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Abstract

State-of-the-art object detectors rely on regressing and

classifying an extensive list of possible anchors, which are

divided into positive and negative samples based on their

intersection-over-union (IoU) with corresponding ground-

truth objects. Such a harsh split conditioned on IoU results

in binary labels that are potentially noisy and challenging

for training. In this paper, we propose to mitigate noise in-

curred by imperfect label assignment such that the contribu-

tions of anchors are dynamically determined by a carefully

constructed cleanliness score associated with each anchor.

Exploring outputs from both regression and classification

branches, the cleanliness scores, estimated without incur-

ring any additional computational overhead, are used not

only as soft labels to supervise the training of the classifi-

cation branch but also sample re-weighting factors for im-

proved localization and classification accuracy. We conduct

extensive experiments on COCO, and demonstrate, among

other things, the proposed approach steadily improves Reti-

naNet by ∼2% with various backbones.

1. Introduction

Object detectors aim to identify rigid bounding boxes

that enclose objects of interest in images and have steadily

improved over the past few years. Key to the advancement

in accuracy is the reduction of object detection to an im-

age classification problem. In particular, a set of candi-

date boxes, i.e., anchors, of various pre-defined sizes and

aspect ratios, are extensively used to be regressed to de-

sired locations and classified into object labels (or back-

ground). While training the regression branch is straightfor-

ward with ground-truth (GT) coordinates of objects avail-

able, optimizing the classification network is challenging:

only a small fraction of anchors sufficiently overlap with GT

boxes. This limited number of proposals are considered as

positive samples, together with a vast number of remaining

∗Work partially done while the author was an intern at Salesforce Re-

search.
†Corresponding author.

PositiveNegative

(a) (b) (c)

Figure 1: Candidate anchors and their assigned labels

(represented by color) in sampled images. Top: classical

training methods assign binary labels, i.e., positive (in blue)

and negative (in red) to anchors based on IoU between can-

didates and ground-truth boxes (in green). Bottom: soft

labels, represented by the density of colors, assigned to an-

chors by our approach based on a proposed cleanliness met-

ric for anchors. Best viewed digitally.

negative anchors, to learn good classifiers with the help of

techniques like focal loss [22] or hard sample mining meth-

ods [36, 31, 26] that can mitigate data imbalance problems.

Despite the success of such training schemes in various

detectors [30, 28, 24, 21, 22], the split of positive and neg-

ative anchors relies on a design choice—proposals whose

IoUs with GT boxes are higher than a pre-defined fore-

ground threshold are considered as positive samples while

those with IoUs lower than a background threshold are

treated as negative. Although simple and effective, the use

of pre-defined thresholds is simply based on ad-hoc heuris-

tics, and more importantly, the resulting hard division of an-

chors as either positive or negative is questionable. Unlike

standard image classification problems where positive and

negative samples are more clearly determined by whether

an object occurs, anchors that overlap with GT boxes cor-

respond to patches of objects, covering a fraction of an ob-
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ject’s extent and thus containing only partial information.

Therefore, labels assigned to anchors conditioned on their

overlap with GT boxes, are ambiguous. For example, the

giraffe head in Figure 1 will be considered as a negative

sample since the IoU is low, yet it contains meaningful se-

mantic information useful for both localization and classifi-

cation. In addition, an axis-aligned candidate with satisfac-

tory overlapping with a GT box might contain background

clutter and even other objects (see the green car on the truck

and the dog in front of the laptop in Figure 1), due to the lim-

itations of representing objects using rectangles. Therefore,

labels used to train the classification branch are noisy, and it

is challenging to define perfectly clean labels as there is no

oracle information to measure the quality of proposals. In

addition, noise in labels is further amplified with sampling

methods [31, 26] or focal loss [22], since ambiguous and

noisy samples tend to produce large losses [2].

In light of this, we explicitly consider label noise for

anchors with an aim to reduce its impact during classifica-

tion and regression. In particular, we associate a cleanliness

score with each anchor to adaptively adjust its importance

during training. Defining cleanliness is non-trivial, since

information on the quality of anchors is limited. However,

these scores are expected to be (1) determined automatically

rather than based on heuristics; (2) soft and continuous so

that anchors are not split into positive and negative set with

a hard threshold; (3) can reflect the probability of anchors to

be successfully regressed to desired locations and classified

into object (or background) labels.

It has been demonstrated that the outputs from networks

can indicate the noise level of samples when labels are cor-

rupted and noisy for image classification tasks—the net-

work tends to learn clean samples quickly early on and

make confident predictions for them, while recognizing

noisy samples slowly yet progressively [13, 15, 29, 34, 18].

In this spirit, we use network outputs as proxies to estimate

cleanliness for anchors. We define the cleanliness score of

an anchor as a combination of localization accuracies from

the regression subnetwork and prediction scores produced

by the classification head. Such a definition not only sat-

isfies the aforementioned desiderata but also correlates the

classification branch with its regression counterpart. This

injects localization information to the classification subnet-

work, and thus reduces the discrepancies between training

and testing, since proposals are simply ranked based on

classification confidence with NMS, unaware of localiza-

tion accuracy during evaluation.

The cleanliness scores then serve as soft labels to su-

pervise the training of the classification branch. Since they

reflect the uncertainty of network predictions and contain

richer information than binary labels, this prevents the net-

work from generating over-confident predictions for noisy

samples. Furthermore, the cleanliness scores, through a

non-linear transformation, are used as sample re-weighting

factors to regulate the contributions of different anchors to

loss functions for both classification and regression net-

works. This assists the model to attend to samples with

high cleanliness scores, indicating both accurate regression

and classification potentials, and to ignore noisy anchors.

It worth pointing out the scores based on the outputs of

networks are derived without incurring additional compu-

tational cost, and can be readily plugged into anchor-based

object detectors.

We conduct extensive studies on COCO with state-

of-the-art one-stage detectors, and demonstrate that our

method improves baselines by ∼ 2% using various back-

bone networks with minimal surgery to loss functions. In

particular, with the common practice [12] of multi-scale

training, our approach improves RetinaNet [22] to 41.8%

and a 44.1% AP with ResNet-101 [14] and ResNeXt-101-

32×8d [39] as backbones, respectively, which are 2.7% and

3.3% higher than the original RetinaNet [22] and better or

comparable with state-of-the-art one-stage object detectors.

We additionally show the proposed approach can also be

applied to two-stage detectors for improved performance.

2. Related Work

Anchor-based object detectors. Inheriting from the tra-

ditional sliding-window paradigms, most modern object

detectors perform classification and box regression condi-

tioned on a set of bounding box priors [28, 24, 30, 22,

2, 33, 19]. In particular, one-stage detectors like Reti-

naNet [22], SSD [24] and YOLOv2 [28] use pre-defined

anchors directly, while two-stage detectors like Faster R-

CNN [30] use generated region proposals refined from an-

chors either once or in a cascaded manner. A multitude of

detectors have been newly proposed based on these frame-

works [32, 37, 25, 2, 44, 7, 6, 46, 4]. However, they rely

on pre-defined IoU thresholds to assign binary positive and

negative labels to proposals in order to train the classifica-

tion branch. Instead, we associate each box with a carefully

designed cleanliness score as soft labels, dynamically ad-

justing the contributions of different proposals and hence

makes the training noise-tolerant.

Anchor-free object detectors. There are a few recent stud-

ies attempting to address the issues caused by the use of

anchors by formulating object detection as a keypoint local-

ization problem. In particular, they aim to localize object

keypoints, such as corners [16], centers [40, 8] and rep-

resentative points covering [35] or circumscribing [42] the

spatial extent of objects. The discovered keypoints are ei-

ther grouped into boxes directly [16, 8] or used as reference

points for box regression [35, 42, 40]. They achieve com-

parable accuracies with anchor-based counterparts, con-

firming that the conventional classification supervision us-

ing anchors is not perfect. However, these keypoint-based
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methods often require more training time to converge. In-

stead, we improve anchors with slight modifications to loss

functions based on the introduced cleanliness scores. This

facilitates efficient training yet competitive performance

without additional computational cost.

Sampling/re-weighting in object detection. The training

of object detectors often faces a huge class imbalance due

to the large percentage of background candidates. A com-

mon technique to address the imbalance is sampling batches

with a fixed foreground-to-background ratio [11, 30]. In ad-

dition, various hard [31, 26, 5, 24] and soft [22, 17, 3] sam-

pling strategies have been proposed. The core idea of them

is to prevent easy samples from overwhelming the loss and

then focus the training on hard samples. Despite their ef-

fectiveness, these sampling strategies tend to amplify the

noise caused by the imperfect split of positive and nega-

tive samples, since confusing samples are observed to pro-

duce larger losses[13, 1]. We demonstrate that our method

is complementary to these sampling methods while allevi-

ates the impact of noise for training.

Learning with noisy labels. Extensive studies have been

conducted on learning from noisy labels, where noise is

generally modeled by deep neural networks [15, 13, 34, 18,

29] or graphical models [38, 20], etc. Then, outputs from

these models are used to re-weight training samples or infer

the correct labels. These approaches focus on the task of im-

age classification where noise is from incorrect annotation

or caused by the use of weakly-labeled web images from

social media or search engines. In contrast, our focus is on

object detection, where label noise results from the imper-

fect split of positive and negative candidates produced by

the solely IoU-based label assignment strategy.

3. Background

We briefly review the standard protocols and design

choices for training one-stage detectors and discuss their

limitations. State-of-the-art one-stage detectors take as in-

puts raw images and produce a set of candidate proposals

(i.e., anchors), in the form of feature vectors, to predict the

labels of potential objects with a classification branch, and

regress coordinates of ground-truth bounding boxes through

a regression branch. In particular, the regression branch

typically uses a smoothed ℓ1 loss [10] to encourage correct

regression of bounding boxes while the classification coun-

terpart incentivizes accurate predictions of object (or back-

ground) labels through a binary cross entropy (BCE) loss 1:

BCE (p, t) = −t·wp ·log(p)−(1−t)·wn ·log(1−p), (1)

where t ∈ {0, 1} denotes the label of a candidate box with

background (bg) as 0 and foreground (fg) as 1, and p ∈

1We consider binary classification for simplicity, and extending it to

multiple classes is straightforward.

[0, 1] is the predicted classification confidence. wp and

wn denote the weighting parameter used in focal loss [22],

to down-weight well-classified samples. In contrast to

standard image classification tasks where labels are more

clearly defined based on the presence of objects, the labels

of anchors serving as supervisory signals are artificially de-

fined based on their overlapping with GT-boxes in the fol-

lowing way:

t =











1 if IoU ≥ fg-threshold

0 if IoU < bg-threshold

−1 otherwise.

(2)

The fg-threshold is typically set to 0.5, which is in

part motivated by the PASCAL VOC [9] detection bench-

mark [31] and has been empirically found to be effective for

a variety of detectors. Similarly, a box is labeled as back-

ground if its IoU with GT is less than the bg-threshold,

which is set to 0.4 in RetinaNet [22].

While offering top-notch performance in most popular

detectors, the heuristic approach of identifying positive and

negative samples might not be ideal as the thresholds are

manually selected and fixed for all objects, regardless of

their categories, shapes, sizes, etc. For example, a candi-

date box with a high IoU for irregular-shaped objects might

contain background clutter or even other objects. On the

other hand, anchors with smaller IoUs might still contain

important clues. For instance, the candidate box contain-

ing a giraffe head in Figure 1 would be considered as back-

ground, but it contains useful appearance information for

recognizing and localizing a giraffe. This hard label assign-

ment leads to noisy samples which are difficult to learn and

produce relatively large losses. As a result, noise will be

magnified when re-sampling methods like OHEM [31] or

focal loss [22] are used to mitigate class imbalance and easy

sample dominance problems, since more attention is paid to

these hard but probably not meaningful proposals.

4. Our Approach

As discussed above, noise incurred by the imperfect split

of positive and negative samples and the limitations of rep-

resenting objects with rectangles, not only confuses the

classification branch to derive good decision boundaries but

also misleads re-sampling/weighting methods. Therefore,

we propose to reduce the impact of noisy proposals by dy-

namically adjusting their importance. To accomplish this,

we introduce the notion of cleanliness for anchors based

on their the likelihood to be successfully classified and re-

gressed. Cleanliness scores are continuous in order to adap-

tively control the contribution of different proposals.

Recent advances on learning from noisy labels when

training networks suggest that the confidence scores of net-

works indicates the noise level of samples when making
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predictions, i.e., networks can easily learn easy samples

with high confidence while tending to make uncertain pre-

dictions for hard and noisy samples. Motivated by this ob-

servation, we define the cleanliness scores of anchors using

knowledge learned from the classification and localization

branches in detectors:

c =

{

α · loc_a+ (1− α) · cls_c for b ∈ Apos

0 for b ∈ Aneg.

(3)

Here, b is a candidate box, loc_a and cls_c denote the

localization accuracy and the classification confidence, re-

spectively, and α is a control parameter, balancing the im-

pact of localization and classification. In addition, Apos and

Aneg separately represent positive and negative candidate

sets from top-N proposals for each GT-object based on their

IoU before box refinement. Note that most candidate boxes

only cover background regions due to the dense placement

of anchors and should not be labeled and learned as positive

samples; consequently, we only assign cleanliness scores to

a set of plausible positive candidates, with others labeled as

0. Furthermore, we use direct outputs from the classifica-

tion network as cls_c and instantiate loc_a as IoU be-

tween regressed candidate box and its matched GT-object.

Note that although we use network outputs, the approach

does not suffer from cold start—initial values of cls_c

and output from regression branch are both small, so the de-

rived cleanliness score is an approximation of IoU between

anchor and matched GT-object, which does not destablize

training during the first few iterations.

Soft labels. The cleanliness scores are readily used as soft

labels to control the contributions of different anchors to the

BCE loss in Equation 1 by replacing t with c. Since clean-

liness scores are dynamically estimated based on the trade-

off between loc_a and cls_c, the network can focus on

clean samples and not on improperly labeled noisy samples.

In addition, these soft and continuous labels allows the net-

work to be more compatible with detection evaluation pro-

tocols, where all final predictions are ranked based on their

classification scores in NMS, as will be shown in the experi-

ments. The reasons are two-folds: (1) soft labels prevent the

model from generating over-confident binarized decisions,

producing more meaningful rankings; (2) the localization

accuracies are modeled in the soft labels, reducing the mis-

alignment between classification and localization.

Sample re-weighting. One-stage detectors are usually con-

fronted with a severe imbalance of training data with a large

amount of negative proposals and only a few positive ones.

To mitigate this issue, focal loss [22] decreases the loss

of easy samples and focuses more on hard and noisy sam-

ples. However, for proposals with label noise, they will be

stressed during training even though they could simply be

outliers. Therefore, we also propose to re-weight samples

Algorithm 1 The algorithm of our approach.

Input: I, GT , B, cls_c, loc_a, α, γ, N

I is the input image,

GT is the set of ground truth objects within I,

B is the set of candidates boxes (i.e. anchors),

cls_c is the classification confidence of corresponding ground truth class

for candidates,

loc_a is the localization accuracy of candidates,

α, γ are the modulating factors, N controls size of positive candidate set.

Output: Losses for classification and box regression Lcls, Lreg .

1: Apos,Aneg , S ← ∅

2: for gt ∈ GT do

3: indices = argsort(IoU(B, gt)) ⊲ Sort in descending order.

4: Apos ← Apos ∪ {indices[0 : N ] : gt}
5: end for

6: Aneg ← {(B −Apos).indices : 0}

7: for bi ∈ Apos do

8: c = α · loc_ai + (1− α) · cls_ci ⊲ Equation 3

9: r = (α · f(loc_ai) + (1− α) · f(cls_ci))
γ ⊲ Equation 4

10: S ← S ∪ {bi : {c, r}}
11: end for

12: for bi ∈ Aneg do S ← S ∪ {bi : {c← 0.0, r ← 1.0}} end for

13: Lcls = ΣS
i ri· BCE(pi, ci) ⊲ Equation 5

14: Lreg = ΣS
i ri· smooth_ℓ1 ⊲ Equation 6

15: return Lcls, Lreg

based on cleanliness scores defined in Equation 3. While

we could to directly use Eqn. 3 for re-weighting, the vari-

ations of cleanliness scores among different proposals are

not significantly large as loc_a and cls_c are normal-

ized. To encourage a large variance, we pass loc_a and

cls_c through a non-linear function f(x) = 1

1−x
. The

re-weighting factor r for each box b ∈ Apos becomes:

r = (α · f(loc_a) + (1− α) · f(cls_c))γ , (4)

where γ is used to further enlarge the score variance, which

is fixed to 1 in the experiments. In addition, we also nor-

malize r to have a mean of 1, since the mean of all posi-

tive samples are 1 given that they are equally important be-

fore re-weighting. Re-weighting proposals in this way not

only downplays the role of very hard samples that cannot

be modeled by the network but also helps revisiting clean

samples that are regarded as well-classified to promote the

discriminative power of classification. Finally, with the

aforementioned soft labels and sampling re-weighting fac-

tors based on cleanliness scores, loss functions used to train

classification Lcls and regression Lreg networks can then

be written as:

Lcls =

Apos
∑

i

ri BCE(pi, ci) +

Aneg
∑

j

BCE(pj , cj), (5)

Lreg =

Apos
∑

i

ri smooth_ℓ1. (6)
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Here, r is used to weight both losses, BCE loss is com-

puted with c as supervisory signal, and widely adopted

smooth ℓ1 loss is used for regression [22]. The complete

algorithm of our approach is in Alg. 1.

5. Experiments

5.1. Experimental Setup

Datasets. We evaluate the proposed approach on the

COCO benchmark [23]. Following standard training and

testing protocols [22, 21], we use the trainval35k set

(the union of the 80K training images and 35K validation

images) for training and the minival set (5K images), or

the test-dev2017 set for testing. The performance is

measured by COCO Average Precision (AP) [23]. For ab-

lation, we report results on minival. For main results, we

report AP on the test-dev2017 set where annotations

are not publicly available.

Detectors. We mainly experiment with RetinaNet [22], a

state-of-the-art one-stage detector, with different backbones

including ResNet-50, ResNet-101 [14] and ResNeXt-101-

32×8d [39]. In addition, we demonstrate the idea can

also be extended to two-stage detectors using Faster R-

CNNs [30]. For ablation studies, we use RetinaNet with

a backbone of ResNet-50.

Implementation details . We use PyTorch for implemen-

tation and adopt 4 GPUs for training with a batch size of

8 (2 images per GPU) using SGD and optimize for 180K
iterations in total (1× schedule) unless specified otherwise.

The initial learning rate is set as 0.01 for Faster R-CNNs

and 0.005 for RetinaNet, then divided by 10 at 120K and

160K iterations. We use a weight decay of 0.0001 and a

momentum of 0.9. As in [22, 35, 46, 17, 27], input images

are resized to have a shorter side of 800 while the longer

side is kept less than 1333; we also perform random hori-

zontal image flipping for data augmentation. When multi-

scale training is performed, input images are jittered over

scales {640, 672, 704, 736, 768, 800} at shorter side. For

multi-scale testing, we use scales {400, 500, 600, 700, 900,

1000, 1100, 1200} and horizontal flipping as augmentations

following Detectron [12].

5.2. Main Results

We report the performance of our approach on the COCO

test-dev2017 set using RetinaNet and compare with

other state-of-the-art methods in Table 2. In particular, we

compare with variants of RetinaNet such as FSAF [46],

POD [27], GHM [17], Cas-Retinanet [43], RefineDet [44]

and several anchor-free methods including FCOS [35], Cor-

nernet [16], ExtremeNet [45] and CenterNets [40, 8]. For

fair comparisons, following the common setup [22, 46, 27,

43], we also train our method with a longer schedule (1.5x

of the schedule mentioned in Section 5.1) and a scale jitter-

ing.

We can see from the table that, without introducing any

computational overhead, our method improves RetinaNet

by 2.7% and 3.3% AP with a ResNet-101 and a ResNeXt-

101-32×8d as backbone networks, respectively, confirm-

ing the effectiveness of our method. It worth noting all

these RetinaNet models are trained with focal loss [22],

which demonstrates the compatibility of our approach with

techniques used to address the imbalance of training sam-

ples. In addition, our approach achieves better or compara-

ble performance compared with various state-of-the-art de-

tectors in both single-scale and multi-scale testing scenar-

ios. Note that our approach performs better or on par with

some detectors with multiple refinement stages [44, 43]

or longer training schedule (e.g., a 2x of default sched-

ule) [35, 45, 16, 40]. With a strong backbone network

ResNeXt-101-32×8d and multi-scale testing, we achieve a

high AP of 45.5%.

5.3. Ablation Study

Different backbone architectures. We also experiment

with different backbone networks for RetinaNet, includ-

ing ResNet-50, ResNet-101 and ResNeXt-101-32×8d. The

results are summarized in Table 1. We observe that our

method steadily improves the baselines by ∼2% for differ-

ent backbones.

Method Backbone AP AP50 AP75

Baseline
ResNet-50

36.2 54.0 38.7

Ours 38.0+1.8 56.9 40.6

Baseline
ResNet-101

38.1 56.4 40.7

Ours 40.2+2.1 59.3 42.9

Baseline
ResNeXt-101

40.3 59.2 43.1

Ours 42.3+2.0 61.6 45.4

Table 1: Results with our approach and comparisons

with baselines, using RetinaNet [22] with different back-

bone networks.

Contributions of soft labels (SL) and re-weighting (SR).

To demonstrate the effectiveness of the two key components

based on cleanliness scores, we report the results of our ap-

proach using SL and SR, separately in Table 3. We can see

that applying either soft labels or re-weighting coefficients

derived from the cleanliness scores improves the baselines,

while combining both methods offers the largest perfor-

mance improvement. It worth pointing out when soft labels

are not applied, simply re-weighting the samples with hard

binary samples brings relatively minor performance gain,

suggesting the use of soft supervisory signals for training

the classification branch is critical.
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Method Backbone AP AP50 AP75 APS APM APL

RetinaNet [22] ResNet-101 39.1 59.1 42.3 21.9 42.7 50.2

Regionlets [41] ResNet-101 39.3 59.8 n/a 21.7 43.7 50.9

GHM [17] ResNet-101 39.9 60.8 42.5 20.3 43.6 54.1

FCOS† [35] ResNet-101 41.0 60.7 44.1 24.0 44.1 51.0

Cas-RetinaNet [43] ResNet-101 41.1 60.7 45.0 23.7 44.4 52.9

POD [27] ResNet-101 41.5 62.4 44.9 24.5 44.8 52.9

RefineDet [44] ResNet-101 36.4/41.8 57.5/62.9 39.5/45.7 16.6/25.6 39.9/45.1 51.4/54.1

FSAF [46] ResNet-101 40.9/42.8 61.5/63.1 44.0/46.5 24.0/27.8 44.2/25.5 51.3/53.2

CenterNet (Duan et al.)∗† [8] Hourglass-52 41.6/43.5 59.4/61.3 44.2/46.7 22.5/25.3 43.1/45.3 54.1/55.0

RetinaNet [22] ResNXet-101-32×8d 40.8 61.1 44.1 24.1 44.2 51.2

GHM [17] ResNXet-101-32×8d 41.6 62.8 44.22 22.3 45.1 55.3

FCOS† [35] ResNXet-101-32×8d 42.1 62.1 45.2 25.6 44.9 52.0

FSAF [46] ResNXet-101-32×8d 42.9/44.6 63.8/65.2 46.3/48.6 26.6/29.7 46.2/47.1 52.7/54.6

CornerNet∗† [16] Hourglass-104 40.5/42.1 56.5/57.8 43.1/45.3 19.4/20.8 42.7/44.8 53.9/56.7

ExtremeNet∗† [45] Hourglass-104 40.2/43.7 55.5/60.5 43.2/47.0 20.4/24.1 43.2/46.9 53.1/57.6

CenterNet (Zhou et al.)∗† [40] Hourglass-104 42.1/45.1 61.1/63.9 45.9/49.3 24.1/26.6 45.5/47.1 52.8/57.7

CenterNet (Duan et al.)∗† [8] Hourglass-104 44.9/47.0 62.4/64.5 48.1/50.7 25.6/28.9 47.4/49.9 57.4/58.9

Ours ResNet-101 41.8/43.4 61.1/62.5 44.9/47.0 23.4/26.0 44.9/46.0 52.9/55.4

Ours ResNXet-101-32×8d 44.1/45.5 63.8/65.0 47.5/49.3 26.0/28.2 47.4/48.4 55.0/57.6

∗ Horizontal flipping used for both single-scale and multi-scale testing

† Longer training schedule

Table 2: Detection results (% AP) on COCO test-dev2017 set. Single-scale / multi-scale (if exists) testing results are

reported. Our method improves RetinaNet detectors by ≈ 3% AP and obtains better or comparable performance compared

with state-of-the-art one-stage detectors.

SL SR AP AP50 AP75 APS APM APL

36.2 54.0 38.7 19.3 40.1 48.8

X 37.1 56.5 40.0 19.4 40.9 49.3

X 36.7 54.4 39.3 19.5 40.3 49.4

X X 37.7 56.5 40.2 20.0 41.1 51.2

Table 3: Ablation experiments on the effectiveness of com-

ponents in our method, Soft Labels (SL) and Sample Re-

weighting (SR).

Hyper-parameters sensitivity. We also analyze the sensi-

tivity of different hyper-parameters used in our approach: γ

controls the degree of focus on different samples, N gov-

erns the size of Apos and α balances cls_c and loc_a

when computing cleanliness scores. As shown in Table 4,

our method is relatively robust to different parameters. We

observe that γ and N should be selected together, since a

large γ focuses training on a small proportion of samples

while a large N adds more noisy samples to Apos; detec-

tion performance would drastically degrade nevertheless if

either of them is too large. When γ = 0, all samples are

equally re-weighted for network learning and SR is thus

disabled. The effect of α reveals the trade-off between

cls_c and loc_a to compute cleanliness scores for la-

bel assignment and sample re-weighting. As shown in Ta-

ble 4c, α = 0.75 yields the best result—loc_a tends to be

more important than cls_c as larger α offers better perfor-

mance. This also confirms that considering both classifica-

tion and regression branches when defining the cleanliness

scores is important.

Extension to two-stage detectors. Our method offers clear

performance gains for one-stage detectors, and we hypoth-

esize that it could be easily plugged into multi-stage detec-

tors, producing better proposals. We validate our assump-

tion with Faster R-CNN [30]. In particular, we first train the

Region Proposal Network (RPN) with our approach to ana-

lyze recalls, since one-stage detectors are a variant of RPN.

Table 5 presents the recall of generated proposals with dif-

ferent methods. We can see that our approach outperforms

the baseline RPN model by clear margins—7.8, 5.4, 3.4 per-

centage points for AR100, AR300 and AR1000, respectively.

It also surpasses the performance of a two-stage iterative

RPN in [44] and a “RefineRPN” structure similar to [44]

where anchors are regressed and classified twice with dif-

ferent features. Note that larger improvements are observed

when a smaller number of proposals are kept, suggesting

that our method can be better at ranking predictions accord-

ing to actual localization accuracy. We also analyze the

contributions of soft labels and sample re-weighting, and

observe similar trends as in one-stage detectors.

We then train a Faster R-CNN [30] with FPN [21] in an

end-to-end manner by using our approach only for RPNs.

The results are shown in Table 6. We observe 1% mAP

improvement compared to standard training of faster rcnns,
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γ AP AP50 AP75

0.0 37.1 56.6 40.0

0.5 37.6 56.9 40.1

1.0 37.7 56.5 40.2

1.25 37.7 56.2 40.3

1.5 37.7 55.9 40.5

1.75 35.9 52.9 38.4

(a) Varying γ for sample re-weighting.

N γ AP AP50 AP75

30 1.0 37.7 56.5 40.2

40 1.0 37.7 56.8 40.3

50 1.0 37.3 56.2 39.9

60 1.0 37.1 55.8 39.5

80 1.0 36.6 55.6 38.9

80 1.25 36.9 55.5 39.2

(b) Varying N for collectingApos.

α AP AP50 AP75

0.0 37.3 56.3 39.7

0.25 37.3 56.2 39.9

0.5 37.7 56.5 40.2

0.75 38.0 56.9 40.6

1.0 37.8 56.5 40.5

(c) Varying the balancing factor α.

Table 4: Ablation experiments on sensitivity of hyper-parameters in our method: (a) γ modulates the degree of focus on

different samples. (b) N controls size of Apos. (c) α balances cls_c and loc_a in calculating cleanliness score.

Method AR100 AR300 AR1000

RPN Baseline [21] 43.3 51.6 56.9

RPN-0.5 46.8 53.4 56.2

RPN+Iterative [37] 49.7 56.0 60.0

RefineRPN [37, 44] 50.2 56.3 60.6

RPN-0.5 + SR 48.3 54.6 56.6

Ours 51.1 57.0 60.3

Table 5: Results of region proposals evaluated on COCO

minival, measured by Average Recall (AR). RPN Base-

line uses {0.3, 0.7} IoU thresholds for GT assignment

(background if <0.3, foreground if >0.7, ignored if in be-

tween) while RPN-0.5 uses to separate positive and negative

samples. SR denotes sample reweighting.

Method AP AP50 AP75 APS APM APL

Baseline 36.8 58.5 39.8 21.0 39.9 47.6

Ours 37.8 59.2 41.1 21.7 41.3 48.9

Table 6: Results of Faster R-CNN with FPN, with and

without our approach.

demonstrating that our approach is also applicable to two-

stage detectors without any additional computation.

5.4. Discussions

In this section, we perform various quantitative and

qualitative analyses to investigate the performance gains

brought by our approach.

Recall vs. precision. To better understand how our method

improves detection performance, we plot the precision vs.

recall curves in Fig 2 and analyze the performance gains.

As demonstrated, our method steadily promotes detection

performance in different conditions like IoU thresholds, ob-

ject sizes and maximum number of predictions per image

during evaluation. It is also worth noting that our method

obtains clear precision gains for all recall ratios, and hence it

could be beneficial to various object detection applications

in real-world scenarios.

Figure 2: Precision vs. recall (PR) curves of our approach,

and comparisons with baselines under different IoU thresh-

olds, object sizes (area) and maximum number of predic-

tions per image (maxDet).

Classification confidence prediction. We also analyze the

predicted classification confidence and investigate whether

our proposed method helps alleviate the issue of over con-

fident predictions and reduce the discrepancy between clas-

sification prediction and localization accuracy. For baseline

detectors and our method, we collect their top-2% confident

predictions on COCO minival set before and after NMS

and then calculate their mean classification confidence and

IoUs with matched ground-truth boxes. As shown in Ta-

ble 7, detectors trained with our method produces relatively

milder predictions than the baseline for classification. Al-

though predictions of the baseline offer a higher average

IoU before NMS, it is surpassed by our method after run-

ning NMS. This suggests that our method is more friendly
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Figure 3: Example candidate boxes (in red) with high IoUs with ground-truth boxes (in green), yet containing noisy

contents, are down-weighted by our method. Anchors and ground-truth boxes are denoted in red and green, respectively.

when ranking is performed during evaluation since pre-

dicted labels are softer and contain more ordering infor-

mation, and thus is more compatible with NMS. To fur-

ther verify the ability of our method to correlate classifi-

cation confidence with localization accuracy, we calculate

the Pearson correlation coefficient on these predictions be-

fore NMS, and the coefficients between classification confi-

dence and output IoU are 0.169 and 0.194 for baseline and

our approach, respectively. This indicates that cleanliness

scores considering both branches are able to help bridge the

gap between classification and localization.

Method
Before NMS After NMS

Mean Conf Mean IoU Mean Conf Mean IoU

Baseline 0.845 0.895 0.958 0.914

Ours 0.782 0.882 0.920 0.921

Table 7: Mean classification confidence and output IoUs

with matched ground-truth using predictions before (left)

and after NMS (right).

Qualitative analysis. In addition to quantitative results, we

also demonstrate qualitatively in Figure 3 that our method

is able to down-weight noisy anchors. As shown in the Fig-

ure, our method assigns smaller soft label and re-weighting

coefficients to ambiguous samples that contain irrelevant

objects or complex background. For example, the an-

chors encompassing cups in the top-left of Figure 3 are oc-

cluded by the lady’s and gentleman’s hands and thus are

down-weighted, although they sufficiently overlap with the

ground-truth. Similarly, the anchor in the top-middle as-

sociated with the person is also down-weighted, since it

largely contains irrelevant regions from a horse. This ver-

ifies that the label noise can be modeled by our definition

of cleanliness and hence are mitigated to improve the train-

ing process of object detection. We note that these ambigu-

ous anchors are fairly common—such anchors can be easily

found across ten different categories as shown in Figure 3.

6. Conclusion

In this paper, we have presented an approach that is ex-

plicitly designed to mitigate noise in anchors used for train-

ing object detectors. In particular, we introduced a carefully

designed cleanliness score for each anchor used to dynam-

ically adjust their importance during training. These clean-

liness scores, leveraging outputs from classification and de-

tection branches, serve as proxies to measure the probability

of anchors to be successfully regressed and classified. They

are further used as soft supervisory signals to train the clas-

sification network and re-weight samples to achieve better

localization and classification performance. Extensive stud-

ies have been conducted on COCO, and the results demon-

strate the effectiveness of the proposed approach both quan-

titatively and qualitatively.
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