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We introduce a comprehensive framework for learning physically based face models from highly constrained facial scan data. Our deep

learning based approach for 3D morphable face modeling seizes the fidelity of nearly 4000 high resolution face scans encompassing

expression and identity separation (a). The model (b) combines a multitude of anatomical and physically based face attributes to generate

an infinite number of digitized faces (c). Our model generates faces at pore level geometry resolution (d).

Abstract

Based on a combined data set of 4000 high resolution

facial scans, we introduce a non-linear morphable face

model, capable of producing multifarious face geometry of

pore-level resolution, coupled with material attributes for

use in physically-based rendering. We aim to maximize the

variety of the participant’s face identities, while increasing

the robustness of correspondence between unique compo-

nents, including middle-frequency geometry, albedo maps,

specular intensity maps and high-frequency displacement

details. Our deep learning based generative model learns to

correlate albedo and geometry, which ensures the anatom-

ical correctness of the generated assets. We demonstrate

potential use of our generative model for novel identity gen-

eration, model fitting, interpolation, animation, high fidelity

data visualization, and low-to-high resolution data domain

transferring. We hope the release of this generative model

will encourage further cooperation between all graphics,

vision, and data focused professionals, while demonstrating

the cumulative value of every individual’s complete biomet-

ric profile.

∗Joint first authors

1. Introduction

Graphical virtual representations of humans are at the

center of many endeavors in the fields of computer vision

and graphics, with applications ranging from cultural me-

dia such as video games, film, and telecommunication to

medical, biometric modeling, and forensics [6].

Designing, modeling, and acquiring high fidelity data for

face models of virtual characters is costly and requires spe-

cialized scanning equipment and a team of skilled artists

and engineers [17, 5, 37]. Due to limiting and restrictive

data policies of VFX studios, in conjunction with the ab-

sence of a shared platform that regards the sovereignty of,

and incentives for the individuals’ data contributions, there

is a large discrepancy in the fidelity of models trained on

publicly available data, and those used in large budget game

and film production. A single, unified model would democ-

ratize the use of generated assets, shorten production cycles

and boost quality and consistency, while incentivizing inno-

vative applications in many markets and fields of research.

The unification of a facial scan data set in a 3D mor-

phable face model (3DMM) [7, 12, 41, 6] promotes the fa-

vorable property of representing facial scan data in a com-

pact form, retaining the statistical properties of the source
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without exposing the characteristics of any individual data

point in the original data set.

Previous methods, including traditional methods [7, 12,

27, 34, 16, 9], or deep learning [42, 38] to represent 3D face

shapes; lack high resolution (sub-millimeter, < 1mm) geo-

metric detail, use limited representations of facial anatomy,

or forgo the physically based material properties required

by modern visual effects (VFX) production pipelines. Phys-

ically based material intrinsics have proven difficult to es-

timate through the optimization of unconstrained image

data due to ambiguities and local minima in analisys-by-

synthesis problems, while highly constrained data capture

remains percise but expensive [6]. Although variations

occur due to different applications, most face representa-

tions used in VFX employ a set of texture maps of at least

4096× 4096 (4K) pixels resolution. At a minimum, this

set encorporates diffuse albedo, specular intensity, and dis-

placement (or surface normals).

Our goal is to build a physically-based, high-resolution

generative face model to begin bridging these parallel, but

in some ways divergent, visualization fields; aligning the

efforts of vision and graphics researchers. Building such

a model requires high-resolution facial geometry, material

capturing and automatic registration of multiple assets. The

handling of said data has traditionally required extensive

manual work, thus scaling such a database is non-trivial.

For the model to be light weight these data need to be com-

pressed into a compact form that enables controlled recon-

struction based on novel input. Traditional methods such as

PCA [7] and bi-linear models [12] − which are limited by

memory size, computing power, and smoothing due to in-

herent linearity − are not suitable for high-resolution data.

By leveraging state-of-the-art physically-based facial

scanning [17, 25], in a Light Stage setting, we enable acqui-

sition of diffuse albedo and specular intensity texture maps

in addition to 4K displacement. All scans are registered

using an automated pipeline that considers pose, geome-

try, anatomical morphometrics, and dense correspondence

of 26 expressions per subject. A shared 2D UV param-

eterization data format [15, 43, 38], enables training of a

non-linear 3DMM, while the head, eyes, and teeth are rep-

resented using a linear PCA model. Hence, we propose a

hybrid approach to enable a wide set of head geometry as-

sets as well as avoiding the assumption of linearity in face

deformations.

Our model fully disentangles identity from expressions,

and provides manipulation using a pair of low dimensional

feature vectors. To generate coupled geometry and albedo,

we designed a joint discriminator to ensure consistency,

along with two separate discriminators to maintain their

individual quality. Inference and up-scaling of before-

mentioned skin intrinsics enable recovery of 4K resolution

texture maps.

Our main contributions are:

• The first published upscaling of a database of high res-

olution (4K) physically based face model assets.

• A cascading generative face model, enabling control

of identity and expressions, as well as physically based

surface materials modeled in a low dimensional feature

space.

• The first morphable face model built for full 3D real

time and offline rendering applications, with more rel-

evant anatomical face parts than previously seen.

2. Related Work

Facial Capture Systems Physical object scanning de-

vices span a wide range of categories; from single RGB

cameras [14, 39], to active [3, 17], and passive [4]

light stereo capture setups, and depth sensors based on

time-of-flight or stereo re-projection. Multi-view stereo-

photogrammetry (MVS) [4] is the most readily available

method for 3D face capturing. However, due to its many

advantages over other methods (capture speed, physically-

based material capturing, resolution), polarized spherical

gradient illumination scanning [17] remains state-of-the-art

for high-resolution facial scanning. A mesoscopic geome-

try reconstruction is bootstrapped using an MVS prior, uti-

lizing omni-directional illumination, and progressively fi-

nalized using a process known as photometric stereo [17].

The algorithm promotes the physical reflectance properties

of dielectric materials such as skin; specifically the separa-

ble nature of specular and subsurface light reflections [29].

This enables accurate estimation of diffuse albedo and spec-

ular intensity as well as pore-level detailed geometry.

3D Morphable Face Models The first published work

on morphable face models by Blanz and Vetter [7] repre-

sented faces as dense surface geometry and texture, and

modeled both variations as separate PCA models learned

from around 200 subject scans. To allow intuitive con-

trol; attributes, such as gender and fullness of faces, were

mapped to components of the PCA parameter space. This

model, known as the Basel Face Model [33] was released

for use in the research community, and was later extended to

a more diverse linear face model learnt from around 10,000

scans [9, 8].

To incorporate facial expressions, Vlasic et al. [45] pro-

posed a multi-linear model to jointly estimate the varia-

tions in identity, viseme, and expression, and Cao et al. [12]

built a comprehensive bi-linear model (identity and expres-

sion) covering 20 different expressions from 150 subjects

learned from RGBD data. Both of these models adopt a

tensor-based method under the assumption that facial ex-

pressions can be modeled using a small number of discrete
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Figure 1: Capture system and camera setup. Left: Light Stage

capturing system. Right: camera layout.

poses, corresponded between subjects. More recently, Li

et al. [27] released the FLAME model, which incorporates

both pose-dependent corrective blendshapes, and additional

global identity and expression blendshapes learnt from a

large number of 4D scans.

To enable adaptive, high level, semantic control over face

deformations, various locality-based face models have been

proposed. Neumann et al. [32] extract sparse and spatially

localized deformation modes, and Brunton et al. [10] use

a large number of localized multilinear wavelet modes. As

a framework for anatomically accurate local face deforma-

tions, the Facial Action Coding System (FACS) by Ekman

[13] is widely adopted. It decomposes facial movements

into basic action units attributed to the full range of motion

of all facial muscles.

Morphable face models have been widely used for appli-

cations like face fitting [7], expression manipulation [12],

real-time tracking [41], as well as in products like Apple’s

ARKit. However, their use cases are often limited by the

resolution of the source data and restrictions of linear mod-

els causing smoothing in middle and high frequency geom-

etry details (e.g. wrinkles, and pores). Moreover, to the best

of our knowledge, all existing morphable face models gen-

erate texture and geometry separately, without considering

the correlation between them. Given the specific and var-

ied ways in which age, gender, and ethnicity are manifested

within the spectrum of human life, ignoring such correla-

tion will cause artifacts; e.g. pairing an African-influenced

albedo to an Asian-influenced geometry.

Image-based Detail Inference To augment the quality of

existing 3DMMs, many works have been proposed to infer

the fine-level details from image data. Skin detail can be

synthesized using data-driven texture synthesis [20] or sta-

tistical skin detail models [18]. Cao et al. [11] used a prob-

ability map to locally regress the medium-scale geometry

details, where a regressor was trained from captured patch

pairs of high-resolution geometry and appearance. Saito et

al. [35] presented a texture inference technique using a deep

neural network-based feature correlation analysis.

GAN-based Image-to-Image frameworks [22] have

proven to be powerful for high-quality detail synthesis, such

(a) (b) (c) (d) (e)

LS 4k × 4k 3.9M 4k × 4k 79 26

TG 8k × 8k 3.5M N/A 99 20

Table 1: Resolution and extent of the datasets. (a). Albedo resolu-

tion. (b). Geometry resolution. (c). Specular intensity resolution.

(d) # of subjects. (f). # of expressions per subject.

as the coarse [44], medium [36] or even mesoscopic [21]

scale facial geometry inferred directly from images. Beside

geometry, Yamaguchi et al. [47] presented a comprehen-

sive method to infer facial reflectance maps (diffuse albedo,

specular intensity, and medium- and high-frequency dis-

placement) based on single image inputs. More recently,

Nagano et al. [31] proposed a framework for synthesiz-

ing arbitrary expressions both in image space and UV tex-

ture space, from a single portrait image. Although these

methods can synthesize facial geometry or/and texture maps

from a given image, they don’t provide explicit parametric

controls of the generated result.

3. Database

3.1. Data Capturing and Processing

Data Capturing Our Light Stage scan system employs

photometric stereo [17] in combination with monochrome

color reconstruction using polarization promotion [25] to

allow for pore level accuracy in both the geometry re-

construction and the reflectance maps. The camera setup

(Fig.1) was designed for rapid, database scale, acquisition

by the use of Ximea machine vision cameras which en-

able faster streaming and wider depth of field than tra-

ditional DSLRs [25]. The total set of 25 cameras con-

sists of eight 12MP monochrome cameras, eight 12MP

color cameras, and nine 4MP monochrome cameras. The

12MP monochrome cameras allow for pore level geome-

try, albedo, and specular reflectance reconstruction, while

the additional cameras aid in stereo base mesh-prior recon-

struction.

To capture consistent data across multiple subjects with

maximized expressiveness, we devised a FACS set [13]

which combines 40 action units to a condensed set of 26

expressions. In total, 79 subjects, 34 female, and 45 male,

ranging from age 18 to 67, were scanned performing the 26

expressions. To increase diversity, we combined the data

set with a selection of 99 Triplegangers [2] full head scans;

each with 20 expressions. Resolution and extent of the two

data sets are shown in Table 1. Fig. 2 shows the age and

ethnicity (multiple choice) distributions of the source data.
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Figure 2: Distribution of age (a) and ethnicity (b) in the data sets.
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Figure 3: Our generic face model consists of multiple geometries

constrained by different types of deformation. In addition to face

(a), head, and neck (b), our model represents teeth (c), gums (d),

eyeballs (e), eye blending (f), lacrimal fluid (g), eye occlusion

(h), and eyelashes (i). Texture maps provide high resolution (4K)

albedo (j), specularity (k), and geometry through displacement (l).

Processing Pipeline. Starting from the multi-view im-

agery, a neutral scan base mesh is reconstructed using MVS.

Then a linear PCA model in our topology (See Fig.3) based

on a combination and extrapolation of two existing mod-

els (Basel [33] and Face Warehouse [12]) is used to fit the

mesh. Next, Laplacian deformation is applied to deform

the face area to further minimize the surface-to-surface er-

ror. Cases of inaccurate fitting were manually modeled and

fitted to retain the fitting accuracy of the eyeballs, mouth

sockets and skull shapes. The resulting set of neutral scans

were immediately added to the PCA basis for registering

new scans. We fit expressions using generic blendshapes

and non-rigid ICP [26]. Additionally, to retain texture space

and surface correspondence, image space optical flow from

neutral to expression scan is added from 13 different vir-

tual camera views as additional dense constraint in the final

Laplacian deformation of the face surface.

3.2. Training Data Preparation

Data format. The full set of the generic model consists

of a hybrid geometry and texture maps (albedo, specular

intensity, and displacement) encoded in 4K resolution, as

illustrated in Fig. 3. To enable joint learning of the cor-

relation between geometry and albedo, 3D vertex positions

are rasterized to a three channel HDR bitmap of 256× 256
pixels resolution. The face area (pink in Fig. 3) used to

learn the geometry distribution in our non-linear generative

model consists of m = 11892 vertices, which, if evenly

4K 256x256 0 mm

1 mm

Figure 4: Comparison of base mesh geometry resolutions. Left:

Base geometry reconstructed in 4K resolution. Middle: Base ge-

ometry reconstructed in 256 × 256 resolution. Right: Error map

showing the Hausdorff distance in the range (0mm, 1mm), with

a mean error of 0.068mm.

spread out in texture space, would require a bitmap of res-

olution greater or equal to ⌈
√
2×m⌉2 = 155 × 155, ac-

cording to Nyquist’s resampling theorem. As shown in

Fig. 4, the proposed resolution is enough to recover middle-

frequency detail. This relatively low resolution base geom-

etry representation enables great simplification in training

data load.

Data Augmentation Since the number of subjects is lim-

ited to 178 individuals, we apply two strategies to augment

the data for identity training: 1) For each source albedo,

we randomly sample a target albedo within the same eth-

nicity and gender in the data set using [49] to transfer skin

tones of target albedos to source albedos (these samples are

restricted to datapoints of the same ethnicity), followed by

an image enhancement [19] to improve the overall quality

and remove artifacts. 2). For each neutral geometry, we

add a very small expression offset using FaceWarehouse ex-

pression components with a small random weights(< ±0.5
std) to loosen the constraints of “neutral”. To augment the

expressions, we add random expression offsets to generate

fully controlled expressions.

4. Generative Model

An overview of our system is illustrated in Fig. 5. Given

a sampled latent code Zid ∼ N(µid, σid), our Identity net-

work generates a consistent albedo and geometry pair of

neutral expression. We train an Expression network to gen-

erate the expression offset that can be added to the neu-

tral geometry. We use random blendshape weights Zexp ∼
N(µexp, σexp) as the expression network’s input to enable

manipulation of target semantic expressions. We upscale

the albedo and geometry maps to 1K, and feed them into

a transfer network [46] to synthesize the corresponding 1K
specular and displacement maps. Finally, all the maps ex-

cept for the middle frequency geometry map are upscaled

to 4K using Super-resolution [24], as we observed that

256 × 256 pixels are sufficient to represent the details of
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Figure 5: Overview of generative pipeline. Latent vectors for identity and expression serve as input for generating the final face model.
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Figure 6: Identity generative network. The identity generator

Gid produces albedo and geometry which get checked against

ground truth (GT) data by the discriminators, Dalbedo, Djoint,

and Dgeometry during training.

the base geometry (Section 3.2). The details of each com-

ponent are elaborated on in Section 4.1, 4.2, and 4.3.

4.1. Identity Network

The goal of our Identity network is to model the cross

correlation between geometry and albedo to generate con-

sistent, diverse and biologically accurate identities. The net-

work is built upon the Style-GAN architecture [23], that can

produce high-quality, style-controllable sample images.

To achieve consistency, we designed 3 discriminators

as shown in Fig.6, including individual discriminators for

albedo (Dalbedo) and geometry (Dgeometry), to ensure the

quality and sharpness of the generated maps, and an addi-

tional joint discriminator (Djoint) to learn their correlated

distribution. Djoint is formulated as follows:

Ladv = min
Gid

max
Djoint

E
x∼pdata(x)

[

log Djoint(A)
]

+

E
z∼pz(z)

[

log (1−Djoint(Gid(z)))
]

.
(1)

where pdata(x) and pz(z) represent the distributions of real

paired albedo and geometry x and noise variables z in the

domain of A respectively.

4.2. Expression Network

To simplify the learning of a wide range of diverse

expressions, we represent them using vector offset maps,

 ~  ( , )

Expression latent

Gexp Rexp

Dexp

′ Generated offset

Ground truth offset

Real/
Fake?

ℒexp =∥ Zexp − Z′ 

exp ∥

Figure 7: Expression generative network. The expression genera-

tor Gexp generates offsets which get checked against ground truth

offsets by the discriminator Dexp. The regressor Rexp produces

an estimate of the latent code Z
′

exp so that the L1 loss Lexp can be

modeled.

which also makes the learning of expressions independent

from identity. Similar to the Identity network, the expres-

sion network adopts Style-GAN as the base structure. To al-

low for intuitive control over expressions, we use the blend-

shape weights, which correspond to the strength of 25 or-

thogonal facial activation units, as network input. We in-

troduce a pre-trained expression regression network Rexp

to predict the expression weights from the generated image,

and force this prediction to be similar to the input latent

code Zexp. We then force the generator to understand the in-

put latent code Zexp under the perspective of the pre-trained

expression regression network. As a result, each dimension

of the latent code Zexp will control the corresponding ex-

pression defined in the original blendshape set. The loss we

introduce here is:

Lexp =‖ Zexp − Z
′

exp ‖ (2)

This loss, Lexp, will be back propagated during training to

enforce the orthogonality of each blending unit. We mini-

mize the following losses to train the network:

L = Lexp
l2

+ β1Lexp
adv + β2Lexp (3)

where Lexp
l2

is the L2 reconstruction loss of the offset map

and Lexp
adv is the discriminator loss.
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4.3. Inference and Super­resolution

Similar to [47]; upon obtaining albedo and geometry

maps (256× 256), we use them to infer specular and dis-

placement maps in 1K resolution. In contrast to [47], us-

ing only albedo as input, we introduce the geometry map to

form stronger constraints. For displacement, we adopted the

method of [47, 21] to separate displacement in to individ-

ual high-frequency and low-frequency components, which

makes the problem more tractable. Before feeding the

two inputs into the inference network [46], we up-sample

the albedo to 1K using a super-resolution network simi-

lar to [24]. The geometry map is super-sampled using bi-

linear interpolation. The maps are further up-scaled from

1K to 4K using the same super-resolution network struc-

ture. Our method can be regarded as a two step cascading

up-sampling strategy (256 to 1K, and 1K to 4K). This

makes the training faster, and enables higher resolution in

the final results.

5. Implementation Details

Our framework is implemented using Pytorch and all our

networks are trained using two NVIDIA Quadro GV100s.

We follow the basic training schedule of Style-GAN [23]

with several modifications applied to the Expression net-

work, like by-passing the progressive training strategy as

expression offsets are only distinguishable on relatively

high resolution maps. We also remove the noise injec-

tion layer, due to the input latent code Zexp which enables

full control of the generated results. The regression mod-

ule (Rexp-block in Fig.7) has the same structure as the dis-

criminator Dexp, except for the number of channels in the

last layer, as it serves as a discriminator during training.

The regression module is initially trained using synthetic

unit expression data generated with neutral expression and

FaceWarehouse expression components, and then fine-

tuned on scanned expression data. During training, Rexp, is

fixed without updating parameters. The Expression network

is trained with a constant batch size of 128 on 256x256-

pixel images for 40 hours. The Identity network is trained

by progressively reducing the batch size from 1024 to 128

on growing image sizes ranging from 8x8 to 256x256 pix-

els, for 80 hours.

6. Experiments And Evaluations

6.1. Results

In Fig.10, we show the quality of our generated model

rendered using Arnold. The direct output of our genera-

tive model provides all the assets necessary for physically-

based rendering in software such as Maya, Unreal Engine,

or Unity 3D. We also show the effect of each generated

component.

Figure 8: Non-linear identity interpolation between generated sub-

jects. Age (top) and gender (bottom) are interpolated from left to

right.

Jaw open [std from neutral]

R
igh

t eye b
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tral]

-5.0

1.0
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0.0 2.5 4.0 5.5 7.0

Figure 9: Non linear expression interpolation using generative ex-

pression network. Combinations of two example shapes are dis-

played in a grid where the number of standard deviations from the

generic neutral model define the extent of an expression shape.

6.2. Qualitative Evaluation

We show identity interpolation in Fig.8. The interpola-

tion in latent space reflects both albedo and geometry. In

contrast to linear blending, our interpolation generates sub-

jects belonging to a natural statistical distribution.

In Fig.9, we show the generation and interpolation of

our non-linear expression model. We pick two orthogonal

blendshapes for each axis and gradually change the input

weights. Smooth interpolation in vector space will lead to a

smooth interpolation in model space.

We show nearest neighbors for generated models in the

training set in Fig.11. These are found based on point-wise

Euclidean distance in geometry. Albedos are compared to

prove our ability to generate new models that are not merely

recreations of the training set.
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(a) (b) (c) (d) (e) (f)

Figure 10: Rendered images of generated random samples. Column (a), (b), and (c) show images rendered under novel image-based HDRI

lighting [48]. Column (c), (d), and (e), show geometry with albedo, specular intensity, and displacement added one at the time.

Figure 11: Nearest neighbors for generated models in training set.

Top row: albedo from generated models. Bottom row: albedo of

geometrically nearest neighbor in training set.

Generation Method IS↑ FID↓
independent 2.22 23.61

joint 2.26 21.72

groud truth 2.35 -

Table 2: Evaluation on our Identity generation. Both IS and FID

are calculated on images rendered with independently/jointly gen-

erated albedo and geometry.

6.3. Quantitative Evaluation

We evaluate the effectiveness of our identity network’s

joint generation in Table 2 by computing Frechet Inception

Distances (FID) and Inception-Scores (IS) on rendered im-

ages of three categories: randomly paired albedo and ge-

ometry, paired albedo and geometry generated using our

model, and ground truth pairs. Based on these results, we

conclude that our model generates more plausible faces,

similar to those using ground truth data pairs, than random

pairing.

We also evaluate our identity network’s generalization to

unseen faces by fitting 48 faces from [1]. The average Haus-

dorff distance is 2.8mm, which proves that our model’s ca-

pacity is not limited by the training set.

In addition, to evaluate the non-linearity of our expres-

sion network in comparison to the linear expression model

of FaceWarehouse [12], we first fit all the Light Stage scans

using FaceWarehouse, and get the 25 fitting weights, and

expression recoveries, for each scan. We then recover the

same expressions by feeding the weights to our expres-

sion network. We evaluate the reconstruction loss with

mean-square error (MSE) for both FaceWarehouse’s and
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Figure 12: The age distribution of the training data (a) VS. ran-

domly generated samples (b).
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Figure 13: Comparison of 3D scan fitting with Basel [7], Face-

wareHouse [12], and FLAME [27]. Error maps are computed us-

ing Hausdorff distance between each fitted model and ground truth

scans.

our model’s reconstructions. On average, our method’s

MSE is 1.2mm while FaceWarehouse’s is 2.4mm. This

shows that for expression fitting, our non-linear model nu-

merically outperforms a linear model of the same dimen-

sionality.

To demonstrate our generative identity model’s coverage

of the training data, we show the gender, and age distribu-

tions of the original training data and 5000 randomly gener-

ated samples in Fig.12. The generated distributions are well

aligned with the source.

6.4. Applications

To test the extent of our identity model’s parameter

space, we apply it to scanned mesh registration by reversing

the GAN to fit the latent code of a target image [28]. As our

model requires a 2D parameterized geometry input, we first

use our linear model to align the scans using landmarks, and

then parameterize it to UV space after Laplacian morphing

of the surface. We compare our fitting results with widely

used (linear) morphable face models in Fig.13. This evalua-

tion does not prove the ability to register unconstrained data

but shows that our model is able to reconstruct novel faces

by the virtue of it’s non-linearity, to a degree unobtainable

by linear models.

Another application of our model is transferring low-

quality scans into the domain of our model by fitting using

both MSE loss and discriminator loss. In Fig.14, we show

examples of data enhancement of low resolution scans.

Figure 14: Low-quality data domain transfer. Top row: Models

with low resolution geometry and albedo. Bottom row: Enhance-

ment result using our model.

7. Conclusion and Limitations

Conclusion We have introduced the first published use of

a high-fidelity face database, with physically-based mare-

rial attributes, in generative face modeling. Our model can

generate novel subjects and expressions in a controllable

manner. We have shown that our generative model performs

well on applications such as mesh registration and low res-

olution data enhancement. We hope that this work will ben-

efit many analysis-by-synthesis research efforts through the

provision of higher quality in face image rendering.

Limitations and Future work In our model, expression

and identity are modeled separately without considering

their correlation. Thus the reconstructed expression off-

set will not include middle-frequency geometry of an in-

dividual’s expression, as different subjects will have unique

representations of the same action unit. Our future work

will include modeling of this correlation. Since our expres-

sion generation model requires neural network inference

and re-sampling of 3D geometry it is not currently as user

friendly as blendshape modeling. Its ability to re-target pre-

recorded animation sequences will have to be tested further

to be conclusive. One issue of our identity model arises in

applications that require fitting to 2D imagery, which ne-

cessitates an additional differentiable rendering component.

A potential problem is fitting lighting in conjunction with

shape as complex material models make the problem less

tractable. A possible solution could be an image-based re-

lighting method [40, 30] applying a neural network to con-

vert the rendering process to an image manipulation prob-

lem. The model will be continuously updated with new fea-

tures such as variable eye textures and hair as well as more

anatomically relevant components such as skull, jaw, and

neck joints by combining data sources through collabora-

tive efforts. To encourage democratization and wide use

cases we will explore encryption techniques such as fed-

erated learning, homomorphic encryption, and zero knowl-

edge proofs which have the effect of increasing subjects’

anonymity.
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