This CVPR 2020 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

PointAugment: an Auto-Augmentation Framework
for Point Cloud Classification

Ruihui Li Xianzhi Li

Pheng-Ann Heng Chi-Wing Fu

The Chinese University of Hong Kong
{lirh,xz1li,pheng, cwfu}@cse.cuhk.edu.hk

Abstract

We present PointAugment', a new auto-augmentation
[framework that automatically optimizes and augments point
cloud samples to enrich the data diversity when we train
a classification network. Different from existing auto-
augmentation methods for 2D images, PointAugment is
sample-aware and takes an adversarial learning strategy to
Jjointly optimize an augmentor network and a classifier net-
work, such that the augmentor can learn to produce aug-
mented samples that best fit the classifier. Moreover, we
formulate a learnable point augmentation function with a
shape-wise transformation and a point-wise displacement,
and carefully design loss functions to adopt the augmented
samples based on the learning progress of the classifier. Ex-
tensive experiments also confirm PointAugment’s effective-
ness and robustness to improve the performance of various
networks on shape classification and retrieval.

1. Introduction

In recent years, there has been a growing interest in de-
veloping deep neural networks [23, 24, 37, 19, 18] for 3D
point cloud processing. To robustly train a network often
relies on the availability and diversity of the data. How-
ever, unlike 2D image benchmarks such as ImageNet [10]
and MS COCO dataset [15], which have over millions of
training samples, 3D datasets are typically much smaller in
quantity, with relatively small amount of labels and limited
diversity. For instance, ModelNet40 [38], one of the most
commonly-used benchmark for 3D point cloud classifica-
tion, only has 12,311 models of 40 categories. The limited
data quantity and diversity may cause overfitting problem
and further affect the generalization ability of the network.

Nowadays, data augmentation (DA) is a very common
strategy to avoid overfitting and improve the network gener-
alization ability by artificially enlarging the quantity and di-
versity of the training samples. For 3D point clouds, due to

ICode: https://github.com/liruihui/PointAugment

M Trained with conventional data augmentation
B Trained with our PointAugment

93.4
92.9 927
92.2
91.7
90.9 90.7
i I I
PointNet PointNet++ RSCNN DGCNN

Figure 1: Classification accuracy (%) on ModelNet40 with
or without training the networks with our PointAugment.
We can see clear improvements on four representative net-
works. More comparison results are presented in Section 5.

the limited amount of training samples and an immense aug-
mentation space in 3D, conventional DA strategies [23, 24]
often simply perturb the input point cloud randomly in a
small and fixed pre-defined augmentation range to main-
tain the class label. Despite its effectiveness for the existing
classification networks, this conventional DA approach may
lead to insufficient training, as summarized below.

First, existing methods for deep 3D point cloud process-
ing regard the network training and DA as two independent
phases without jointly optimizing them, e.g., feedback the
training results to enhance the DA. Hence, the trained net-
work could be suboptimal. Second, existing methods ap-
ply the same fixed augmentation process with rotation, scal-
ing, and/or jittering, to all input point cloud samples. The
shape complexity of the samples is ignored in the augmen-
tation, e.g., a sphere remains the same no matter how we
rotate it, but a complex shape may need larger rotations.
Hence, conventional DA may be redundant or insufficient
for augmenting the training samples [6].

To improve the augmentation of point cloud samples, we
formulate PointAugment, a new auto-augmentation frame-
work for 3D point clouds, and demonstrate its effective-

6378

ness to enhance shape classification; see Figure 1. Differ-
ent from the previous works for 2D images, PointAugment
learns to produce augmentation functions specific to indi-
vidual samples. Further, the learnable augmentation func-
tion considers both shape-wise transformation and point-
wise displacement, which relate to the characteristics of 3D
point cloud samples. Also, PointAugment jointly optimizes
the augmentation process with the network training, via an
adversarial learning strategy to train the augmentation net-
work (augmentor) together with the classification network
(classifier) in an end-to-end manner. By taking the classifier
losses as feedbacks, the augmentor can learn to enrich the
input samples by enlarging the intra-class data variations,
while the classifier can learn to combat this by extracting
insensitive features. Benefited by such adversarial learn-
ing, the augmentor can then learn to generate augmented
samples that best fit the classifier in different stages of the
training, thus maximizing the capability of the classifier.

As the first attempt to explore auto-augmentation for 3D
point clouds, we show by replacing conventional DA with
PointAugment, clear improvements in shape classification
on ModelNet40 [38] (see Figure 1) and SHRECI16 [28]
(see Section 5) datasets can be achieved on four represen-
tative networks, including PointNet [23], PointNet++ [24],
RSCNN [18], and DGCNN [37]. Also, we demonstrate the
effectiveness of PointAugment on shape retrieval and eval-
uate its robustness, loss configuration, and modularization
design. More results are presented in Section 5.

2. Related Work

Data augmentation on images. Training data plays a
very important role for deep neural networks to learn to
perform tasks. However, training data usually has limited
quantity, compared with the complexity of our real world,
so data augmentation is often needed as a means to enlarge
the training set and maximize the knowledge that a network
can learn from the training data. Instead of randomly trans-
forming the training data samples [42, 41], some works at-
tempted to generate augmented samples from the original
data by using image combination [12], generative adversar-
ial network (GAN) [31, 27], Bayesian optimization [35],
and image interpolation in the latent space [4, 16, 2]. How-
ever, these methods may produce unreliable samples that
are different from those in the original data. On the other
hand, some image DA techniques [12, 42, 41] apply pixel-
by-pixel interpolation for images with regular structures;
however, they cannot handle order-invariant point clouds.
Another approach aims to find an optimal combination
of predefined transformation functions to augment the train-
ing samples, instead of applying the transformation func-
tions based on a manual design or by complete random-
ness. AutoAugment [3] suggests a reinforcement learning

strategy to find the best set of augmentation functions by
alternatively training a proxy task and a policy controller,
then applying the learned augmentation function to the in-
put data. Soon after, two other works, FastAugment [14]
and PBA [8], explore advanced hyper-parameter optimiza-
tion methods to more efficiently find the best transforma-
tions for the augmentation. Different from these methods,
which learn to find a fixed augmentation strategy for all the
training samples, PointAugment is sample-aware, meaning
that we dynamically produce the transformation functions
based on the properties of individual training samples and
the network capability during the training process.

Very recently, Tang et al. [33] and Zhang et al. [43] sug-
gested to learn augmentation policies on target tasks using
an adversarial strategy. They tend to directly maximize the
loss of augmented samples to improve the generalization of
image classification networks. Differently, PointAugment
enlarges the loss between the augmented point clouds and
their original ones by an explicitly-designed boundary (see
Section 4.2 for details); it dynamically adjusts the difficulty
of the augmented samples, so that the augmented samples
can better fit the classifier for different training stages.

Data augmentation on point cloud. In existing points pro-
cessing networks, data augmentation mainly include ran-
dom rotation about the gravity axis, random scaling, and
random jittering [23, 24]. These handcrafted rules are fixed
throughout the training process, so we may not obtain the
best samples to effectively train the network. So far, we are
not aware of any work that explores auto-augmentation to
maximize the network learning with 3D point clouds.

Deep learning on point cloud. Improving on the PointNet
architecture [23], several works [24, 17, 18] explored local
structures to enhance the feature learning. Some others ex-
plored the graph convolutional networks by creating a local
graph [36, 37, 29, 45] or geometric elements [|, 22]. An-
other stream of works [32, 34, 19] projected irregular points
into a regular space to allow traditional convolutional neu-
ral networks to work on. Different from the above works,
our goal is not on designing a new network but on boosting
the classification performance of existing networks by ef-
fectively optimizing the augmentation of point cloud sam-
ples. To this end, we design an augmentor to learn a sample-
specific augmentation function and adjust the augmentation
based also on the learning progress of the classifier.

3. Overview

The main contribution of this work is the PointAugment
framework that automatically optimizes the augmentation
of the input point cloud samples for more effectively train-
ing the classification network. Figure 2 illustrates the design
of our framework, which has two deep neural network com-
ponents: (i) an augmentor A and (ii) a classifier C. Given

6379

Input 5 | feedback
sample | Augmentor
output
Augmented 1, train e
e Classifier
train

Figure 2: An overview of our PointAugment framework.
We jointly optimize the augmentor and classifier in an end-
to-end manner with an adversarial learning strategy.

an input training dataset {P; } X, of M samples, where each
sample has IV points, before we train classifier C with sam-
ple P;, we feed P; first to our augmentor .4 to generate an
augmented sample P;. Then, we feed P; and P, separately
to classifier C for training, and further take C’s results as
feedback to guide the training of augmentor A.

Before elaborating the PointAugment framework, we
first discuss our key ideas behind the framework. These
are new ideas (not present in previous works [3, 14, 8]) that
enable us to efficiently augment the training samples, which
are now 3D point clouds instead of 2D images.

e Sample-aware. Rather than finding a universal set of
augmentation policy or procedure for processing every
input data sample, we aim to regress a specific aug-
mentation function for each input sample by consider-
ing the underlying geometric structure of the sample.
We call this a sample-aware auto-augmentation.

e 2D vs. 3D augmentation. Unlike 2D augmentations
for images, 3D augmentation involves a more immense
and different spatial domain. Accounting for the nature
of 3D point clouds, we consider two kinds of transfor-
mations on point cloud samples: shape-wise transfor-
mation (including rotation, scaling, and their combina-
tions), and point-wise displacement (jittering of point
locations), where our augmentor should learn to pro-
duce them to enhance the network training.

e Joint optimization. During the network training, the
classifier will gradually learn and become more power-
ful, so we need more challenging augmented samples
to better train the classifier, as the classifier becomes
stronger. Hence, we design and train the PointAug-
ment framework in an end-to-end manner, such that
we can jointly optimize both the augmentor and clas-
sifier. To achieve so, we have to carefully design the
loss functions and dynamically adjust the difficulty of
the augmented samples, while considering both the in-
put sample and the capacity of the classifier.

4. Method

In this section, we first present the network architecture
details of the augmentor and classifier (Section 4.1). Then,
we present our loss functions formulated for the augmen-
tor (Section 4.2) and classifier (Section 4.3), and introduce

— Augmentor

Shape-wise v
regression 3“ 3
Per-point feature x
P P F P!
extraction
Point-wise
N x3 N X C R —— D N x3
N x3
— Classifier
er Per-shape feature I;? fully-connected layers ng
P! extraction F; y/
N x3 1xC, 1xK

Figure 3: Illustrations of the augmentor and classifier. The
augmentor generates augmented sample P’ from P, and the
classifier predicts the class label given P’ or P as inputs.

~— Augmentor
1x2C MLPs
MLPs M
noise 1 pq 3x3
/
P shared F ‘1 g C P
Nx3 NxC shared P Nx3
N x3C N X3

Figure 4: Our implementation of the augmentor.

our end-to-end training strategy (Section 4.4). Lastly, we
present the implementation details (Section 4.5).

4.1. Network Architecture

Augmentor. Different from existing works [3, 14, 8], our
augmentor is sample-aware, and it learns to generate a spe-
cific function for augmenting each input sample. From now
on, we drop subscript ¢ for ease of reading, and denote P
as the training sample input to augmentor A and P’ as the
corresponding augmented sample output from A.

The overall architecture of our augmentor is illustrated in
Figure 3 (top). First, we use a per-point feature extraction
unit to embed point features F' € RY*C for all N points
in P, where C is the number of feature channels. From F',
we then regress the augmentation function specific to input
sample P using two separate components in the architec-
ture: (i) shape-wise regression to produce transformation
M € R?**3 and (ii) point-wise regression to produce dis-
placement D € RN*3_ Note that, the learned M is a linear
matrix in 3D space, combining mainly rotation and scal-
ing, whereas the learned D gives point-wise translation and
jittering. Using M and D, we can then generate the aug-
mented sample P’ as P - M + D.

The design of our proposed framework for the augmen-
tor is generic, meaning that we may use different models
to build its components. Figure 4 shows our current im-

6380

plementation, for reference. Specifically, similar to Point-
Net [23], we first employ a series of shared multi-layer per-
ceptron (MLPs) to extract per-point features F € RV*C,
We then employ max pooling to obtain the per-shape fea-
ture vector G € R'*¢. To regress M, we generate a C-
dimension noise vector based on a Gaussian distribution and
concatenate it with G, and then employ MLPs to obtain M.
Note that the noise vector enables the augmentor to explore
more diverse choices in regressing the transformation ma-
trix through the randomness introduced into the regression
process. To regress D, we concatenate N copies of G with
F, together with an N x C' noise matrix, whose values are
randomly and independently generated based on a Gaussian
distribution. Lastly, we employ MLPs to obtain D.

Classifier. Figure 3 (bottom) shows the general architec-
ture of classifier C. It takes P and P’ as inputs in two sep-
arate rounds and predicts corresponding class labels y and
y’. Both yy and i/ € RY¥ | where K is the total number
of classes in the classification problem. In general, C first
extracts per-shape global features F, or F, g’ € R™% (from
P or P’), and then employ fully-connected layers to regress
a class label. Also, the choice of implementing C is flexi-
ble. We may employ different classification networks as C.
In Section 5, we shall show that the performance of several
conventional classification networks can be further boosted
when equipped with our augmentor in the training.

4.2. Augmentor loss

To maximize the network learning, augmented sample
P’ generated by the augmentor should satisfy two require-
ments: (i) P’ should be more challenging than P, i.e., we
aim for L(P’) > L(’P); and (ii) P’ should not lose its shape
distinctiveness, meaning that it should describe a shape that
is not too far (or different) from P.

To achieve requirement (i), a simple way to formulate
the loss function for the augmentor (denoted as £ 4) is to
maximize the difference between the cross entropy losses
on P and P’, or equivalently, to minimize

La = exp[=(L(P') = L(P))], M
where L(P)=— Zfil Jclog(y.)) is P’s cross entropy loss;
9. € {0,1} denotes the one-hot ground-truth label when P
belongs to the c-th class; and y. € [0, 1] is the probabil-
ity of predicting P as c-th class. Note also that, for P’ to
be more challenging than P, we assume that L(P’)>L(P)
and a larger L(P’) indicates a larger magnitude of augmen-
tation, which can be defined as ¢ = L(P’)—L(P).

However, if we naively minimize Eq. (1) for £ 4—0, we
encourage L(P’')—L(P)—o0. So, a simple solution for P’
is an arbitrary sample regardless of P. Such P’ clearly vi-
olates requirement (ii). Hence, we further restrict the aug-
mentation magnitude &. Inspired by LS-GAN [25], we first

L
A 1.25

1.00
0.75
0.50

0.25

0.00

10 05 0.0 05 10
L(P') = pL(P)

Figure 5: Graph plot of Eq. (2).

introduce a dynamic parameter p and re-formulate £ 4 as
La = [1.0 — exp[L(P") — pL(P)].)

See Figure 5 for the graph plot of Eq. (2). In this formula-
tion, we want L(P’) to be large (for requirement (i)) but it
should not be too large (for requirement (ii)), so we upper-
bound L(P’) by pL(P). Hence, we can obtain

&€ = L(P)—L(P) < (p—1)L(P), (3)

where we denote £, = (p — 1)L(/P) as £’s upper bound.

Note that, when we train the augmentor, the classifier
is fixed (to be presented in Section 4.4), so L(P) is fixed.
Hence, &, depends only on p. Since it should be non-
negative, we thus ensure p>1. Moreover, considering that
the classifier is very fragile at the beginning of the train-
ing, we pay more attention to training the classifier rather
than generating a challenging P’. Hence, £, should not be
too large, meaning that P’ should not be too challenging.
Later, when the classifier becomes more powerful, we can
gradually enlarge &, to allow the augmentor to generate a
more challenging P’. Therefore, we design a dynamic p to
control ¢, with the following formulation:

K
p = max (1, eXp(Z Je - yc)), 4)
c=1

where max(1,) ensures p>1. At the beginning of the net-
work training, the classifier predictions may not be accurate.
Hence, the prediction probability y. is generally small, re-
sulting in a small p, and &, will also be small according to
Eq. (3). When the classifier becomes more powerful, y. will
increase, and we will have larger p and £, accordingly.
Lastly, to further ensure the augmented sample P’ to be
shape distinctive (for requirement (ii)), we add L(P’), as a
fidelity term, to Eq. (2) to construct the final loss £ 4:

L4 =L(P)+ \N1.0 —exp(L(P') — pL(P))|, (5)

where) is a fixed hyper-parameter to control the relative
importance of each term. A small A encourages the aug-
mentor to focus more on the classification with less aug-
mentation on P, and vice versa. In our implementation (all
experiments), we set A = 1 to treat the two terms equally.

6381

4.3. Classifier loss

The goal of the classifier C is to correctly predict both P
and P’. Additionally, C should also have the ability to learn
stable per-shape global features, no matter given P or P’ as
input. We thus formulate the classifier loss L¢ as

Le = L(P) + L(P) + (| Fy — Fyl2, ©)

where 7 is to balance the importance of the terms (we em-
pirically set 7y as 10.0), and || F; — F/ || helps explicitly pe-
nalize the feature difference between the augmented sample
and the original one, and stabilize the network training.

4.4. End-to-end training strategy

Algorithm 1 summarizes our end-to-end training strat-
egy. Overall, the procedure alternatively optimizes and up-
dates the learnable parameters in augmentor .4 and classifier
C, while fixing the other one, during the training. Given in-
put sample P;, we first employ A to generate its augmented
sample P/. We then update the learnable parameters in A
by calculating the augmentor loss using Eq. (5). In this step,
we keep C unchanged. After updating A, we keep A un-
changed, and generate the updated P;. We then feed P; and
P! to C one by one to obtain L(P) and L(P’), respectively,
and update the learnable parameters in C by calculating the
classifier loss using Eq. (6). In this way, we can optimize
and train 4 and C in an end-to-end manner.

4.5. Implementation details

We implement PointAugment using PyTorch [21]. In de-
tail, we set the number of training epochs S = 250 with
a batch size B = 24. To train the augmentor, we adopt
the Adam optimizer with a learning rate of 0.001. To train
the classifier, we follow the respective original configura-
tion from the released code and paper. Specifically, for
PointNet [23], PointNet++ [24], and RSCNN [18], we use
the Adam optimizer with an initial learning rate of 0.001,
which is gradually reduced with a decay rate of 0.5 every
20 epochs. For DGCNN [37], we use the SGD solver with
a momentum of 0.9 and a base learning rate of 0.1, which
decays using a cosine annealing strategy [9].

Note also that, to reduce model oscillation [5], we fol-
low [31] to train PointAugment by using mixed training
samples, which contain the original training samples as one
half and our previously-augmented samples as the other
half, rather than using only the original training samples.
Please refer to [31] for more details. Moreover, to avoid
overfitting, we set a dropout probability of 0.5 to randomly
drop or keep the regressed shape-wise transformation and
point-wise displacement. In the testing phase, we follow
previous networks [23, 24] to feed the input test samples to
the trained classifier to obtain the predicted labels, without
any additional computational cost.

Algorithm 1: Training Strategy in PointAugment

Input: training point sets {P;}M . corresponding
ground-truth class labels {7; }}£,, and the
number of training epochs S.

Output: C and A.

fors=1,---,5do

fori=1,---, M do

// Update augmentor A

Generate augmented sample P! from P;
Calculate the augmentor loss using Eq. (5)
Update the learnable parameters in A

// Update classifier C

Calculate the classifier loss using Eq. (6) by
feeding P; and P alternatively to C

Update the learnable parameters in C

end
end

Table 1: Statistics of the ModelNet10 (MN10) [38], Model-
Net40 (MN40) [38], and SHREC16 (SR16) [28] datasets,
including the number of categories (classes), number of
training and testing samples, average number of samples
per class, and the corresponding standard deviation value.

Dataset ‘ #Class #Training #Testing Average Std.

MN10 10 3991 908 399.10 233.36
MN40 40 9843 2468 246.07 188.64
SR16 55 36148 5165 657.22 1111.49

5. Experiments

We conducted extensive experiments on PointAugment.
First, we introduce the benchmark datasets and classifiers
employed in our experiments (Section 5.1). We then eval-
uate PointAugment on shape classification and shape re-
trieval (Section 5.2). Next, we perform detailed analysis on
PointAugment’s robustness, loss configuration, and modu-
larization design (Section 5.3). Lastly, we present further
discussion and potential future extensions (Section 5.4).

5.1. Datasets and Classifiers

Datasets. We employed three 3D benchmark datasets in
our evaluations, i.e., ModelNet10 [38], ModelNet40 [38],
and SHRECI16 [28], for which we denote as MN10, MN40,
and SR16, respectively. Table 1 presents statistics about the
datasets, showing that, MN10 is a very small dataset with
only 10 classes. Though most networks [23, 1 7] can achieve
a high classification accuracy on MN10, they may easily
overfit. SR16 is the largest data with over 36,000 train-
ing samples. However, the high standard deviation (std.)

6382

Table 2: Comparing the overall shape classification accu-
racy (%) on MN40, MN10, and SR16, for various classifiers
equipped with conventional DA (first four rows) and with
our PA (last four rows); PA denotes PointAugment. We can
observe improvements for all datasets and all classifiers.

Method | MN40 MNI10 SR16
PointNet [23] 89.2 91.9 84.4
PointNet++ [24] 90.7 933 85.1
RSCNN [18] 91.7 94.2 86.6
DGCNN [37] 92.2 94.8 87.0
PointNet (+PA) [90.9 (1.71) 94.1 2.21) 88.4(4.01)
PointNet++ (+PA) | 92.9 (221) 95.8(2.51) 89.5 (4.41)
RSCNN (+PA) | 92.7(1.01) 96.0 (1.81) 90.1 (3.51)
DGCNN (+PA) | 93.4(1.21) 96.7 (1.91) 90.6 (3.61)

value, i.e., 1111, shows the uneven distribution of training
samples among the classes. For example, in SR16, the Ta-
ble class has 5,905 training samples, while the Cap class has
only 39 training samples. For MN40, we directly adopt the
data kindly provided by PointNet [23] and follow the same
train-test split. For MN10 and SR16, we uniformly sample
1,024 points on each mesh surface and normalize the point
sets to fit a unit ball centered at the origin.

Classifiers. As explained in Section 4.1, our overall frame-
work is generic, and we can employ different classifica-
tion networks as classifier C. To show that the perfor-
mance of conventional classification networks can be fur-
ther boosted when equipped with our augmentor, in the
following experiments, we employ several representative
classification networks as classifier C, including (i) Point-
Net [23], a pioneer network that processes points individ-
ually; (ii) PointNet++ [24], a hierarchical feature extrac-
tion network; (iii) RSCNN' [18], a recently-released en-
hanced version of PointNet++ with a relation weight inside
each local region; and (iv) DGCNN [37], a graph-based
feature extraction network. Note that, most existing net-
works [44, 34, 17] are built and extended from the above
networks with various means of adaptation.

5.2. PointAugment Evaluation

Shape classification. First, we evaluate our PointAugment
on the shape classification task using the classifiers listed
in Section 5.1. For comparison, when we train the classi-
fiers without PointAugment, we follow [24] to augment the
training samples by random rotation, scaling, and jittering,
which are considered as conventional DA.

Table 2 summarizes the quantitative evaluation results
for comparison. We report the overall classification ac-
curacy (%) of each classifier on all the three benchmark
datasets, with conventional DA and with our PointAug-

!Only the single-scale RSCNN [18] is released so far.

Table 3: Comparing the shape retrieval results (mAP, %)
on MNA40, for various methods equipped with conventional
DA or with our PointAugment. Again, we can observe clear
improvements in retrieval accuracy for all the four methods.

Method ‘ Conventional DA PointAugment Change
PointNet [23] 70.5 75.8 521
PointNet++ [24] 81.3 86.7 5.41
RSCNN [18] 83.2 86.6 3.47
DGCNN [37] 85.3 89.0 3.7

Query Top-10 retrieved models

Figure 6: Shape retrieval results on MN40. For each query
shape on the left, we present two rows of Top-10 retrieval
results: the top row uses PointNet [23] and the bottom
row uses PointNet+PointAugment. Note that the obviously-
wrong retrieval results are marked with red arrows.

ment. From the results we can clearly see that, by employ-
ing PointAugment, the shape classification accuracies of all
classifier networks can improve for all the three benchmark
datasets. Particularly, on MN40, the classification accuracy
achieved by DGCNN+PointAugment is 93.4%, which is a
very high accuracy value comparable with the very recent
works [44, 34, 17]. Moreover, our PointAugment is shown
to be more effective on the imbalanced SR16 dataset; see
the right-most column in Table 2, showing that PointAug-
ment can alleviate the class size imbalance problem through
our sample-aware auto-augmentation strategy to introduce
more intra-class variation to the augmented samples.

Shape retrieval. To validate whether PointAugment facil-
itates the classifiers to learn a better shape signature, we
compare the shape retrieval performance on MN40. Specif-
ically, we regard each sample in the testing split as a query,
and aim to retrieve the best similar shapes from the test-
ing split by comparing the cosine similarity between their
global features Fy,. In this experiment, we employ the mean
Average Precision (mAP) as the evaluation metric.

Table 3 presents the evaluation results, which clearly
show that PointAugment improves the shape retrieval per-

6383

Table 4: Robustness test to compare our PointAugment with
conventional DA. Here, we corrupt each input test sample
by random jittering (Jitt.) with Gaussian noise in [-1.0, 1.0],
by scaling with a ratio of 0.9 or 1.1, or by a rotation of 90°
or 180° along the gravity axis. Also, we show the original
accuracy (Ori.) without using corrupted samples.

Method | Ori. | Jitt. | 09 | 1.1 | 90° | 180°
Without DA [89.1 [88.2 [882 [882 [482 | 40.1
Conventional DA | 90.7 | 90.3 | 90.3 | 90.3 | 89.9 | 89.7
PointAugment | 92.9 | 92.8 | 92.8 | 92.8 | 92.7 | 92.6

Table 5: Ablation study of PointAugment. D: point-wise
displacement, M: shape-wise transformation, DP: dropout,
and Mix: mixed training samples (see Section 4.4).

Model | D M DP Mix Acc. | Inc.t

A 90.7 -

B X 91.7 | 1.0
C X 919 | 12
D X X 925 | 1.8
E X X X 928 | 2.1
F X X X X 929 | 2.2

formance for all the four classifier networks. Especially,
for PointNet [23] and PointNet++ [24], the percentage of
improvement is over 5%. Besides, we show visual results
on shape retrieval for three different query models in Fig-
ure 6. Compared with the original PointNet [23], which
is equipped with conventional DA, the augmented version
with PointAugment produces more accurate retrievals.

5.3. PointAugment Analysis

Further, we conducted more experiments to evaluate var-
ious aspects of PointAugment, including a robustness test
(Section 5.3.1), an ablation study (Section 5.3.2), and a de-
tailed analysis on its Augmentor network (Section 5.3.3).
Note that, in these experiments, we employ PointNet++ [24]
as the classifier and perform experiments on MN40.

5.3.1 Robustness Test

We conducted the robustness test by corrupting test samples
using the following five settings: (i) adding random jittering
form scaling with a ratio of 0.9 or 1.1; and (iv,v) adding
rotation with 90° or 180° along the gravity axis. For each
setting, we use three different DA strategies: without DA,
conventional DA, and our PointAugment.

Table 4 reports the results, where we show also the origi-
nal test accuracy (Ori.) without using corrupted test samples
as a reference. The results in the first two rows show that

Figure 7: Evaluation curves: shape classification accuracy
using different versions of £ 4 over training epochs.

DA is an efficient way to improve the classification perfor-
mance. Further, comparing the last two rows in the table,
we can see that for all settings, our PointAugment consis-
tently outperforms the conventional DA, which is random-
based and may not yield good augmented samples all the
time. Particularly, by comparing the results with the orig-
inal test accuracy, PointAugment is less sensitive to cor-
ruption, where the achieved accuracy reduces only slightly.
Such a result shows that PointAugment improves the ro-
bustness of a network with better shape recognition.

5.3.2 Ablation Study

Table 5 summarizes the results of the ablation study. Model
A denotes PointNet++ [24] without our augmentor, which
gives a baseline classification accuracy of 90.7%. On top
of Model A, we employ our augmentor with point-wise dis-
placement D alone (Model B), with shape-wise transforma-
tion M alone (Model C), or with both (Model D). From
the results shown in the first four rows in Table 5, we can
see that, each of the augmentation functions contributes to
produce more effective augmented samples.

Besides, we also ablate the dropout strategy (DP) for
training, and the use of mixed training samples (Mix), as
presented in Section 4.5, where we create Models E & F for
comparison; see Table 5. By comparing the classification
accuracies achieved by Models D, E, and F, we can see that
both DP and Mix help to slightly improve the overall re-
sults. Note, these strategies are typically for stabilizing the
model training and exploring more transformations.

5.3.3 Augmentor Analysis

Analysis on £ 4. As described in Section 4.2, we employ
L 4 (see Eq. (5)) to guide the training of our augmentor. To
demonstrate its superiority, we compare it with (i) a simple
version (see Eq. (1)) and (ii) a baseline, i.e., the conven-
tional DA employed in PointNet++ [24]. Figure 7 plots the
evaluation accuracy curves in terms of the training epochs.

6384

