
MixNMatch: Multifactor Disentanglement and Encoding

for Conditional Image Generation

Yuheng Li Krishna Kumar Singh Utkarsh Ojha Yong Jae Lee

University of California, Davis

Abstract

We present MixNMatch, a conditional generative model

that learns to disentangle and encode background, ob-

ject pose, shape, and texture from real images with mini-

mal supervision, for mix-and-match image generation. We

build upon FineGAN, an unconditional generative model,

to learn the desired disentanglement and image genera-

tor, and leverage adversarial joint image-code distribu-

tion matching to learn the latent factor encoders. MixN-

Match requires bounding boxes during training to model

background, but requires no other supervision. Through

extensive experiments, we demonstrate MixNMatch’s abil-

ity to accurately disentangle, encode, and combine multi-

ple factors for mix-and-match image generation, including

sketch2color, cartoon2img, and img2gif applications. Our

code/models/demo can be found at https://github.

com/Yuheng-Li/MixNMatch

1. Introduction

Consider the real image of the yellow bird in Figure 1 in

the 1st column. What would the bird look like in a different

background, say that of the duck? How about in a different

texture, perhaps that of the rainbow textured bird in the 2nd

column? What if we wanted to keep its texture, but change

its shape to that of the rainbow bird, and background and

pose to that of the duck, as in the 3rd column? How about

sampling shape, pose, texture, and background from four

different reference images and combining them to create an

entirely new image (last column)?

Problem. While research in conditional image genera-

tion has made tremendous progress [17, 49, 30], no exist-

ing work can simultaneously disentangle background, ob-

ject pose, object shape, and object texture with minimal su-

pervision, so that these factors can be combined from mul-

tiple real images for fine-grained controllable image gen-

eration. Learning disentangled representations with mini-

mal supervision is an extremely challenging problem, since

the underlying factors that give rise to the data are often

highly correlated and intertwined. Work that disentangle

Sh
ap

e
P
o
se

B
ac

kg
ro

u
n
d

Te
xt
u
re

M
ix
N
M

at
ch

R
ea

l I
m

a
g

es
G

en
er

a
te

d

Figure 1: Conditional mix-and-match image genera-

tion. Our model, MixNMatch, can disentangle and en-

code up to four factors—background, object pose, shape,

and texture—from real reference images, and can arbitrar-

ily combine them to generate new images. The only super-

vision used to train our model is bounding box annotations

to model background.

two such factors, by taking as input two reference images

e.g., one for appearance and the other for pose, do ex-

ist [16, 18, 23, 26, 40]. But they cannot disentangle other

factors such as foreground vs. background appearance or

pose vs. shape. Since only two factors can be controlled,

these approaches cannot arbitrarily change, for example,

the object’s background, shape, and texture, while keep-

ing its pose the same. Others require strong supervision in

the form of keypoint/pose/mask annotations [31, 1, 27, 9],

which limits their scalability, and still fall short of disentan-

gling all of the four factors outlined above.

Our proposed conditional generative model, MixN-

Match, aims to fill this void. MixNMatch learns to disen-

tangle and encode background, object pose, shape, and tex-

ture latent factors from real images, and importantly, does

so with minimal human supervision. This allows, for ex-

ample, each factor to be extracted from a different real im-

8039

age, and then combined together for mix-and-match image

generation; see Fig. 1. During training, MixNMatch only

requires a loose bounding box around the object to model

background, but requires no other supervision for modeling

the object’s pose, shape, and texture.

Main idea. Our goal of mix-and-match image generation

i.e., generating a single synthetic image that combines dif-

ferent factors from multiple real reference images, requires

a framework that can simultaneously learn (1) an encoder

that encodes latent factors from real images into a disentan-

gled latent code space, and (2) a generator that takes latent

factors from the disentangled code space for image gen-

eration. To learn the generator and the disentangled code

space, we build upon FineGAN [36], a generative model

that learns to hierarchically disentangle background, object

pose, shape, and texture with minimal supervision using in-

formation theory. However, FineGAN is conditioned only

on sampled latent codes, and cannot be directly conditioned

on real images for image generation. We therefore need a

way to extract latent codes that control background, object

pose, shape, and texture from real images, while preserving

FineGAN’s hierarchical disentanglement properties. As we

show in the experiments, a naive extension of FineGAN in

which an encoder is trained to map a fake image into the

codes that generated it is insufficient to achieve disentan-

glement in real images due to the domain gap between real

and fake images.

To simultaneously achieve the above dual goals, we in-

stead perform adversarial learning, whereby the joint distri-

bution of real images and their extracted latent codes from

the encoder, and the joint distribution of sampled latent

codes and corresponding generated images from the gener-

ator, are learned to be indistinguishable, similar to ALI [8]

and BiGAN [6]. By enforcing matching joint image-code

distributions, the encoder learns to produce latent codes that

match the distribution of sampled codes with the desired

disentanglement properties, while the generator learns to

produce realistic images. To further encode a reference im-

age’s shape and pose factors with high fidelity, we augment

MixNMatch with a feature mode in which higher dimen-

sional features of the image that preserve pixel-level struc-

ture (rather than low dimensional codes) are mapped to the

learned disentangled feature space.

Contributions. (1) We introduce MixNMatch, a condi-

tional generative model that learns to disentangle and en-

code background, object pose, shape, and texture factors

from real images with minimal human supervision. This

gives MixNMatch fine-grained control in image generation,

where each factor can be uniquely controlled. MixNMatch

can take as input either real reference images, sampled la-

tent codes, or a mix of both. (2) Through various qualitative

and quantitative evaluations, we demonstrate MixNMatch’s

ability to accurately disentangle, encode, and combine mul-

tiple factors for mix-and-match image generation. Further-

more, we show that MixNMatch’s learned disentangled rep-

resentation leads to state-of-the-art fine-grained object cate-

gory clustering results of real images. (3) We demonstrate a

number of interesting applications of MixNMatch including

sketch2color, cartoon2img, and img2gif.

2. Related work

Conditional image generation has various forms, in-

cluding models conditioned on a class label [29, 28, 3]

or text input [33, 48, 42, 47]. A lot of work focuses on

image-to-image translation, where an image from one do-

main is mapped onto another domain e.g., [17, 49, 30].

However, these methods typically lack the ability to explic-

itly disentangle the factors of variation in the data. Those

that do learn disentangled representations focus on specific

categories like faces/humans [37, 31, 2, 32, 1, 27] or re-

quire clearly defined domains (e.g., pose vs. identity or

style/attribute vs. content) [18, 16, 23, 11, 25, 40]. In con-

trast, MixNMatch is not specific to any object category, and

does not require clearly defined domains as it disentangles

multiple factors of variation within a single domain (e.g.,

natural images of birds). Moreover, unlike most unsuper-

vised methods which can disentangle only two factors like

shape and appearance [24, 35, 26], MixNMatch can disen-

tangle four (background, object shape, pose, and texture).

Disentangled representation learning aims to disentan-

gle the underlying factors that give rise to real world

data [4, 44, 41, 24, 35, 38, 15, 19, 26]. Most unsupervised

methods are limited to disentangling at most two factors

like shape and texture [24, 35]. Others require strong su-

pervision in the form of edge/keypoint/mask annotations or

detectors [31, 1, 27, 9], or rely on video to automatically

acquire identity labels [5, 18, 40]. Our most related work

is FineGAN [36], which leverages information theory [4]

to disentangle background, object pose, shape, and texture

with minimal supervision. However, it is conditioned only

on sampled latent codes, and thus cannot perform image

translation. We build upon this work to enable conditioning

on real images. Importantly, we show that a naive extension

is insufficient to achieve disentanglement in real images.

We also improve the quality of our model’s image gener-

ations to preserve instance specific details from the refer-

ence images. Since MixNMatch is directly conditioned on

images, its learned representation leads to better disentan-

glement and fine-grained clustering of real images.

3. Approach

Let I = {x1, . . . , xN} be an unlabeled image collection

of a single object category (e.g., birds). Our goal is to learn

a conditional generative model, MixNMatch, which simul-

8040

Generated image

FineGAN
Generator

Real image
E

z

E
b

E
p

E
c

(a) Image to latent code (b) Latent code to image

Real or Fake pair?

D
z

D
b

D
p

D
c

D
z

D
b

D
p

D
c

(c) Image-code pair discriminators

z

b

zp
Child stageParent stage

L
c

L
bg

c

G
b

Background stage

L
p

FineGAN
Generator Gp Gc

DcDPDb

Figure 2: MixNMatch architecture. (a) Four different encoders, one for each factor, take a real image as input to predict

the codes. (b) Four different latent codes are sampled and fed into the FineGAN generator to hierarchically generate images.

(c) Four image-code pair discriminators optimize the encoders and generator, to match their joint image-code distributions.

taneously learns to (1) encode background, object pose,

shape, and texture factors associated with images in I into

a disentangled latent code space (i.e., where each factor is

uniquely controlled by a code), and (2) generate high qual-

ity images matching the true data distribution Pdata(x) by

combining latent factors from the disentangled code space.

We first briefly review FineGAN [36], from which we

base our generator. We then explain how to train our model

to disentangle and encode background, object pose, shape,

and texture from real images, so that it can combine dif-

ferent factors from different real reference images for mix-

and-match image generation. Lastly, we introduce how to

augment our model to preserve object shape and pose infor-

mation from a reference image with high fidelity (i.e., at the

pixel-level).

3.1. Background: FineGAN

FineGAN [36] takes as input four randomly sampled

latent codes (z, b, c, p) to hierarchically generate an im-

age in three stages (see Fig. 2 (b) right): (1) a background

stage where the model only generates the background, con-

ditioned on latent one-hot background code b; (2) a par-

ent stage where the model generates the object’s shape and

pose, conditioned on latent one-hot parent code p as well

as continuous code z, and stitches it to the existing back-

ground image; and (3) a child stage where the model fills

in the object’s texture, conditioned on latent one-hot child

code c. In both the parent and child stages, FineGAN auto-

matically generates masks (without any mask supervision)

to capture the appropriate shape and texture details.

To disentangle the background, it relies on object bound-

ing boxes (e.g., acquired through an object detector). To

disentangle the remaining factors of variation without any

supervision, FineGAN uses information theory [4], and im-

poses constraints on the relationships between the latent

codes. Specifically, during training, FineGAN (1) con-

strains the sampled child codes into disjoint groups so that

each group shares the same unique parent code, and (2) en-

forces the sampled background and child codes for each

generated image to be the same. The first constraint mod-

els the fact that some object instances from the same cat-

egory share a common shape even if they have different

textures (e.g., different duck species with different texture

details share the same duck shape), and the second con-

straint models the fact that background is often correlated

with specific object types (e.g., ducks typically have water

as background). If we do not follow these constraints, then

the generator could generate e.g. a duck on a tree (back-

ground code b not equal to texture code c) or e.g. a seag-

ull with red texture (texture code c not tied to a specific

shape code p). Then the discriminator would easily clas-

sify these images as fake, as they rarely exist in real images.

As a result, the desired disentanglement will not be learned.

It is also important to note that the parent code p controls

viewpoint/pose invariant 3D shape of an object (e.g., duck

vs. seagull shape) as the number of unique p codes is typi-

cally set to be much smaller (e.g., 20) than the amount of 2D

shape variations in the data, and this in turn forces the con-

tinuous code z to control viewpoint/pose. Critically, these

factors emerge as a property of the data and the model, and

not through any supervision.

FineGAN is trained with three losses, one for each stage,

which use either adversarial training [12] to make the gener-

ated image look real and/or mutual information maximiza-

tion [4] between the latent code and corresponding image

so that each code gains control over the respective factor

(background, pose, shape, color). We simply denote its full

loss as:

Lfinegan = Lb + Lp + Lc, (1)

where Lb, Lp, and Lc denote the losses in the background,

parent, and child stages. For more details on these losses

and the FineGAN architecture, please refer to [36].

3.2. Paired imagecode distribution matching

Although FineGAN can disentangle multiple factors to

generate realistic images, it is conditioned on sampled latent

codes, and cannot be conditioned on real images. A naive

post-processing extension in which encoders that learn to

map fake images to the codes that generated them is insuf-

ficient to achieve disentanglement in real images due to the

domain gap between real and fake images [36], as we show

8041

in our experiments.

Thus, to encode disentangled representations from real

images for conditional mix-and-match image generation,

we need to extract the vector z (controlling object pose), b

(controlling background), p (controlling object shape), and

c (controlling object texture) codes from real images, while

preserving the hierarchical disentanglement properties of

FineGAN. For this, we propose to train four encoders, each

of which predict the z, b, p, c codes from real images. Since

FineGAN has the ability to disentangle factors and generate

images given latent codes, we naturally resort to using it as

our generator, by keeping all the losses (i.e., Lfinegan) to

help the encoders learn the desired disentanglement.

Specifically, for each real training image x, we use the

corresponding encoders to extract its z, b, p, c codes. How-

ever, we cannot simply input these codes to the generator to

reconstruct the image, as the model would take a shortcut

and degenerate into a simple autoencoder that does not pre-

serve FineGAN’s disentanglement properties (factorization

into background, pose, shape, texture), as we show in our

experiments. We therefore leverage ideas from ALI [8] and

BiGAN [6, 7] to help the encoders learn the inverse map-

ping; i.e., a projection from real images into the code space,

in a way that maintains the desired disentanglement proper-

ties.

The key idea is to perform adversarial learning [12, 6, 8],

so that the paired image-code distribution produced by the

encoder (x ∼ Pdata, ŷ ∼ E(x)) and the paired image-code

distribution produced by the generator (x̂ ∼ G(y), y ∼
Pcode) are matched. Here E is the encoder, G is the Fine-

GAN generator, and y is a placeholder for the latent codes

z, b, p, c. Pdata is the data (real image) distribution and

Pcode is the latent code distribution.1 Formally, the input

to the discriminator D is an image-code pair. When train-

ing D, we set the paired real image x and code ŷ extracted

from the encoder E to be real, and the paired sampled input

code y and generated image x̂ from the generator G to be

fake. Conversely, when training G and E, we try to fool D

so that the paired distributions P(data,E(x)) and P(G(y),code)

are indistinguishable, via a paired adversarial loss:

Lbi adv = min
G,E

max
D

Ex∼Pdata
Eŷ∼E(x)[logD(x, ŷ)]

+ Ey∼Pcode
Ex̂∼G(y)[log(1−D(x̂, y))]. (2)

This loss will simultaneously enforce the (1) generated im-

ages x̂ ∼ G(y) to look real, and (2) extracted real image

codes ŷ ∼ E(x) to capture the desired factors (i.e., pose,

background, shape, appearance). Fig. 2 (a-c) show our en-

coders, generator, and discriminators.

1Following FineGAN [36]: a continuous noise vector z ∼ N (0, 1); a

categorical background code b ∼ Cat(K = Nb, p = 1/Nb); a categorical

parent code p ∼ Cat(K = Np, p = 1/Np); and a categorical child

code c ∼ Cat(K = Nc, p = 1/Nc). Nb, Np, Nc are the number of

background, parent, and child categories and are set as hyperparameters.

3.3. Relaxing the latent code constraints

There is an important issue that we must address to en-

sure disentanglement in the extracted codes. FineGAN im-

poses strict code relationship constraints, which are key to

inducing the desired disentanglement in an unsupervised

way, but which can be difficult to realize in all real images.

Specifically, recall from Sec. 3.1 that these constraints

impose a group of child codes to share the same unique par-

ent code, and the background and child codes to always be

the same. However, for any arbitrary real image, these strict

relationships may not hold (e.g., a flying bird can have mul-

tiple different backgrounds in real images), and would thus

be difficult to enforce in its extracted codes. In this case,

the discriminator would easily be able to tell whether the

image-code pair is real or fake (based on the code relation-

ships), which will cause issues with learning. Moreover, it

would also confuse the background b and texture c encoders

since the background and child latent codes are always sam-

pled to be the same (b = c); i.e., the two encoders will es-

sentially become identical (as they are always being asked

to predict the same output as each other) and won’t be able

to distinguish between background and object texture.

We address this issue in two ways. First, we train four

separate discriminators, one for each code type. This pre-

vents any discriminator from seeing the other codes, and

thus cannot discriminate based on the relationships between

the codes. Second, when training the encoders, we also pro-

vide as input fake images that are generated with randomly

sampled codes with the code constraints removed. In these

images, any foreground texture can be coupled with any ar-

bitrary background (c 6= b) and any arbitrary shape (c not

tied to a particular p). Specifically, we train the encoders

E to predict back the sampled codes y that were used to

generate the corresponding fake image:

Lcode pred = CE(E(G(y)), y), (3)

where CE(·) denotes cross-entropy loss, and y is a place-

holder for the latent codes b, p, c. (For continuous z, we

use L1 loss.) This loss helps to guide each encoder, and in

particular the b and c encoders, to learn the corresponding

factor. Note that the above loss is used only to update the

encoders E (and not the generator G), as these fake images

can have feature combinations that generally do not exist in

the real data distribution (e.g., a duck on top of a tree).

3.4. Feature mode for exact shape and pose

Thus far, MixNMatch’s encoders can take in up to four

different real images and encode them into b, z, p, c codes

which model the background, object pose, shape, and tex-

ture, respectively. These codes can then be used by MixN-

Match’s generator to generate realistic images, which com-

bine the four factors from the respective reference images.

8042

background

feature
mode

texture

shape

code
mode

R
ea

l I
m

ag
es

G
en

er
at

ed

+
pose

Figure 3: Comparison between code mode & feature mode. Rows 1-3 are real reference images, in which we extract

background b, texture c, and shape+pose p & z, respectively. Rows 4-5 are MixNMatch’s feature mode (which accurately

preserves original shape information) and code mode (which preserves shape information at a semantic level) generations.

We denote this setting as MixNMatch’s code mode. While

the generated images already capture the factors with high

accuracy (see Fig. 3, “code mode”), certain image trans-

lation applications may require exact pixel-level shape and

pose alignment between a reference image and the output.

The main reason that MixNMatch in code mode cannot

preserve exact pixel-level shape and pose details of a ref-

erence image is because the capacity of the latent p code

space, which is responsible for capturing shape, is too small

to model per-instance pixel-level details (typically, tens in

dimension). The reason it must be small is because it must

(roughly) match the number of unique 3D shape variations

in the data (e.g., duck shape, sparrow shape, seagull shape,

etc.). In this section, we introduce MixNMatch’s feature

mode to address this. Rather than encode a reference im-

age into a low-dimensional shape code, the key idea is

to directly learn a mapping from the image to a higher-

dimensional feature space that preserves the reference im-

age’s spatially-aligned shape and pose (pixel-level) details.

Fixed Parent
Generator G

Adv_loss

p
z p

S

Specifically,

we take our

learned parent

stage generator

Gp (see Fig. 2

(b)), and use it

to train a new

shape and pose

feature extractor S, which takes as input a real image x

and outputs feature S(x). Gp takes as input codes p and

z to generate the parent stage image, which captures the

object’s shape. Let’s denote its intermediate feature as

φ(p, z). We use the standard adversarial loss [12] to train S

so that the distribution of S(x) matches that of φ(p, z) (i.e.,

only S is learned and φ(p, z) is produced from the fixed

pretrained Gp); see figure above. Ultimately, this trains S to

produce features that match those sampled from the φ(p, z)
distribution, which already has learned to encode shape

and pose. To enforce S to preserve instance-specific shape

and pose details of x (i.e., so that the resulting generated

image using S(x) is spatially-aligned to x), we randomly

sample codes z, b, p, c to generate fake images using the

full generator G, and for each fake image G(z, b, p, c),
we enforce an L1 loss between the feature φ(p, z) and the

feature S(G(z, b, p, c)).

Once trained, we can use this feature mode to extract the

pixel-aligned pose and shape feature S(x) from an input im-

age x, and combine it with the background b and texture c

codes extracted from (up to) two reference images, to per-

form conditional mix-and-match image generation.

4. Experiments

We evaluate MixNMatch’s conditional mix-and-match

image generation results, its ability to disentangle each la-

tent factor, and its learned representation for fine-grained

object clustering of real images. We also showcase

sketch2color, cartoon2img, and img2gif applications.

Datasets. (1) CUB [39]: 11,788 bird images from 200

classes; (2) Stanford Dogs [21]: 12,000 dog images from

120 classes; (3) Stanford Cars [22]: 8,144 car images from

196 classes. We set the prior latent code distributions fol-

lowing FineGAN [36]1. The only supervision we use is

bounding boxes to model background during training.

8043

b,p,c

(a) Varying z (pose)

z b

z,p,c

(b) Varying b (background)

c

z,b,p

(c) Varying c (texture)

p

z,b,c

(d) Varying p (shape)

Figure 4: Varying a single factor. Real images are indicated with red boxes. For (a-d), the reference images on the left/top

provide three/one factors. The center 3x3 images are generations. For example, in (a) the top row yellow bird has an

upstanding pose with its head turned to the right, and the resulting images have the same pose.

Baselines. We compare to a number of state-of-the-art

GAN, disentanglement, and clustering methods. For all

methods, we use the authors’ public code. The code for

SC-GAN [20] only has the unconditional version, so we im-

plement its BiGAN [6] variant following the paper details.

Implementation details. We train and generate 128 ×
128 images. In feature mode (2nd stage) training, φ(y) is

a learned distribution from the code mode (1st stage) and

may not model the entire real feature distribution (e.g., due

to mode collapse). Thus, we assume that patch-level fea-

tures are better modeled, and apply a patch discriminator.

For our feature mode, since the predicted object masks are

often highly accurate, we can optionally directly stitch the

foreground (if only changing background) or background

(if only changing texture) from the corresponding reference

image. When optimizing Eqn. 2, we add noise to D since

the sampled c, p, b are one hot, while predicted ĉ, p̂, b̂ will

never be one-hot. Full training details are in the supp.

4.1. Qualitative Results

Conditional mix-and-match image generation. We

show results on CUB, Stanford Cars, and Stanford Dogs;

see Fig. 3. The first three rows show the background, tex-

ture, and shape + pose reference (real) images from which

our model extracts b, c, and p & z, respectively, while the

fourth and fifth rows show MixNMatch’s feature mode and

code mode generation results, respectively.

Our feature mode results (4th row) demonstrate how well

MixNMatch preserves shape and pose information from the

reference images (3th rows), while transferring background

and texture information (from 1st and 2nd rows). For ex-

ample, the generated bird in the second column preserves

the exact pose and shape of the bird standing on the pipe

(3rd row) and transfers the brownish bark background and

rainbow object texture from the 1st and 2nd row images,

respectively. Our code mode results (5th row) also cap-

ture the different factors from the reference images well,

though not as well as the feature mode for pose and shape.

Thus, this mode is more useful for applications in which

inexact instance-level pose and shape transfer is acceptable

(e.g., generating a completely new instance which captures

the factors at a high-level). Overall, these results high-

light how well MixNMatch disentangles and encodes fac-

tors from real images, and preserves them in the generation.

Note that here we take both z and p from the same refer-

ence images (row 3) in order to perform a direct comparison

between the code and feature modes. We next show results

of disentangling all four factors, including z and p.

Disentanglement of factors. Here we evaluate how well

MixNMatch disentangles each factor (background b, tex-

ture c, pose z, shape p). Fig. 4 shows our disentanglement

of each factor on CUB (results for Dogs and Cars are in

the supp.). For each subfigure, the images in the top row

and leftmost column (with red borders) are real reference

images. The specific factors taken from each image are in-

dicated in the top-left corner; e.g., in (a), pose is taken from

the top row, while background, shape, texture are taken

from the leftmost column. Note how we can make (a) a bird

change poses by varying z, (b) change just the background

by varying b, (c) colorize by varying c, and (d) change shape

by varying p (e.g., see the duck example in 3rd column). As

described in Sec. 3.4, our feature mode can preserve pixel-

level shape+pose information from a reference image (i.e.,

both p and z are extracted from it) in the generation. Thus,

for this experiment, (b) and (c) are results of feature mode,

while (a) and (d) are results of code mode.

sketch2color / cartoon2img. We next try adapting MixN-

Match to other domains not seen during training; sketch

(Fig. 5) and cartoon (Fig. 6). Here we use our feature mode

as it can preserve pixel-level shape+pose information. In-

terestingly, the results indicate that MixNMatch learns part

information without supervision. For example, in Fig. 6 col-

umn 2, it can correctly transfer the black, white, and red part

colors to the rubber duck.

8044

b
a

c
k
g

ro
u

n
d

b

te
x
tu

re

c

s
h

a
p

e
+

p
o

s
e

p
,
z

g
e

n
e

ra
ti
o

n

Figure 5: sketch2color. First three rows are real reference

images. Last row shows generation results of adding back-

ground and texture to the sketch images.

Inception Score FID

Birds Dogs Cars Birds Dogs Cars

Simple-GAN 31.85 ± 0.17 6.75 ± 0.07 20.92 ± 0.14 16.69 261.85 33.35

InfoGAN [4] 47.32 ± 0.77 43.16 ± 0.42 28.62 ± 0.44 13.20 29.34 17.63

LR-GAN [45] 13.50 ± 0.20 10.22 ± 0.21 5.25 ± 0.05 34.91 54.91 88.80

StackGANv2 [48] 43.47 ± 0.74 37.29 ± 0.56 33.69 ± 0.44 13.60 31.39 16.28

FineGAN [36] 52.53 ± 0.45 46.92 ± 0.61 32.62 ± 0.37 11.25 25.66 16.03

MixNMatch (Ours) 50.05 ± 0.75 46.97 ± 0.51 31.12 ± 0.62 9.17 24.24 6.48

Table 1: Image quality & diversity. IS (↑ better) and FID

(↓ better). MixNMatch generates diverse, high-quality im-

ages that compare favorably to state-of-the-art baselines.

img2gif. MixNMatch can also be used to animate a static

image; see Fig. 7 (code mode result) and supp. video.

4.2. Quantitative Results

Image diversity and quality. We compute Inception

Score [34] and FID [14] over 30K randomly generated im-

ages. We condition the generation only on sampled latent

codes (by sampling z, p, c, b from their prior distributions;

see Footnote 1), and not on real image inputs, for a fair com-

parison to the baselines. Table 1 shows that MixNMatch

generates diverse and realistic images that are competitive

to state-of-the-art unconditional GAN methods.

Fine-grained object clustering. We next evaluate MixN-

Match’s learned representation for clustering real im-

ages into fine-grained object categories. We compare to

state-of-the-art deep clustering methods: FineGAN [36],

JULE [46], and DEPICT [10], and their stronger vari-

ants [36]: JULE-Res50 and DEPICT-Large. For eval-

uation metrics, we use Normalized Mutual Information

(NMI) [43] and Accuracy [10], which measures the best

mapping between predicted and ground truth labels. All

methods cluster the same bounding box cropped images.

To cluster real images, we use MixNMatch’s p (shape)

b
a

c
k
g

ro
u

n
d

b

te
x
tu

re

c

s
h

a
p

e
+

p
o

s
e

p
,
z

g
e

n
e

ra
ti
o

n

Figure 6: cartoon2img. MixNMatch automatically learns

part semantics, without supervision; e.g., in the 2nd column,

the colors of the texture reference are accurately transferred.

NMI Accuracy

Birds Dogs Cars Birds Dogs Cars

JULE [46] 0.204 0.142 0.232 0.045 0.043 0.046

JULE-ResNet-50 [46] 0.203 0.148 0.237 0.044 0.044 0.050

DEPICT [10] 0.290 0.182 0.329 0.061 0.052 0.063

DEPICT-Large [10] 0.297 0.183 0.330 0.061 0.054 0.062

FineGAN [10] 0.403 0.233 0.354 0.126 0.079 0.078

MixNMatch (Ours) 0.422 0.324 0.357 0.136 0.089 0.079

Table 2: Fine-grained object clustering. Our approach

outperforms state-of-the-art clustering methods.

and c (texture) encoders as fine-grained feature extractors.

For each image, we concatenate its L2-normalized penul-

timate features, and run k-means clustering with k = # of

ground-truth classes. MixNMatch’s features lead to signif-

icantly more accurate clusters than the baselines; see Ta-

ble 2. JULE and DEPICT focus more on background and

rough shape information instead of fine grained details, and

thus have relatively low performance. FineGAN performs

much better, but it trains the encoders post-hoc on fake im-

ages to repredict their corresponding latent codes (as it can-

not directly condition its generator on real images) [36].

Thus, there is a domain gap to the real image domain. In

contrast, MixNMatch’s encoders are trained to extract fea-

tures from both real and fake images, so it does not suffer

from domain differences.

Shape and texture disentanglement. In order to quan-

titatively evaluate MixNMatch’s disentanglement of shape

and texture, we propose the following evaluation metric:

We randomly sample 5000 image pairs (A, B) and generate

new images C, which take texture and background (codes c,

b) from image A, and shape and pose from image B (codes

p, z). If a model disentangles these factors well and pre-

serves them in the generated images, then the spatial posi-

8045

b,p,c

z

Figure 7: image2gif. MixNMatch can combine the pose

factor z from a reference video (top row), with the other

factors in a static image (1st column) to animate the object.

tion of part keypoints (e.g., beak, tail) in B should be close

to that in C, while the texture around those keypoints in A

should be similar to that in C; see Fig. 8.

To measure how well shape is preserved, we train a key-

point detector [13] on CUB, and use it to detect 15 keypoints

in generated images C. We then calculate the L2-distance

(in x,y coordinate space) to the corresponding visible key-

points in B. To measure how well texture is preserved, for

each keypoint in A and C, we first crop a 16x16 patch

centered on it. We then compute the χ2-distance between

the L1-normalized color histograms of the corresponding

patches in A and C. See supp. for more details.

Table 3 (top) shows the results averaged over all 15 key-

points among all 5000 image triplets. We compare to Fine-

GAN [36], SC-GAN [20], a generative model that disen-

tangles style (texture) and content (geometrical informa-

tion), and Deforming AE [35], a generative autoencoder

that disentangles shape and texture from real images via

unsupervised deformation constraints. Fig. 8 shows qualita-

tive comparisons. Clearly, MixNMatch better disentangles

and preserves shape and texture compared to the baselines.

SC-GAN does not differentiate background and foreground

and uses a condensed code space to model content and style,

so it has difficulty transferring texture and shape accurately.

Deforming AE fails because its assumption that an image

can be factorized into a canonical template and a deforma-

tion field is difficult to realize in complicated shapes such

as birds. FineGAN performs better, but it again is hindered

by the domain gap. Finally, our feature mode has the best

performance for shape disentanglement due to its ability of

preserving instance-specific shape and pose details.

Ablation studies. Finally, we study MixNMatch’s vari-

ous components: 1) no paired image-code adversarial

loss, where we do not have Eqn. 2, instead we directly feed

the predicted code from encoder to the generator, and apply

an L1 loss between the generated and real images; 2) with-

out code reprediction loss, where we do not apply Eqn. 3;

3) with code reprediction loss but with code constraints,

where during generating fake images, we keep FineGAN’s

SC-GANDeformingAEFineGAN
MixNMatch

(Ours)

Shape

Pose

Background

Texture

A B C

Figure 8: Shape & texture disentanglement. Our ap-

proach preserves shape, texture better than strong baselines.

Shape Texture

Deforming AE [35] 69.97 0.792

SC-GAN [20] 32.37 0.641

FineGAN [36] 21.04 0.602

MixNMatch (code mode) 20.57 0.540

MixNMatch (feature mode) 16.29 0.565

Code mode w/o paired adv loss 60.41 0.798

Code mode w/o code reprediction 47.67 0.724

Code mode w/ code constraint 26.95 0.601

Feature mode w/o L1 loss 61.76 0.575

Feature mode w/o adv loss 17.61 0.572

Table 3: Shape & texture disentanglement. (Top) Com-

parisons to baselines. (Bottom) Ablation studies. We report

keypoint L2-distance and color histogram χ2-distance for

measuring shape and texture disentanglement (↓ better).

code constraints; 4) without feature mode L1 loss, where

we only apply an adversarial loss between S(x) and φ(y);
5) without feature mode adversarial loss, where we only

have the L1 loss in feature mode training.

Table 3 (bottom) shows that all losses are necessary in

code mode training; otherwise, disentanglement cannot be

learned properly. In feature mode training, both adversarial

and L1 losses are helpful, as they adapt the model to the real

image domain to extract precise shape + pose information.

Discussion. There are some limitations worth discussing.

First, our generated background may miss large structures,

as we use a patch-level discriminator. Second, the feature

mode training, depends on, and is sensitive to, how well the

model is trained in the code mode. Finally, for reference

images whose background and object texture are very sim-

ilar, our model can fail to produce a good object mask, and

thus generate an incomplete object.

Acknowledgments. This work was supported in part by

NSF CAREER IIS-1751206, IIS-1748387, IIS-1812850,

AWS ML Research Award, Adobe Data Science Research

Award, and Google Cloud Platform research credits.

8046

References

[1] Guha Balakrishnan, Amy Zhao, Adrian Dalca, Fredo Du-

rand, and John Guttag. Synthesizing images of humans in

unseen poses. In CVPR, 2018.

[2] Jianmin Bao, Dong Chen, Fang Wen, Houqiang Li, and Gang

Hua. Towards open-set identity preserving face synthesis. In

CVPR, 2018.

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In ICLR, 2019.

[4] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya

Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-

resentation learning by information maximizing generative

adversarial nets. In NeurIPS, 2016.

[5] Emily Denton and Vighnesh Birodkar. Unsupervised learn-

ing of disentangled representations from video. In NeurIPS,

2017.

[6] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Ad-

versarial feature learning. In ICLR, 2017.

[7] Jeff Donahue and Karen Simonyan. Large scale adversarial

representation learning. In NeurIPS, 2019.

[8] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex

Lamb, Martin Arjovsky, Olivier Mastropietro, and Aaron

Courville. Adversarially learned inference. In ICLR, 2017.

[9] Patrick Esser, Ekaterina Sutter, and Björn Ommer. A varia-

tional u-net for conditional appearance and shape generation.

In CVPR, 2018.

[10] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng,

Weidong Cai, and Heng Huang. Deep clustering via joint

convolutional autoencoder embedding and relative entropy

minimization. In ICCV, 2017.

[11] Abel Gonzalez-Garcia, Joost van de Weijer, and Yoshua Ben-

gio. Image-to-image translation for cross-domain disentan-

glement. In NeurIPS, 2018.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

2014.

[13] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017.

[14] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, Gunter Klambauer, and Sepp Hochreiter.

Gans trained by a two time-scale update rule converge to a

local nash equilibrium. In NeurIPS, 2017.

[15] Qiyang Hu, Attila Szabó, Tiziano Portenier, Paolo Favaro,

and Matthias Zwicker. Disentangling factors of variation by

mixing them. In CVPR, 2018.

[16] Xun Huang, Ming-Yu Liu, Serge J. Belongie, and Jan Kautz.

Multimodal unsupervised image-to-image translation. In

ECCV, 2018.

[17] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.

Efros. Image-to-image translation with conditional adver-

sarial networks. CVPR, 2017.

[18] Donggyu Joo, Doyeon Kim, and Junmo Kim. Generating a

fusion image: One’s identity and another’s shape. In CVPR,

2018.

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

CVPR, 2019.

[20] Hadi Kazemi, Seyed Mehdi Iranmanesh, and Nasser M.

Nasrabadi. Style and content disentanglement in generative

adversarial networks. In WACV, 2018.

[21] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng

Yao, and Li Fei-Fei. Novel dataset for fine-grained image

categorization. In First Workshop on Fine-Grained Visual

Categorization, 2011.

[22] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-

Fei. 3d object representations for fine-grained categorization.

In IEEE Workshop on 3D Representation and Recognition

(3dRR-13), 2013.

[23] Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh

Singh, and Ming-Hsuan Yang. Diverse image-to-image

translation via disentangled representations. In ECCV, 2018.

[24] Zejian Li, Yongchuan Tang, and Yongxing He. Unsuper-

vised disentangled representation learning with analogical

relations. In IJCAI, 2018.

[25] Alexander Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-

Chiang Frank Wang. A unified feature disentangler for multi-

domain image translation and manipulation. In NeurIPS,

2018.

[26] Dominik Lorenz, Leonard Bereska, Timo Milbich, and Björn

Ommer. Unsupervised part-based disentangling of object

shape and appearance. In CVPR, 2019.

[27] Liqian Ma, Qianru Sun, Stamatios Georgoulis, Luc

Van Gool, Bernt Schiele, and Mario Fritz. Disentangled per-

son image generation. In CVPR, 2018.

[28] Takeru Miyato and Masanori Koyama. cgans with projection

discriminator. In ICLR, 2018.

[29] Augustus Odena, Christopher Olah, and Jonathon Shlens.

Conditional image synthesis with auxiliary classifier gans.

In ICML, 2017.

[30] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan

Zhu. Semantic image synthesis with spatially-adaptive nor-

malization. In CVPR, 2019.

[31] Xi Peng, Xiang Yu, Kihyuk Sohn, Dimitris N Metaxas, and

Manmohan Chandraker. Reconstruction-based disentangle-

ment for pose-invariant face recognition. In ICCV, 2017.

[32] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Al-

berto Sanfeliu, and Francesc Moreno-Noguer. Ganimation:

Anatomically-aware facial animation from a single image. In

ECCV, 2018.

[33] Scott E. Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative ad-

versarial text to image synthesis. In ICML, 2016.

[34] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki

Cheung, Alec Radford, and Xi Chen. Improved techniques

for training gans. In NeurIPS, 2016.

[35] Zhixin Shu, Mihir Sahasrabudhe, Riza Alp Güler, Dimitris

Samaras, Nikos Paragios, and Iasonas Kokkinos. Deform-

ing autoencoders: Unsupervised disentangling of shape and

appearance. In ECCV, 2018.

[36] Krishna Kumar Singh, Utkarsh Ojha, and Yong Jae Lee.

FineGAN: Unsupervised hierarchical disentanglement for

8047

fine-grained object generation and discovery. In CVPR,

2019.

[37] Luan Tran, Xi Yin, and Xiaoming Liu. Disentangled repre-

sentation learning gan for pose-invariant face recognition. In

CVPR, 2017.

[38] Sergey Tulyakov, Ming Yu-Liu, Xiadong Wang, and Jan

Kautz. Mocogan: Decomposing motion and content for

video generation. CVPR, 2018.

[39] Catherine Wah, Steve Branson, Peter Welinder, Pietro Per-

ona, and Serge Belongie. The Caltech-UCSD Birds-200-

2011 Dataset. Technical Report CNS-TR-2011-001, 2011.

[40] Fanyi Xiao, Haotian Liu, and Yong Jae Lee. Identity from

here, pose from there: Self-supervised disentanglement and

generation of objects using unlabeled videos. In ICCV, 2019.

[41] Xianglei Xing, Ruiqi Gao, Tian Han, Song-Chun Zhu, and

Ying Nian Wu. Deformable generator network: Unsu-

pervised disentanglement of appearance and geometry. In

CVPR, 2018.

[42] Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,

Zhe Gan, Xiaolei Huang, and Xiaodong He. Attngan: Fine-

grained text to image generation with attentional generative

adversarial networks. In CVPR, 2018.

[43] Wei Xu, Xin Liu, and Yihong Gong. Document clustering

based on non-negative matrix factorization. In SIGIR, 2003.

[44] Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak Lee.

Attribute2image: Conditional image generation from visual

attributes. In ECCV, 2016.

[45] Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi

Parikh. Lr-gan: Layered recursive generative adversarial net-

works for image generation. ICLR, 2017.

[46] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-

vised learning of deep representations and image clusters. In

CVPR, 2016.

[47] Guojun Yin, Bin Liu, Lu Sheng, Nenghai Yu, Xiaogang

Wang, and Jing Shao. Semantics disentangling for text-to-

image generation. In CVPR, 2019.

[48] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xi-

aogang Wang, Xiaolei Huang, and Dimitris Metaxas. Stack-

gan++: Realistic image synthesis with stacked generative ad-

versarial networks. arXiv: 1710.10916, 2017.

[49] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. ICCV, 2017.

8048

