(D|mk) =

∫

p(D|θk,mk)p(θk|mk)dθk. (2)

Since p(mk) is uniform, the Maximum Likelihood Esti-

mation (MLE) of mk is just the maximum of (2), which

expresses the preference shown by the data for different

models. It can be inferred that, p(θk|mk) is crucial to the

solution of the model selection. We are interested in at-

taining the model with highest test accuracy in a trained

alone manner, thus the parameter prior is just the posterior

palone(θk|mk,D) which means the distribution of θk when

mk is trained alone on dataset D. Thus we would use the

term true parameter posterior to refer palone(θk|mk,D).

3.2. Network Architecture Selection In a Bayesian
Point of View

We constrain our discussion in the setting which is fre-

quently used in NAS literature for simplicity. As a building

block of our search space, a mixed operator (mixop), de-

noted by O = {O1 . . . , ON}, contains N different choices

of candidate operators Oi for i = 1, . . . N in parallel.

The search space is defined by L mixed operators (lay-

ers) connected sequentially interleaved by downsampling

as in Fig. 1(a). The network architecture (model) m is de-

fined by a vector [o1, o2, ..., oL], ol ∈ O representing the

choice of operator for layer l. The parameter for the op-

erator o at the l-th layer is denoted as θlo. The param-

eters of the supergraph are denoted by θ which includes

{θlo|l ∈ {1, 2, ..., L}, o ∈ O}. In this setting, the param-

eters of each candidate operator are shared among multiple

architectures. The parameters related with a specific model

mk is denoted as θk = θ1,o1 , θ2,o2 , ..., θL,oL , which is a

subset of the parameters of the supergraph θ. Obtaining the

palone(θk|mk,D) or a MLE of it for every model is com-

putationally intractable. Therefore, the one-shot method

trains the supergraph by dropping out each operator [5] or

sampling different architectures [3, 9] and utilize the shared

weights to evaluate single model. In this work, we adopt

the latter training paradigm while the former one could be

easily generalized. Suppose we sample a model mk and

optimize the supergraph with a mini-batch of data based on

the objective function Lalone:

− log palone(θ|mk,D)

∝ Lalone(θ,mk,D)

∝ − log palone(D, θ|mk)− log p(mk)

∝ − log palone(D|θ,mk)− log p(θ|mk),

(3)

where − log p(θ|mk) could be seen as a regularization

term. Thus minimizing this objective equals to making

MLE to palone(θ|mk,D). When training the supergraph, we

sample many models mk, and then train the parameters for

these models, which corresponds to a stochastic approxima-

tion of the following objective function:

Lshare(θ,D) =
1

K

∑

k

Lalone(θ,mk,D). (4)

By taking exponential on both sides of the equation 4, it is

equivalent to adopting a proxy parameter posterior as fol-

lows:

pshare(θ|D) =
1

Z

∏

k

palone(θ|mk,D), (5)

− log pshare(θ|D) = −
∑

k

log palone(θ|mk,D) + logZ,

(6)

where K and Z are normalizing factors. One thing worth

noting is that palone(θ|mk,D) are all independent for dif-

ferent k, since different models have different and indepen-

dent parameter distributions. Then maximizing pshare(θ|D)
is equivalent to minimizing Lshare. For each single layer, its

parameter θl,o is affected by all the remaining layers. By

the intrinsic randomness of our uniform model sampling,

we could further assume that

pshare(θl,o|D) =
∏

k

palone(θl,o|mk,D), (7)

which basically means the distribution of parameter θl,o is

ultimately determined by all its marginal distribution from

sampled architectures.

The KL-divergence between palone(θl,o|mk,D) and

pshare(θl,o|D) follows:

DKL

(

palone(θl,o|mk,D)
∣

∣

∣

∣

∣

∣
pshare(θl,o|D)

)

=

∫

palone(θl,o|mk,D) log
palone(θl,o|mk,D)

pshare(θl,o|D)
dθ

=

∫

palone(θl,o|mk,D) log
palone(θl,o|mk,D)

∏

i palone(θl,o|mi,D)
dθ

=
∑

i 6=k

−

∫

palone(θl,o|mk,D) log palone(θl,o|mi,D)dθ.

(8)

The KL-divergence is just the summation of the cross-

entropy of palone(θl,o|mk,D) and palone(θl,o|mi,D) where

i 6= k. The cross-entropy term is always positive. Increas-

ing the number of architectures would push pshare away from

palone, namely the Posterior Fading. We conclude that non-

predictive problem originates naturally from one-shot su-

pergraph training, as KL-divergence grows with the num-

ber of architectures in the search space and a typical search

space contains huge 1021 architectures. Thus if we effec-

tively reduce the number of architectures in (8) during train-

ing, the KL divergence would decrease. This is the intuition

of our PC-NAS algorithm.

13838

Figure 1. One example of search space(a) and PC-NAS process(b)(c)(d). Each mixed opperator consists of N (=3 in this figure) operators.

However, only one operator in each mixop is invoked at a time for each batch. In (b), partial models 1 and 2 in the pool consist of choices

in mixop 1 and 2. We extend these 2 partial models to the mixop 3. 6 extended candidate models are evaluated and ranked in(c). In (d), the

new pool consists of the top-2 candidate models that are ranked in (c).

Algorithm 1 Potential: Evaluating the Potential of Partial

Candidates

Inputs: G(supergraph), L(num of mixops in G),

m
′(partial candidate), Lat(latency constraint),

S(evaluation number), Dval (validataion set)

Scores = ∅
for i = 1 : S do

m
∗ = expand(m′) randomly expand m

′ to full

depth L
if Latency(m∗) > Lat then

continue dump samples that don’t satisfy the la-

tency constraint

end if

acc = Acc(m∗, Dval) inference m
∗ for one batch

and return its accuracy

Scores.append(acc) save accuracy

end for

Outputs: Average(Scores)

3.3. Posterior Convergent NAS

The naive approach to mitigate the posterior fading prob-

lem is to limit the number of candidate models inside the

supergraph. However, large number of candidates is de-

manded for NAS to discover promising models. Due to

this conflict, we present PC-NAS which adopts progressive

search space shrinking. The resulting algorithm divides the

training of shared weights into L intervals, where L is the

number of mixed operators in the search space. The number

of training epochs of a single interval is denoted as Ti. We

will explain the key components of our method separately.

Partial model pool is a collection of partial models.

At the l-th interval, a single partial model should contain

l− 1 selected operators [o1, o2, ..., ol−1]. The size of partial

model pool is denoted as P . After the l-th interval, each

partial model in the pool will be extended by the N opera-

tors in l-th mixop. Thus there are P×N candidate extended

partial models with length l. These candidate partial mod-

els are evaluated and the top-P among which are used as

the partial model pool for the interval l + 1. An illustrative

exmaple of partial model pool update is in Fig. 1(b)(c)(d).

Candidate evaluation with latency constraint We de-

fine the potential of a partial model to be the expected val-

idation accuracy of the models which contain the partial

model.

Potential(o1, o2, ..., ol) = Em ∈{m |mi=oi,∀i≤l}(Acc(m)).
(9)

where the validation accuracy of model m is denoted by

Acc(m). We estimate this value by uniformly sampling

valid models and computing the average of their valida-

tion accuracy using one mini-batch. We use S to denote

the evaluation number, which is the total number of sam-

pled models. We observe that when S is large enough, the

potential of a partial model is fairly stable and discrimina-

tive among candidates. See Algorithm 1 for pseudocode.

The latency constraint is imposed by discarding invalid full

models when calculating potentials of partial models in

the pool. Unlike previous soft constraint training methods

[6, 36], our PC-NAS will guarantee the latency constraint

to be satisfied.

Training based on partial model pool The training it-

eration of the supergraph along with the partial model pool

13839

