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Abstract

Architecture design has become a crucial component of

successful deep learning. Recent progress in automatic

neural architecture search (NAS) shows a lot of promise.

However, discovered architectures often fail to generalize

in the final evaluation. Architectures with a higher valida-

tion accuracy during the search phase may perform worse

in the evaluation (see Figure 1). Aiming to alleviate this

common issue, we introduce sequential greedy architec-

ture search (SGAS), an efficient method for neural archi-

tecture search. By dividing the search procedure into sub-

problems, SGAS chooses and prunes candidate operations

in a greedy fashion. We apply SGAS to search architectures

for Convolutional Neural Networks (CNN) and Graph Con-

volutional Networks (GCN). Extensive experiments show

that SGAS is able to find state-of-the-art architectures for

tasks such as image classification, point cloud classifica-

tion and node classification in protein-protein interaction

graphs with minimal computational cost.

1. Introduction

Deep learning has revolutionized computer vision by

learning features directly from data. As a result deep neu-

ral networks have achieved state-of-the-art results on many

difficult tasks such as image classification [13], object de-

tection [30], object tracking [37], semantic segmentation

[11], depth estimation [15] and activity understanding [7],

to name just a few examples. While there was a big em-

phasis on feature engineering before deep learning, the fo-

cus has now shifted to architecture engineering. In particu-

lar many novel architectures have been proposed, such as

LeCun [26], AlexNet [25], VGG [44], GoogLeNet [46],

ResNet [18], DenseNet [21], ResNeXt [54] and SENet [20].

Results on each of the above mentioned tasks keep improv-

ing every year by innovations in architecture design. In

essence, the community has shifted from feature engineer-

ing to architecture engineering.
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Figure 1. Comparison of search-evaluation Kendall τ coeffi-

cients. We show Kendall τ correlations for architecture rankings

between the search and the evaluation phase of DARTS and SGAS.

Architectures are obtained from 10 independent search runs.

In recent years, many efforts have been made to re-

duce the manual intervention required to obtain better mod-

els for a particular task. As a matter of fact, a new area

of research, commonly referred to as meta-learning, has

emerged in order to tackle such problems. The idea of meta-

learning is to leverage prior experience in order to quickly

find good algorithm configurations, network architectures

and any required parameters for a new learning task. Exam-

ples of recent meta-learning approaches include automatic

hyper-parameter search [14], data-augmentation [12], find-

ing novel optimizers [2] and architecture search [62]. In

particular, architecture search has sparked a lot of interest

in the community. In this task, the search space is huge and

manual search is prohibitive.

Early work by Zoph et al. [62], based on Reinforcement

Learning, has shown very promising results. However, its

high computational cost has prevented widespread adop-

tion. Recently, differentiable architecture search (DARTS)

[33] has been proposed as an alternative which makes archi-

tecture search differentiable and much more efficient. This

has opened up a path towards computationally feasible ar-
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chitecture search. However, despite their success, current

approaches still have a lot of limitations. During the search

phase, network architectures are usually constructed from

basic building blocks and evaluated on a validation set. Due

to computational cost, the size of considered architectures

is limited. In the evaluation phase, the best building blocks

are used to construct larger architectures and they are eval-

uated on the test set. As a result there is a large discrep-

ancy between the validation accuracy during search and the

test accuracy during evaluation. In this work, we propose

a novel greedy architecture search algorithm, SGAS, which

addresses this discrepancy and searches very efficiently.

Contributions. Our contributions can be summarized as

the following: (1) We propose SGAS, a greedy approach

for neural architecture search with high correlation between

the validation accuracy during the search phase and the fi-

nal evaluation accuracy. (2) Our method discovers top-

performing architectures with much less search cost than

previous state-of-the-art methods such as DARTS. (3) Our

proposed method is able to search architectures for both

CNNs and GCNs across various datasets and tasks.

2. Related Work

In the past, considerable success was achieved with

hand-crafted architectures. One of the earliest successful

architectures was LeNet [26], a very simple convolutional

neural network for optical character recognition. Other

prominent networks include AlexNet [25], VGG [44] and

GoogLeNet [46] which revolutionized computer vision by

outperforming all previous approaches in the ImageNet [13]

challenge by a large margin. ResNet [18] and DenseNet

[21] were further milestones in architecture design. They

showed the importance of residual and dense connections

for designing very deep networks, an insight that influences

modern architecture design to this day. Until recently, ar-

chitecture innovations were a result of human insight and

experimentation. The first successful attempts for architec-

ture search were using reinforcement learning [62] and evo-

lutionary algorithms [40]. These works were extended with

NASNet [63] where a new cell-based search space and reg-

ularization technique were proposed. Another extension,

ENAS [38], represents the entire search space as a single

directed acyclic graph. A controller discovers architectures

by searching for subgraphs that maximize the expected re-

ward on the validation set. This setup allows for parame-

ter sharing between child models making search very effi-

cient. Further, PNAS [31] introduced a sequential model-

based optimization (SMBO) strategy in order to search for

structures of increasing complexity. PNAS needs to evalu-

ate 5 times less models and reduces the computational cost

by a factor of 8 compared to NASNet. Yet, PNAS still

requires thousands of GPU hours. One shot approaches

[6, 5, 8] further reduce the search time by training a single

over-parameterized network with inherited/shared weights.

In order to search in a continuous domain [41, 1, 43, 50],

DARTS [33] proposes a continuous relaxation of the archi-

tecture representation, making architecture search differen-

tiable and hence much more efficient. As a result, DARTS

is able to find good convolutional architectures at a fraction

of the computational cost making NAS broadly accessible.

Owed to the large success of DARTS, several extensions

have been proposed recently. SNAS [55] optimizes param-

eters of a joint distribution for the search space in a cell.

The authors propose a search gradient which optimizes the

same objective as RL-based NAS, but leads to more effi-

cient structural decisions. P-DARTS [9] attempts to over-

come the depth gap issue between search and evaluation.

This is accomplished by increasing the depth of searched

architectures gradually during the training procedure. PC-

DARTS [58] leverages the redundancy in network space and

only samples a subset of channels in super-net during search

to reduce computation.

3. Methodology

3.1. Preliminary  DARTS

By reducing the search problem to searching for the best

cell structure, cell-based NAS methods [63, 31, 40] are able

to learn scalable and transferable architectures. The net-

works are composed of layers with identical cell structure

but different weights. A cell is usually represented as a di-

rected acyclic graph (DAG) with N nodes including two

input nodes, several intermediate nodes and a single output

node. Each node is a latent representation denoted as x(i),

where i is its topological order in the DAG. Each directed

edge (i, j) in the DAG is associated with an operation o(i,j)

that transfers the information from node x(i) to node x(j).

In Differentiable Architecture Search (DARTS) [33] and its

variants [55, 9, 58, 17], the optimal architecture is derived

from a discrete search space by relaxing the selection of op-

erations to a continuous optimization problem. During the

search phase, the operation of each edge is parameterized

by architectural parameters α(i,j) as a softmax mixture over

all the possible operations within the operation space O, i.e.

ō(i,j)(x(i)) =
∑

o∈O
exp(α(i,j)

o )
∑

o′∈O exp(α
(i,j)

o′
)
o(x(i)). The input

nodes are represented by the outputs from the previous two

cells. Each intermediate node aggregates information flows

from all of its predecessors, x(j) =
∑

i<j ō
(i,j)(x(i)). The

output node is defined as a concatenation of a fixed number

of its predecessors. The learning procedure of architectural

parameters involves a bi-level optimization problem:

min
A

Lval(W
∗(A),A) (1)

s.t. W∗(A) = argminW Ltrain(W,A) (2)
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Figure 2. Illustration of Sequential Greedy Architecture Search. At each greedy decision epoch, an edge (i†, j†) is selected based on

the selection criterion. A greedy decision will be made for the edge (i†, j†) by replacing ō(i
†,j†) with o(i

†,j†) = argmaxo∈O α
(i†,j†)
o .

The corresponding architectural parameter α(i†,j†) will be removed from the bi-level optimization. Operations which were not chosen in

a mixture operation will be pruned. At the end of the search phase, a stand-alone architecture without weight sharing will be obtained.

Ltrain and Lval denote the training and validation loss re-

spectively. Owing to the continuous relaxation, the search

is realized by optimizing a supernet. W is the set of weights

of the supernet and A is the set of the architectural param-

eters. DARTS [33] proposed to solve this bi-level prob-

lem by a first/second order approximation. At the end of

the search, the final architecture is derived by selecting the

operation with highest weight for every mixture operation,

o(i,j) = argmaxo∈O α
(i,j)
o .

3.2. SearchEvaluation Correlation

A popular pipeline of existing NAS algorithms [63, 33]

includes two stages: a search phase and an evaluation phase.

In order to reduce computational overhead, previous works

[63, 33] first search over a pre-defined search space with

a lightweight proxy model on a small proxy dataset. Af-

ter the best architecture cell/encoding is obtained, the final

architecture is built and trained from scratch on the target

dataset. This requires that the true performance during eval-

uation can be inferred during the search phase. However,

this assumption usually does not hold due to the discrep-

ancy in dataset, hyper-parameters and network architectures

between the search and evaluation phases. The best rank-

ing derived from the search phase does not imply the actual

ranking in the final evaluation. In practice, the correlation

between the performances of derived architectures during

the search and evaluation phases is usually low. In this pa-

per, we refer to this issue as degenerate search-evaluation

correlation. Recent work by Sciuto et al. [42] also analyzes

this issue and suggests that the Kendall τ metric [22] could

be used to evaluate the search phase. They show that the

widely used weight sharing technique actually decreases

the correlation. The Kendall τ metric [22] is a common

measurement of the correlation between two rankings. The

Kendall τ coefficient can be computed as τ = Nc−Nd
1
2n(n−1)

,

where Nc and Nd are the number of concordant pairs and

the number of discordant pairs respectively. It is a number

in the range from −1 to 1 where −1 corresponds to a perfect

negative correlation and 1 to a perfect positive correlation.

If the Kendall τ coefficient is 0, the rankings are completely

independent. An ideal NAS method should have a high

search-evaluation Kendall τ coefficient. We take DARTS

[33] as an example and show its Kendall τ in Figure 1. It

is calculated between the rankings during search phase and

evaluation phase. The rankings are determined according to

the validation accuracy and the final evaluation accuracy af-

ter 10 different runs on the CIFAR-10 dataset. The Kendall

τ coefficients for DARTS are only 0.16 and −0.29 for the

1st-order and 2nd-order versions respectively. Therefore,

it is impossible to make reliable predictions regarding the

final test accuracy based on the search phase.

3.3. Sequential Greedy Architecture Search

In order to alleviate the degenerate search-evaluation

correlation problem, the core aspects are to reduce (1) the

discrepancy between the search and evaluation phases and

(2) the negative effect of weight sharing. We propose to

solve the bi-level optimization (Equation 1, 2) in a sequen-

tial greedy fashion to reduce the model discrepancy and the

weight sharing progressively. As mentioned in Section 3.1,

DARTS-based methods [33, 9, 58] solve the relaxed prob-

lem fully and obtain all the selected operations at the end.

Instead of solving the complete problem directly, we di-

vide it into sub-problems and solve them sequentially with

a greedy algorithm. The sub-problems are defined based

on the directed edges in the DAG. We pick the operation
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Algorithm 1: SGAS – Sequential Greedy Architecture Search

Create architectural parameters A = {α(i,j)} and supernet weights W

Create a mixed operation ō(i,j) parameterized by α(i,j) for each edge (i, j)
while not terminated do

1. Update undetermined architecture parameters A by descending ∇ALval(W,A)
2. Update weights W by descending ∇WLtrain(W,A)

(since the weights of unchosen operations are pruned, only the remaining weights need to be updated)

3. If a decision epoch, select an edge (i†, j†) based on the greedy Selection Criterion

Determine the operation by replacing ō(i
†,j†) with o(i

†,j†) = argmaxo∈O α
(i†,j†)
o

Prune unchosen weights from W , Remove α(i†,j†) from A

Derive the final architecture based on chosen operations

for edges greedily in a sequential manner and solve the re-

maining sub-problem iteratively. The iterative procedure is

shown in Algorithm 1. At each decision epoch, we choose

one edge (i†, j†) according to a pre-defined selection crite-

rion. A greedy optimal choice is made for the selected edge

by replacing the corresponding mixture operation ō(i
†,j†)

with o(i
†,j†) = argmaxo∈O α

(i†,j†)
o . The architectural pa-

rameters α(i†,j†) and the weights of the remaining paths

within the mixture operations are no longer needed; we

prune and exclude them from the latter optimization. As

a side benefit, the efficiency improves as parameters in A
and W are pruned gradually in the optimization loop. The

search procedure of the remaining A and W forms a new

sub-problem which will be solved iteratively. At the end

of the search phase, a stand-alone network without weight

sharing is obtained, as illustrated in Figure 2. Therefore,

the model discrepancy is minimized and the validation ac-

curacy during the search phase reflects the final evaluation

accuracy much better. To maintain the optimality, the de-

sign of the selection criterion is crucial. We consider three

aspects of edges which are the edge importance, the selec-

tion certainty and the selection stability.

Edge Importance. Similar to DARTS [33], a zero opera-

tion is included in the search space to indicate a lack of con-

nection. Edges that are important should have a low weight

in the zero operation. Thus, the edge importance is defined

as the summation of weights over non-zero operations:

S
(i,j)
EI =

∑

o∈O,o 6=zero

exp(α
(i,j)
o )

∑
o′∈O exp(α

(i,j)
o′ )

(3)

Selection Certainty. Entropy is a common measurement

of uncertainty of a distribution. The normalized softmax

weights of non-zero operations can be regarded as a distri-

bution, p
(i,j)
o =

exp(α(i,j)
o )

S
(i,j)
EI

∑
o′∈O exp(α

(i,j)

o′
)
, o ∈ O, o 6= zero.

We define the selection certainty as the complement of the

normalized entropy of the operation distribution:

S
(i,j)
SC = 1−

−
∑

o∈O,o 6=zero p
(i,j)
o log(p

(i,j)
o )

log(|O| − 1)
(4)

Selection Stability. In order to incorporate the history in-

formation, we measure the movement of the operation dis-

tribution. Kullback–Leibler divergence and histogram inter-

section [45] are two popular methods to detect changes in

distribution. For simplicity, we choose the latter one. The

average selection stability at step T with a history window

size K is computed as follows:

S
(i,j)
SS =

1

K

T−1∑

t=T−K

∑

ot∈Oot, 6=zero

min(p(i,j)ot
, p(i,j)oT

) (5)

In our experiments, we consider the following two criteria:

Criterion 1. An edge (i†, j†) with a high edge importance

S
(i,j)
EI and a high selection certainty S

(i,j)
SC will be selected.

We normalize S
(i,j)
EI and S

(i,j)
SC , compute the final score and

pick the edge with the highest score:

S
(i,j)
1 = normalize(S

(i,j)
EI ) ∗ normalize(S

(i,j)
SC ) (6)

Criterion 2. In addition to Criterion 1, we also consider

that the selected edge (i†, j†) should have a high selection

stability. The final score is defined as follows:

S
(i,j)
2 = S

(i,j)
1 ∗ normalize(S

(i,j)
SS ) (7)

where normalize(·) denotes a standard Min-Max scaling

normalization. For a fair comparison with existing works

[62, 40, 33], two incoming edges are preserved for every

intermediate node in the DAG. Once a node has two de-

termined incoming edges, its other incoming edges will be

pruned. We refer to our method as Sequential Greedy Ar-

chitecture Search (SGAS). Figure 1 shows that SGAS with

Criterion 1 and 2 improves the Kendall τ correlation coef-

ficients to 0.56 and 0.42 respectively. As expected from

the much higher search-evaluation correlation SGAS out-

perform DARTS in terms of average accuracy significantly.
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4. Experiments

We use our SGAS to automatically find architectures

for both CNNs and GCNs. The CNN architectures dis-

covered by SGAS outperform the state-of-the-art (SOTA)

in image classification on CIFAR-10 [24] and ImageNet

[13]. Similarly, the discovered GCN architectures outper-

form the state-of-the-art methods for point cloud classifica-

tion on ModelNet [53] and node classification in biological

graphs using the PPI [61] dataset.

4.1. Searching CNN architectures with SGAS

4.1.1 Architecture Search on CIFAR-10

As is common practice, we first search for normal cells and

reduction cells with a small network for image classifica-

tion on CIFAR-10. CIFAR-10 is a small popular dataset

containing 50K training images and 10K testing images.

Then, a larger network is constructed by making necessary

changes in channel size and stacking the searched cells mul-

tiple times. The larger network is retrained on CIFAR-10 to

compare its performance with other state-of-the-art meth-

ods. Finally, we show the transferability of our SGAS by

stacking even more cells and evaluating on ImageNet. We

show that SGAS consistently achieves the top performance.

Search Space. We keep our search space the same as

DARTS, which has 8 candidate operations: skip-connect,

max-pool-3×3, avg-pool-3×3, sep-conv-3×3, sep-conv-

5×5, dil-conv-3×3, dil-conv-5×5, zero. During the search

phase, we stack 6 normal cells and 2 reduction cells to form

a network. Two reduction cells are inserted at a network

depth of 1/3 and 2/3 respectively. The stride of each con-

volution in normal cells is 1, so the spatial size of an input

feature map does not change. In reduction cells, convolu-

tions with stride 2 are used to reduce the spatial resolution of

feature maps. There are 7 nodes with 4 intermediate nodes

and 14 edges in each cell during search. The first and sec-

ond input nodes of the cell are set equal to the outputs of the

two previous cells respectively. The output node of a cell is

the depth-wise concatenation of all the intermediate nodes.

Training Settings. We keep the training setting the same

as in DARTS [33]. A small network consisting of 6 nor-

mal cells and 2 reduction cells with an initial channel size

16 is trained on CIFAR-10. We perform architecture search

for 50 epochs with a batch size of 64. SGD is used to op-

timize the model weights W with an initial learning rate

0.025, momentum 0.9 and weight decay 3 × 10−4. For ar-

chitecture parameters A, the Adam optimizer with an initial

learning rate 3× 10−4, momentum (0.5, 0.999) and weight

decay 10−3 is used. Instead of training the entire super-

net throughout the search phase, SGAS makes decisions

sequentially in a greedy fashion. After warming up for 9
epochs, SGAS begins to select one operation for one se-

lected edge every 5 epochs using Criterion 1 or Criterion

2 as the selection criterion. For Criterion 2, we set the his-

tory window size K to 4. The batch size is increased by 8
after each greedy decision, which further boosts the search-

ing efficiency of SGAS. We provide a thorough discussion

and ablation study on the choices of hyper-parameters in the

supplementary material. The search takes only 0.25 day

(6 hours) on a single NVIDIA GTX 1080Ti.

4.1.2 Architecture Evaluation on CIFAR-10

We run 10 independent searches to get 10 architectures with

Criterion 1 or Criterion 2, as shown in Figure 1. To high-

light the stability of the search method, we evaluate the dis-

covered architectures on CIFAR-10 and report the mean and

standard deviation of the test accuracy across those 10 mod-

els and the performance of the best model in Table 1. It is

important to mention that other related works in Table 1

only report the mean and standard deviation for their best

architecture with different runs on evaluation.

Training Settings. We train a large network of 20 cells

with a initial channel size 36. The SGD optimizer is used

during 600 epochs with a batch size of 96. The other hyper-

parameters remain the same as the search phase. Cutout

with length 16, auxiliary towers with weight 0.4 and path

dropout with probability 0.3 are used as in DARTS [33].

Evaluation Results and Analysis. We compare our re-

sults with other methods in Table 1 and report the average

and best performance for both Criterion 1 and Criterion 2.

We outperform our baseline DARTS by a significant margin

with test errors of 2.39% and 2.44% respectively while only

using 0.25 day (6 hours) on a single NVIDIA GTX 1080Ti.

4.1.3 Architecture Evaluation on ImageNet

The architecture evaluation on ImageNet uses the cell archi-

tectures that we obtained after searching on CIFAR-10.

Training Settings. We choose the 3 best performing cell ar-

chitectures on CIFAR-10 for each Criterion and train them

on ImageNet. For this evaluation, we build a large network

with 14 cells and 48 initial channels and train for 250 epochs

with a batch size of 1024. The SGD optimizer with an ini-

tial learning rate of 0.5, a momentum of 0.9 and a weight

decay of 3 × 10−5 is used. We run these experiments on 8
Nvidia Tesla V100 GPUs for three days.

Evaluation Results and Analysis. In Table 2 we compare

our models with SOTA hand-crafted architectures (manual)

and models obtained through other search methods. We ap-

ply the mobile setting for ImageNet, which has an image

size of 224 × 224 and restricts the number of multi-add

operations to 600M . Our best performing models SGAS

(Cri.1 best) and SGAS (Cri.2 best) outperform all the other

methods with top-1 errors 24.2% and 24.1% respectively
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Architecture Test Err. Params Search Cost Search

(%) (M) (GPU-days) Method

DenseNet-BC [21] 3.46 25.6 - manual

NASNet-A [63] 2.65 3.3 1800 RL

AmoebaNet-A [40] 3.34±0.06 3.2 3150 evolution

AmoebaNet-B [40] 2.55±0.05 2.8 3150 evolution

Hier-Evolution [32] 3.75±0.12 15.7 300 evolution

PNAS [31] 3.41±0.09 3.2 225 SMBO

ENAS [38] 2.89 4.6 0.5 RL

NAONet-WS [35] 3.53 3.1 0.4 NAO

DARTS (1st order) [33] 3.00±0.14 3.3 0.4 gradient

DARTS (2nd order) [33] 2.76±0.09 3.3 1 gradient

SNAS (mild) [55] 2.98 2.9 1.5 gradient

ProxylessNAS [8] 2.08 - 4 gradient

P-DARTS [9] 2.5 3.4 0.3 gradient

BayesNAS [60] 2.81±0.04 3.4 0.2 gradient

PC-DARTS [58] 2.57±0.07 3.6 0.1 gradient

SGAS (Cri.1 avg.) 2.66±0.24∗ 3.7 0.25 gradient

SGAS (Cri.1 best) 2.39 3.8 0.25 gradient

SGAS (Cri.2 avg.) 2.67±0.21∗ 3.9 0.25 gradient

SGAS (Cri.2 best) 2.44 4.1 0.25 gradient

Table 1. Performance comparison with state-of-the-art image classifiers on CIFAR-10. We report the average and best performance of

SGAS (Cri.1) and SGAS (Cri.2). Criterion 1 and Criterion 2 are used in the search respectively. *Note that mean and standard derivation

are computed across 10 independently searched architectures.

while using only a search cost of 0.25 GPU day on one

NVIDIA GTX 1080Ti. SGAS (Cri.2) outperforms SGAS

(Cri.1) showing the effectiveness of integrating selection

stability into the selection criterion. The best performing

cells of SGAS (Cri.2 best) are illustrated in Figure 3.

4.2. Searching GCN architectures with SGAS

Recently, GCNs have achieved impressive performance

on point cloud segmentation [28], biological graph node

classification [27] and video recognition [57] by training

DeepGCNs [28, 27]. However, this hand-crafted architec-

ture design requires adequate effort by an human expert.

The main component of DeepGCNs is the GCN backbone.

We explore an automatic way to design the GCN backbone

using SGAS. Our backbone network is formed by stacking

the graph convolutional cell discovered by SGAS. Our GCN

cell consists of 6 nodes. We use fixed 1 × 1 convolutions

in the first two nodes, and set the input to them equal to the

output from the previous two layers. Our experiments on

GCNs have two stages. First, we apply SGAS to search for

the graph convolutional cell using a small dataset and obtain

10 architectures from 10 runs. Then, 10 larger networks

are constructed by stacking each discovered cell multiple

times. The larger networks are trained on the same dataset

or a larger one to evaluate their performance. We report the

best and average performance of these 10 architectures. We

show the effectiveness of SGAS in GCN architecture search

by comparisons with SOTA hand-crafted methods and Ran-

dom Search.

4.2.1 Architecture Search on ModelNet10

ModelNet [53] is a dataset for 3D object classification with

two variants, ModelNet10 and ModelNet40 containing ob-

jects from 10 and 40 classes respectively. We conduct GCN

architecture search on ModelNet10 and then evaluate the

final performance on ModelNet40.

Search Space. Our graph convolutional cell has 10 candi-

date operations: conv-1×1, MRConv [28], EdgeConv [52],

GAT [49], SemiGCN [23], GIN [56], SAGE [16], RelSAGE,

skip-connect, and zero operation. Please refer to our sup-

plementary material for more details of these GCN opera-

tors. We use k nearest neighbor in the first operation of each

cell to construct edges (we use k = 9 by default unless it is

specified). These edges are then shared in the following op-

erations inside the cell. Dilated graph convolutions with the

same linearly increasing dilation rate schedule as proposed

in DeepGCNs [28] are applied to the cells.

Training Settings. We sample 1024 points from the 3D

models in ModelNet10. We use 2 cells with 32 initial chan-

nels and search the architectures for 50 epochs with batch

size 28. SGD is used to optimize the model weights with

initial learning rate 0.005, momentum 0.9 and weight decay

3×10−4. The Adam optimizer with the same parameters as

in the search for CNNs is used to optimize architecture pa-

rameters. After warming up for 9 epochs, SGAS begins to

select one operation for a selected edge every 7 epochs. We

experimented with both selection criteria, Criterion 1 and

Criterion 2. We use a history window of 4 for Cri.2. The
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Architecture Test Err. (%) Params ×+ Search Cost Search

top-1 top-5 (M) (M) (GPU-days) Method

Inception-v1 [46] 30.2 10.1 6.6 1448 - manual

MobileNet [19] 29.4 10.5 4.2 569 - manual

ShuffleNet 2x (v1) [59] 26.4 10.2 ∼5 524 - manual

ShuffleNet 2x (v2) [36] 25.1 - ∼5 591 - manual

NASNet-A [63] 26 8.4 5.3 564 1800 RL

NASNet-B [63] 27.2 8.7 5.3 488 1800 RL

NASNet-C [63] 27.5 9 4.9 558 1800 RL

AmoebaNet-A [40] 25.5 8 5.1 555 3150 evolution

AmoebaNet-B [40] 26 8.5 5.3 555 3150 evolution

AmoebaNet-C [40] 24.3 7.6 6.4 570 3150 evolution

FairNAS-A [10] 24.7 7.6 4.6 388 12 evolution

PNAS [31] 25.8 8.1 5.1 588 225 SMBO

MnasNet-92 [47] 25.2 8 4.4 388 - RL

DARTS (2nd order) [33] 26.7 8.7 4.7 574 4.0 gradient

SNAS (mild) [55] 27.3 9.2 4.3 522 1.5 gradient

ProxylessNAS [8] 24.9 7.5 7.1 465 8.3 gradient

P-DARTS [9] 24.4 7.4 4.9 557 0.3 gradient

BayesNAS [60] 26.5 8.9 3.9 - 0.2 gradient

PC-DARTS [58] 25.1 7.8 5.3 586 0.1 gradient

SGAS (Cri.1 avg.) 24.41±0.16 7.29±0.09 5.3 579 0.25 gradient

SGAS (Cri.1 best) 24.2 7.2 5.3 585 0.25 gradient

SGAS (Cri.2 avg.) 24.38±0.22 7.39±0.07 5.4 597 0.25 gradient

SGAS (Cri.2 best) 24.1 7.3 5.4 598 0.25 gradient

Table 2. Comparison with state-of-the-art classifiers on ImageNet. We transfer the top 3 performing architectures on CIFAR-10 to

ImageNet in the mobile setting. ×+ denote multiply-add operations. The average and best performance of SGAS are reported.

Architecture OA Params Search Cost

(%) (M) (GPU-days)

3DmFV-Net [4] 91.6 45.77 manual

SpecGCN [51] 91.5 2.05 manual

PointNet++ [39] 90.7 1.48 manual

PCNN [3] 92.3 8.2 manual

PointCNN [29] 92.2 0.6 manual

DGCNN [52] 92.2 1.84 manual

KPConv [48] 92.9 14.3 manual

Random Search 92.65±0.33 8.77 random

SGAS (Cri.1 avg.) 92.69±0.20 8.78 0.19

SGAS (Cri.1 best) 92.87 8.63 0.19

SGAS (Cri.2 avg.) 92.93±0.19 8.87 0.19

SGAS (Cri.2 best) 93.23 8.49 0.19

SGAS (Cri.2 small best) 93.07 3.86 0.19

Table 3. Comparison with state-of-the-art architectures for 3D

object classification on ModelNet40. 10 architectures are derived

for both SGAS and Random Search within the same search space.

batch size increases by 4 after each decision. The search

takes around 0.19 GPU day on one NVIDIA GTX 1080Ti.

4.2.2 Architecture Evaluation on ModelNet40

After searching for 10 architectures on ModelNet10, we

form a large backbone network for each and train them on

ModelNet40. The performance of 3D point cloud classifi-

cation is evaluated with the overall accuracy (OA). We also

apply Random Search to the same search space to obtain 10
architectures as our random search baseline.

Training Settings. We stack the searched cell 9 times with

channel size 128. We also form small networks by stacking

the cell 3 times with the same channel size. We use k = 20
for all the large networks and k = 9 for the small ones.

Adam is used to optimize the weights with initial learning

rate 0.001 and weight decay 1 × 10−4. We sample 1024
points as input. Our architectures are all trained for 400
epochs with batch size of 32. We report the mean and stan-

dard deviation of the accuracy on the test dataset of the 10
discovered architectures; we also report the accuracy of the

best performing model of the big and the small networks.

Evaluation Results and Analysis. We compare the per-

formance of our discovered architectures with SOTA hand-

crafted methods and architectures obtained by Random

Search for 3D point clouds classification on ModelNet40.

Table 3 shows that SGAS (Cri.2 best), the best architecture

discovered by our SGAS with Criterion 2, outperforms all

the other models. The smaller network SGAS (Cri.2 small

best) discovered by SGAS with Criterion 2 also outper-

forms all the hand-crafted architectures. Owing to a well-

designed search space, Random Search is a strong baseline.

The performance of SGAS surpasses the hand-crafted ar-

chitectures and Random Search, demonstrating the effec-

tiveness of SGAS for GCN architecture search. The best

architecture for this task can be found in Figure 4 (a).
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Figure 3. Best cell architecture on Imagenet with SGAS Crit. 2

(a) Normal cell of the best model with SGAS Crit. 2 on ModelNet40 (b) Normal cell of the best model with SGAS Crit. 1 on PPI

Figure 4. Best cell architectures on ModelNet40 and PPI

4.2.3 Architecture Search on PPI

PPI is a popular biological graph dataset in the data min-

ing domain. We search for GCN architectures on the PPI

dataset for the task of node classification.

Training Settings. We use 1 cell with 32 channels. We

train and search the architectures for 50 epochs with a batch

size of 6 on PPI. We do not increase the batch size after

making decisions since PPI is small and only contains 20
batches. The other parameters are the same as when search-

ing on ModelNet10. The search takes around 0.003 day (4
minutes) on a Nvidia Tesla V100 GPU (16GB).

4.2.4 Architecture Evaluation on PPI

We evaluate architectures on the PPI test set. We report the

mean, standard derivation and the best accuracy and com-

pare them with the SOTA methods and Random Search. We

also conduct an ablation study on number of cells and chan-

nel size which we include in the supplementary material.

Training Settings. We stack the discovered cell 5 times

with channel size 512. Adam is used to optimize the model

weights with initial learning rate 0.002. We use a cosine

annealing to schedule the learning rate. Our architectures

are trained for 2000 epochs with batch size of 1 as suggested

in DeepGCNs [27]. We find the best model on the validation

dataset and obtain the micro-F1 score on the test dataset.

Evaluation Results and Analysis. We compare the aver-

age and best performance of SGAS to other state-of-the-

arts methods and Random Search on node classification

on the PPI dataset. Table 4 shows the best architecture

discovered by our SGAS outperforms the state-of-the-art

DenseMRGCN-14 [27] by ∼0.03% with ∼30.24 M less

parameters. The average performance of SGAS also sur-

passes the Random Search baseline consistently. In addi-

tion, SGAS (Cri.2 avg.) outperforms SGAS (Cri.1 avg.) in

terms of both mean and standard deviation. This indicates

Architecture micro-F1 Params Search Cost

(%) (M) (GPU-days)

GraphSAGE (LSTM) [16] 61.2 0.26 manual

GeniePath [34] 97.9 1.81 manual

GAT [49] 97.3±0.2 3.64 manual

DenseMRGCN-14 [27] 99.43 53.42 manual

ResMRGCN-28 [27] 99.41 14.76 manual

Random Search 99.36±0.04 23.70 random

SGAS (Cri.1 avg.) 99.38±0.17 25.01 0.003

SGAS (Cri.1 best) 99.46 23.18 0.003

SGAS (Cri.2 avg.) 99.40±0.09 25.93 0.003

SGAS (Cri.2 best) 99.46 29.73 0.003

SGAS (small) 98.89 0.40 0.003

Table 4. Comparison with state-of-the-art architectures for

node classification on PPI. SGAS (small) is the small network

stacking the cell searched by SGAS (Cri.1).

that Criterion 2 provides more stable results. We visualize

the architecture with the best performance in Figure 4 (b).

5. Conclusion

In this work, we propose the Sequential Greedy Archi-

tectural Search (SGAS) algorithm to design architectures

automatically for CNNs and GCNs. The bi-level optimiza-

tion problem in NAS is solved in a greedy fashion using

heuristic criteria which take the edge importance, the se-

lection certainty and the selection stability into considera-

tion. Such an approach alleviates the effect of the degener-

ate search-evaluation correlation problem and reflects the

true ranking of architectures. As a result, architectures dis-

covered by SGAS achieve state-of-the-art performance on

CIFAR-10, ImageNet, ModelNet and PPI datasets.

Acknowledgments. This work was supported by the King

Abdullah University of Science and Technology (KAUST)

Office of Sponsored Research (OSR) through VCC funding.

The authors thank the KAUST IBEX team for helping to

optimize the training workloads on ImageNet.

1627



References

[1] Karim Ahmed and Lorenzo Torresani. Connectivity learning

in multi-branch networks. arXiv preprint arXiv:1709.09582,

2017. 2

[2] Marcin Andrychowicz, Misha Denil, Sergio Gomez,

Matthew W Hoffman, David Pfau, Tom Schaul, Brendan

Shillingford, and Nando De Freitas. Learning to learn by

gradient descent by gradient descent. In Advances in neural

information processing systems, pages 3981–3989, 2016. 1

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM

Trans. Graph., 37(4):71:1–71:12, July 2018. 7

[4] Yizhak Ben-Shabat, Michael Lindenbaum, and Anath Fis-

cher. 3dmfv: Three-dimensional point cloud classification

in real-time using convolutional neural networks. IEEE

Robotics and Automation Letters, 3(4):3145–3152, 2018. 7

[5] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In International Conference on

Machine Learning, pages 549–558, 2018. 2

[6] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. arXiv preprint arXiv:1708.05344, 2017. 2

[7] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem,

and Juan Carlos Niebles. Activitynet: A large-scale video

benchmark for human activity understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 961–970, 2015. 1

[8] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018. 2, 6, 7

[9] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Pro-

gressive differentiable architecture search: Bridging the

depth gap between search and evaluation. arXiv preprint

arXiv:1904.12760, 2019. 2, 3, 6, 7

[10] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

nas: Rethinking evaluation fairness of weight sharing neural

architecture search, 2019. 7

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 3213–3223, 2016. 1

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

policies from data. arXiv preprint arXiv:1805.09501, 2018.

1

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009. 1, 2, 5

[14] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo

Grazzi, and Massimilano Pontil. Bilevel programming

for hyperparameter optimization and meta-learning. arXiv

preprint arXiv:1806.04910, 2018. 1

[15] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231–1237,

2013. 1

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Induc-

tive representation learning on large graphs. In Advances in

Neural Information Processing Systems, pages 1024–1034,

2017. 6, 8

[17] Chaoyang He, Haishan Ye, Li Shen, and Tong Zhang. Mile-

nas: Efficient neural architecture search via mixed-level re-

formulation. In Proceedings of IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2020. 2

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 1, 2

[19] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 7

[20] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018. 1

[21] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 4700–4708, 2017. 1,

2, 6

[22] Maurice G Kendall. A new measure of rank correlation.

Biometrika, 30(1/2):81–93, 1938. 3

[23] Thomas Kipf and Max Welling. Semi-supervised clas-

sification with graph convolutional networks. ArXiv,

abs/1609.02907, 2016. 6

[24] Alex Krizhevsky. Learning multiple layers of features from

tiny images. 2009. 5

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012. 1, 2
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