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Abstract

An intriguing property of adversarial examples is their

transferability, which suggests that black-box attacks are

feasible in real-world applications. Previous works mostly

study the transferability on non-targeted setting. However,

recent studies show that targeted adversarial examples are

more difficult to transfer than non-targeted ones. In this pa-

per, we find there exist two defects that lead to the difficulty

in generating transferable examples. First, the magnitude

of gradient is decreasing during iterative attack, causing

excessive consistency between two successive noises in ac-

cumulation of momentum, which is termed as noise curing.

Second, it is not enough for targeted adversarial examples

to just get close to target class without moving away from

true class. To overcome the above problems, we propose a

novel targeted attack approach to effectively generate more

transferable adversarial examples. Specifically, we first in-

troduce the Poincaré distance as the similarity metric to

make the magnitude of gradient self-adaptive during iter-

ative attack to alleviate noise curing. Furthermore, we reg-

ularize the targeted attack process with metric learning to

take adversarial examples away from true label and gain

more transferable targeted adversarial examples. Experi-

ments on ImageNet validate the superiority of our approach

achieving 8% higher attack success rate over other state-of-

the-art methods on average in black-box targeted attack.

1. Introduction

With the great success of deep learning in various fields,

the robustness and stability of deep neural networks (DNNs)

have attracted more and more attention. However, recent

studies have corroborated that almost all of the DNNs are

subjected to adversarial example problems [18, 25], which

*Corresponding author.

means that in DNNs, by adding some imperceptible distur-

bances, the original image can be shifted from one side of

the decision boundary to the other side, causing discrimi-

nant errors [2, 8, 22]. Due to the vulnerability of neural

networks in the case of adversarial attack, it also poses a

serious security problem for the application of deep neu-

ral networks. In this context, numerous adversarial attack

methods have been proposed to help evaluate and improve

the robustness of the DNNs [4, 12, 23].

Generally, these attack methods can be divided into two

categories according to their adversarial specificity: non-

targeted attack and targeted attack [26]. The targeted attack

expects that the adversarial example is misidentified as spe-

cific class. While in non-targeted attack, we expect the pre-

diction of adversarial example can be arbitrary except the

original one. Moreover, recent studies have shown that the

non-targeted adversarial examples generated by some attack

methods have a high cross-model transferability [22, 14],

that is, the adversarial examples generated by some known

models also have the ability to fool models with unknown

architectures and parameters. Attacking such a model only

through the transferability without any prior is called black-

box attack, which brings more serious security problems to

the deployment of DNNs in reality [7, 11, 13].

Although black-box attacks have become a research

hotspot, most existing attack methods, such as Carlini &

Wagners method [3], fast gradient sign method [8] and se-

ries of fast gradient sign based methods, focus on non-

targeted attacks and have achieved great success, but they

are still powerless for more challenging black-box targeted

attacks. By maximizing the probability of the target class,

the authors in [11] extend the non-targeted attack methods

to the targeted attacks, but this simple extension does not

effectively exploit the characteristics of the targeted attack,

resulting in the generated adversarial examples not being

transferable. Therefore, it is of great significance to develop

transferable targeted adversarial examples.
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In this paper, we find that the existing black-box targeted

attack methods have two serious defects. First, the tradi-

tional methods use softmax cross-entropy as a loss func-

tion. Thereby, as we will show in Eq. (7), the magnitude

of gradient decreases as the probability of target class in-

creases in an iterative attack. Since the added noise is the

momentum accumulation of the gradient in each iteration,

and the magnitude of the gradient decreases continuously

in this process, leading to the historical momentum domi-

nating the noise. Finally, successive noise tends to be con-

sistent in the iterative process, resulting in a lack of diver-

sity and adaptability of noise. We term this phenomenon as

noise curing. Second, traditional methods only require the

adversarial examples to be close to the target class without

requiring far away from the original class in the iterative

process, which makes generated targeted adversarial exam-

ples close to its true class. Therefore, in some cases, the tar-

geted adversarial examples can neither successfully transfer

with target label nor fool the model. In order to overcome

the two problems, Poincaré space is introduced for the first

time as a metric space, where the distances at the surface of

the ball grow exponentially as you move toward the surface

of the ball (compared to their Euclidean distances), so as to

address the phenomenon of noise curing in targeted attacks.

We also find that clean examples, which have long been ig-

nored as a useful information in targeted attacks, can help

adversarial example away from the original class. With pro-

posed metric learning regularization, we put true label into

use by metric method to enforce the adversarial examples

away from original prediction during iterative attack, which

is helpful for generating transferable targeted examples. In

conclusion, the main contributions of our paper are as fol-

lows:

1) Rather than treat targeted attack as a simple extension

of non-targeted attack, we discover and advocate its

special properties different from non-targeted attack,

which allow us to develop a new approach to improve

the performance of targeted attack models.

2) We formally identify the problem of noise curing in

targeted attack that has not been studied before, and

also for the first time, introduce Poincaré space as a

metric space instead of softmax cross entropy to solve

the noise curing problem.

3) We also argue that additional true label information

can be exploited to promote targeted adversarial exam-

ple away from the original class, which is implemented

by a new triplet loss. In contrast, ground truth label in-

formation has not been considered in existing works.

4) We study the targeted transferability of the existing

methods on the Imagenet dataset with extensive exper-

iments. All results show that our method consistently

outperforms the state-of-the-art methods in targeted at-

tack.

2. Background

We briefly review on some related adversarial attack

methods and provide a brief introduction to Poincaré space.

2.1. Adversarial Attack

In adversarial attack, for a given classifier f(x) : x ∈
X −→ y ∈ Y that outputs a label y as the prediction for an

input x, adversarial attack aims to find a small perturbation

δ, misleading the classifier f(xadv) 6= y, where adversar-

ial example xadv = x + δ. The small perturbation δ is

constrained by ℓ∞ norm ‖δ‖
∞

≤ ǫ in this paper. So the

constrained optimization problem can be denoted as:

argmax
δ

J(x+ δ, y), s.t. ‖δ‖
∞

≤ ǫ, (1)

where J is often the cross-entropy loss for maximization.

2.1.1 Black-box Attacks

To solve the optimization problem 1, the gradient of the loss

function with respect to the input needs to be calculated,

termed as white-box attacks. For white-box attacks, adver-

sarial examples are first introduced against DNNs [22]. Ad-

versarial examples are generated by using L-BFGS, which

is time-consuming and impractical. Then, the fast gradient

sign method (FGSM) [8] is proposed, which uses the sign

of gradients associated with the inputs to learn adversarial

examples. The non-targeted version of FGSM is:

xadv = x+ ǫ · sign(∇xJ(x, y)). (2)

However, in many cases, we have no access to the gra-

dients of the classifier, where we need to perform attacks

in the black-box manner. Due to the existence of trans-

ferability [17], the adversarial examples generated by the

white-box attack can be transformed into the black-box at-

tack. Therefore, in order to enable a powerful black-box

attack, a series of methods are proposed to improve trans-

ferability. As a seminal work, momentum iterative FGSM

(MI-FGSM) [5] is proposed, which integrates the momen-

tum term into the iterative process for attacks to ensure the

noise-adding direction more smooth:

gi+1 = µ · gi +
∇xJ(x

adv
i , y)

∥

∥∇xJ(xadv
i , y)

∥

∥

1

,

xadv
i+1 = Clipx,ǫ

{

xadv
i + α · sign(gi+1)

}

,

(3)

where µ is the decay factor of the momentum term, and the

Clip function clips the input values to a specified permissi-

ble range i.e. [x− ǫ, x+ ǫ] and [0, 1] for images. Compared
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(a) Straight lines in Poincaré ball. (b) Distance in Poincaré ball (c) Growth of Poincaré distance

Figure 1: (a): The straight lines in Poincaré ball is composed of all Euclidean arcs in the sphere that are orthogonal to the

boundary of the sphere and all the diameters of the disk. Parallel lines of a given line R may intersect at point P. (b): High

capacity of Poincaré ball model. The length of each line in this figure is the same. (c): The growth of d(u, v) relative to the

Euclidean distance and the norm of v, ‖u‖
2
= 0.98.

with classical FGSM, MI-FGSM is able to craft more trans-

ferable adversarial examples. Based on MI-FGSM, diverse

inputs method (DI2-FGSM) [24] transforms images with a

probability p to alleviate the overfitting phenomenon. In

translation invariant attack method (TI-FGSM) [6], the gra-

dients of the untranslated images ∇xJ(x
adv
t , y) convolved

with a predefined kernel K is used to approximate optimiz-

ing a perturbation over an ensemble of translated images.

These state-of-the-art methods are already capable of gen-

erating powerful black-box adversarial examples.

2.1.2 Targeted Attacks

Targeted attacks usually occur in the multi-class classi-

fication problem, and are different from non-targeted at-

tack, targeted attack requires target model to output spe-

cific target label. The work [14] demonstrates that, al-

though transferable non-targeted adversarial examples are

easy to find, targeted adversarial examples generated by

prior approaches almost never transfer with their target la-

bels. Therefore, they proposed ensemble-based approaches

to generate transferable targeted adversarial examples. The

mode extends non-targeted attacks methods to targeted at-

tacks by maximizing the probability of target class [11]:

xadv = x− ǫ · sign(∇xJ(x, ytar)), (4)

where ytar is target label. However, recent studies [5, 14]

have shown that there is still a lack of effective method to

generate targeted adversarial examples to fool the black-

box model, especially for the models with adversarially

trained, which is still a problem to be solved in the future

research [5].

2.2. Poincaré Ball

Poincaré ball is one of typical Hyperbolic spaces. Dif-

ferent from Euclid geometries space, in Poincaré ball, as

shown in Fig. 1.(a), there are distinct lines through point P

that do not intersect line R. The arcs never reach the circum-

ference of the ball. This is analogous to the geodesic on the

hyperboloid extending out the infinity, that is, as the arc ap-

proaches the circumference it is approaching the “infinity”

of the plane, which means the distances at the surface of the

ball grow exponentially as you move toward the surface of

the ball (compared to their Euclidean distances). Poincaré

ball can fit an entire geometry in a unit ball, which means

it has higher capacity than Euclid representation. Due to

its high representation capacity, Poincaré ball model has at-

tracted more interests in metric learning and representation

learning to deal with the complex data distributions in com-

puter vision tasks [1, 15].

All the points of the Poincaré ball are inside a n-

dimensional unit ℓ2 ball, and the distance between two

points is defined as:

d(u, v) = arccosh(1+δ(u, v)), (5)

where u and v are two points in n-dimensional Euclid space

R
n with ℓ2 norm less than one, and δ(u, v) is an isometric

invariant defined as follow:

δ(u, v) = 2
‖u− v‖

2

(

1− ‖u‖
2
)(

1− ‖v‖
2
) . (6)

We can observe from Fig. 1.(b) that the distance of any point

to the edge tends to ∞. And as shown in Fig. 1.(c), the

growth of Poincaré distance is severe when it gets close to

the surface of the ball. This means that the magnitude of the

gradient will increase as it moves towards the surface.

643



z1

−10−50510

z2

−10
−5

0
5
10

y
1

0.2
0.4
0.6
0.8

P(t=1|z)

0.2

0.4

0.6

0.8

P(
t=

1|
z)

Figure 2: Probabilities of the softmax output P (t = 1|z)
in two classes cases (t = 1, t = 2). When P (t = 1|z)
approaches to one, it changes slowly with z.

3. Methodology

In this section, we first elaborate the motivation and

significance of this paper, then illustrate how to integrate

Poincaré distance into iterative FGSM and how to use met-

ric learning approach to regularize iterative attacks.

3.1. Motivations

There are two key differences between targeted attack

and non-targeted attack. First, targeted attack has a tar-

get, which means, we should find a (local) minimal point

for adversarial examples. While for non-targeted attack, the

data point only needs to avoid being captured by poor local

maxima, and then run away from discriminant boundary.

Second, in targeted attack, we should make sure adversarial

examples are not only less like original class but also more

similar to target class for target model. However, we note

that the existing methods do not effectively use these two

differences, resulting in poor transferability of the targeted

attack.

First, most of the existing methods use cross entropy as

the loss function: ξ(Y, P ) = −
∑

i yi log(pi), where pi is

prediction probability and yi is one hot label. For the tar-

geted attack process, derivative of cross entropy loss with

respect to softmax input vector o can be derived as follow:

∂L

∂oi
= pi − yi. (7)

The proof of Eq. (7) is shown in supplementary material.

As shown in Eq. (7), the gradient is linear with pi, and

when pi is tending to yi, the gradient is monotone decreas-

ing. So in targeted attack, when iteration goes on, the gra-

dient is tending to vanish. In MI-FGSM, it rescales the gra-

dient to unit ℓ1 ball to scale the gradients in different it-

erations to the same magnitude. However, this projection

results in the same contribution of the gradient of each it-

eration to the momentum accumulation, ignoring whether

the gradient is obvious in the real situation. And as shown
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Figure 3: The cosine similarity of two successive pertur-

bations and corresponding target class probability in MI-

FGSM and Poincaré attack. To avoid cherry picking, the

results are averaged over the first 10 images in the public

ImageNet-compatible datasets with 1000 samples.

in Fig. 3, in targeted MI-FGSM, even rescaled, the addi-

tion noise directions still have a very high cosine similarity

in last few iterations due to the accumulation of momen-

tum, which proves the existence of noise curing. This is a

good property for non-targeted attack because it helps the

data point to runs away from discriminant boundary along

fixed direction. However, for targeted attacks when it gets

close to minima of target class, the curing noise cannot ef-

ficiently find the minima, leading to poor performance in

targeted attack. What’s worse, as shown in Fig. 2 when out-

put probability of target class ptar approaches to one, due to

the saturation of softmax, the gradient changes just a little

although softmax input oi changes a lot. In this case, if the

direction of gradient is not proper in the last few iterations,

the errors will be accumulated.

And the last point of our motivations is that, traditional

methods only focus on maximizing the probability of tar-

geted class and ignore whether the adversarial examples are

close to the original labels. As the result shown in Fig. 4,

although these methods work well in white-box setting, the

targeted adversarial examples are hard to separate from cor-

responding true class. At the same time, original labels have

long been ignored. Inspired by this, we want to make use

of original labels to generate more powerful targeted adver-

sarial examples.

3.2. Targeted Attack with Poincaré Distance Metric

Based on above analysis, we aim at improving the

transferability of targeted adversarial examples by using

Poincaré distance metric instead of cross entropy loss.

Note that y, a one hot encoded vector for the labels, has
∑

i yi = 1, which means it is on a unit ℓ1 ball. When y is a

one hot label without smoothing, we have ‖y‖
2
= 1. Then,

the point y is at the edge of the Poincaré ball, which means

the distance from any point to this point is +∞. And in

644



Figure 4: t-SNE visualization of adversarial images from

the same true class which are mistakenly classified to target

classes. In the absence of triplet loss, it is harder to separate

the adversarial examples from corresponding true class.

targeted attack, we are going to reduce the distance between

the logits of model and the target class. As we introduce

in Sec. 2.2, the closer data point gets to the boundary, the

greater the value of the gradient.

But there still exists a serious problem with using

Poincaré distance as measure. The fused logits are not sat-

isfied ‖l(x)‖
2
< 1. So, the logits are normalized by the ℓ1

distance in this paper. And for one hot target label y, the

distance from any point to the target label is +∞, which

makes it hard to optimize. To avoid that, we subtract y from

a small constant ξ = 0.0001 following [16]. The Poincaré

distance metric loss

LPo(x, y) = d(u, v) = arccosh(1+δ(u, v)), (8)

where u = lk(x)/‖lk(x)‖1, v = max{y− ξ, 0}, and l(x) is

fused logits. In this paper, the proposed algorithm generates

adversarial examples by integrating multiple models whose

logits are fused as:

l(x) =
∑K

k=1
wklk(x), (9)

where K is the number of ensemble models, lk(x) indicates

the output logits of the k-th model, and wk is the ensemble

weight of k-th model with wk > 0 (
∑K

k=1
wk = 1). The

same setting has been proved to be effective in [5]. In this

paper, except for special instructions, all the fused logits we

used are the average of those ensemble models.

By using Poincaré metric, the magnitude of gradient

grows if and only if data point gets closer to the target label,

which is near the surface. This means that the gradient is

adaptive, making the direction of the noise more flexible.

3.3. Triplet Loss for Targeted Attack

In targeted attacks, the loss function is often only related

to the target label. However, the generated adversarial ex-

amples may be too close to the original class, so that some

adversarial examples are still classified into the original

class by the target model. Therefore, we hope our method

could reduce the number of correctly classified adversarial

examples and then it may gain more transferable targeted

adversarial examples. Driven by such a belief, triplet loss,

a classical loss function in metric learning is introduced to

targeted attack process. It not only reduces the distance be-

tween the output of adversarial example and the target label,

but also increases the distance between output of adversarial

example and the true label. A typical triplet loss is as:

Ltrip(x
a, xp, xn) = [D(xa, xp)−D(xa, xn) + γ]

+
, (10)

where γ ≥ 0 is a hyperparameter to define margin be-

tween distance metric D(xa, xp) and D(xa, xn), xa, xp, xn

represent anchor, positive and negative examples respec-

tively. The standard triplet loss often uses triplet input

{xa, xp, xn} for loss computation [10, 19]. But this needs

to sample new data, while in targeted attack, one may get

just a few images instead of whole dataset, which makes it

impossible to sample triplet input from original dataset.

In view of this situation, we decide to use the logits of

clean images l(xclean), one-hot target label and true label

ytar, ytrue as the triplet input:

Ltrip(ytar, l(xi), ytrue)

=[D(l(xi), ytar)−D(l(xi), ytrue) + γ]
+
.

(11)

Note that the l(xadv) is not normalized, so we decide to

use the angular distance as distance metric:

D(l(xadv), ytar) = 1−

∣

∣l(xadv) · ytar
∣

∣

‖l(xadv)‖
2
‖ytar‖2

. (12)

The use of angular loss excludes the influence of the norm

on the loss value. Therefore, adding triplet loss term to the

loss function, we get overall loss function:

Lall = LPo(l(x), ytar)+λ ·Ltrip(ytar, l(xi), ytrue). (13)

Based on MI-FGSM, we use input diversity method fol-

lowing [24], and demonstrate our algorithm in Algorithm 1.

4. Experiments

Extensive experiments are conducted to evaluate the per-

formance of the proposed method with some state-of-the-art

adversarial methods on large-scale ImageNet dataset.

4.1. Experimental Setup

Dataset. In this paper we are aiming to generate trans-

ferable targeted adversarial examples on large-scale dataset.

Therefore, we use an ImageNet-compatible dataset1 com-

prised of 1,000 images to conduct experiments. This dataset

is also widely used in adversarial attacks [5, 6].

Networks. As it is less meaningful to attack net-

works that are already poorly performing, we study 9 state-

of-the-art networks on ImageNet, where we consider 6

1https://github.com/tensorflow/cleverhans/tree/master/examples/

nips17 adversarial competition/dataset
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Algorithm 1 : The overall algorithm

Require: K classifier, hyperparameter ǫ, µ, iterations T ,

ensemble weights w = [w1, w2, . . . , wK] and a clean

input image x.

1: Initialize α = ǫ/T ; g0 = 0;xadv
0 = x.

2: for i = 0, 1, . . . , T − 1 do

3: Input augmented xi to K classifier and get logits

lk(xi),

4: Fuse these logits: l(xi) =
∑K

k=1
wklk(xi)

5: Compute loss function Lall through Eq. (13).

6: Obtain the gradient ∇xLall;

7: Update gi+1 by gi+1 = µ · gi +∇xLall;

8: Update xi+1 by applying the sign gradient as

xi+1 = xi − α · sign(gi+1);
9: end for

10: return Targeted adversarial example xadv = xT .

normally trained models, i.e., Inception-v3 (Inc-v3) [21],

Inception-v4 (Inc-v4) [20], Inception-Resnet-v2 (IncRes-

v2), and Resnet-v2-{50,101,152} (Res-{50,101,152}) [9],

and three adversarially trained networks [23], i.e., ens3-adv-

Inception-v3 (Inc-v3ens3), ens4-adv-Inception-v3 (Inc-

v3ens4) and ens-adv-Inception-ResNet-v2 (IncRes-v2ens).

All networks are popular in attack tasks and available2,3.

Parameters. For the parameters of different attackers,

we follow the default settings in [5] with the step size

α = ǫ/T and the total iteration number N = 20. We set

the maximum perturbation of each pixel to be ǫ = 16, which

is still invisible for human observers. For the momentum

term, decay factor µ is set to 1 and for the stochastic input

diversity, and the probability p is set to 0.7 as in [6]. In

translation-invariant methods, we find that the report best

kernel length in [6] is not suitable for targeted attack, result-

ing in worse attack success rate. So, we take kernel length

to be 5 for TI-FGSM. In our method, the weight of triplet

loss λ is set to 0.01 and margin γ is set to 0.007.

Attacking Methods. We employ two state-of-the-

art iteration-based black-box attack methods mentioned in

Sec. 2 to evaluate the adversarial robustness, i.e., DI2-

FGSM [24] and TI-FGSM [6]. We will also show other

methods as MI-FGSM and more experiments in supplemen-

tary material.

4.2. Attacking Naturally Trained Models

Here we present the results when adversarial examples

transfer to other unknown naturally trained models. Our en-

semble method follows the method proposed in [5], which

fuses logit activations of different models. For fairness, we

set ensemble weight w to be 1/K for all methods. Our

2https://github.com/tensorflow/models/tree/master/research/slimmodels
3https://github.com/tensorflow/models/tree/master/research/adv

imagenet models

Figure 5: Our adversarial examples (first row) with ǫ = 16
and their corresponding clean images (second row) and ad-

dition noise (third row). There shows little visible differ-

ence. The plots refer to the first 5 images in the dataset.

adversarial examples are generated on an ensemble of five

networks, and tested on the ensemble network (white-box

setting) and the hold-out network (black-box setting).

The results show both white-box attack success rates and

black-box attack success rates in Table 1, where the top

of the table shows white-box targeted attack success rates

evaluated on ensemble network and the bottom of the ta-

ble shows black-box targeted attack success rates. It can

be observed that under the challenging black-box targeted

setting, our method outperforms both DI2-FGSM and TI-

FGSM with a large margin over 8%. Besides, our method

outperforms DI2-FGSM and TI-FGSM by 7.0% and 5.9%
in white-box setting on average.

We show some adversarial images generated by our

method and their clean counterparts in Fig. 5, which are all

generated by hand-out Inception-v3 setting. It can be seen

that the differences between adversarial images and clean

images are imperceptible to human.

4.3. Attacking Adversarially Trained Models

Adversarial training is known as one of the few defenses

against adversarial attacks that withstands strong attacks.

The transferability of adversarial examples is largely re-

duced on the adversarially trained models. Thus generat-

ing transferable targeted adversarial examples for black-box

adversarially trained models is much more difficult than

normally trained models, and is believed as an open is-

sue [5]. For completeness concern, we perform our method

and other attack methods on adversarially trained models.

To attack the adversarially trained models in a black-box

manner, we include all nine models introduced in Sec. 4.1.

We also use the hand-out setting for black-box targeted at-

tack.

The results are shown in Table 2. It can be seen that

the adversarially trained models are more robust to adver-
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Model Attack -Inc-v3 -Inc-v4 -IncRes-v2 -Res-50 -Res-101 -Res-152 Average

Ensemble

DI2-FGSM 83.2 82.4 84.2 76.8 79.5 80.8 81.2

Po 88.5 88.3 85.1 82.0 82.2 85.2 85.2

Po+Trip 88.7 89.4 88.8 85.2 86.6 90.6 88.2

TI-FGSM 82.1 83.1 82.5 76.5 78.9 79.2 80.4

Po+TI 87.4 85.3 85.7 80.3 82.5 88.1 84.9

Po+TI+Trip 87.3 87.6 86.4 83.3 84.4 89.3 86.3

Hold-out

DI2-FGSM 28.0 26.8 25.9 29.5 31.9 32.6 29.1

Po 37.0 32.6 30.6 36.0 39.7 39.6 35.9

Po+Trip 38.3 36.6 32.0 38.5 41.2 40.6 38.0

TI-FGSM 29.8 27.5 28.8 29.6 33.7 34.4 30.6

Po+TI 39.3 36.3 34.6 37.5 40.8 41.3 38.3

Po+TI+Trip 39.5 36.6 35.1 39.3 43.0 42.9 39.4

Table 1: The success rates (%) of targeted adversarial attacks compare to DI2-FGSM and TI-FGSM. Where “-”, “Po” and

“Trip” indicates the hold-out network, Poincaré distance and triplet loss respectively. The targeted adversarial examples

generated on an ensemble of networks. Result shows the method significantly outperforms all in both ensemble network

(white-box setting) and the hold-out network (black-box setting).

Model Attack Ensemble Hold-out

-Inc-v3ens3

DI2-FGSM 76.0 0.7

Po 88.4 1.1

Po+Trip 90.3 1.2

TI-FGSM 83.1 13.7

Po+TI 89.0 17.7

Po+TI+Trip 91.9 18.1

-Inc-v3ens4

DI2-FGSM 73.1 1.1

Po 86.6 1.5

Po+Trip 87.5 1.5

TI-FGSM 82.0 10.4

Po+TI 90.8 12.9

Po+TI+Trip 92.1 14.6

-IncRes-v2ens

DI2-FGSM 71.8 0.5

Po 87.1 1.0

Po+Trip 86.4 1.2

TI-FGSM 81.5 6.1

Po+TI 91.0 7.7

Po+TI+Trip 91.4 8.4

Table 2: The success rates (%) on adversarially trained

models of targeted adversarial attacks compare to DI2-

FGSM and TI-FGSM against an ensemble of white-box

models and a hold-out black-box target model.

sarial examples. Adversarial examples generated by simply

using input diversity cannot effectively fool the adversari-

ally trained models. TI-FGSM shows its effectiveness by

mitigating the effect of different discriminative regions be-

tween models and the adversarially trained models. But our

method still outperforms all the other methods. And this re-

sult shows fooling adversarially trained models is possible.
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Figure 6: Gradient value over iterations. To avoid cherry

picking, results are averaged on the first 10 images in the

public ImageNet-compatible datasets with 1000 samples.

4.4. Ablation Study

In this section, we conduct a series of ablation experi-

ments to study the impact of different terms.

Influence of Poincaré metric. As we have shown in

Eq. (7), the gradient associated with logits output by mod-

els using cross entropy loss suffers from gradient decrease

when the output target class probability ptar is tending to 1.

Now we’ll show our conclusion made from Eq. (7) can be

extended to the real situation. The gradient associated with

input images is decreasing when iteration continues.

Since the gradient values of Poincaré distance and cross-

entropy have a gap, we rescale all the gradient by dividing

‖g0‖1, where g0 is the gradient of first iteration. Besides, by

doing that, the changes of gradient in different iterations are

more intuitive to visualize. We use all six normally trained

models to produce the gradient, and in order to avoid cherry
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Figure 7: Comparison on Tar, unTar and correct percentage, where “CE”, “Po” and “PoTrip” stand for using cross-entropy,

Poincaré distance and both Poincaré distance and triplet loss as loss function respectively. Test on the hand-out network.

picking, the first 10 images are used in this experiment. The

ℓ1 distance ‖gi‖1 of rescaled gradient is shown as its gradi-

ent value.

As shown in Fig. 6, the gradient of models using cross

entropy is decreasing while the gradient of our method is

mildly growing, which makes the update direction focus

more on current gradient direction when the output is tend-

ing to target label. As we all know, momentum gradient

descent is able to escape local minimum due to historical

accumulation of gradient. What follows is that the similar-

ity of two successive perturbations is growing as the itera-

tion increases, causing noise curing. As shown in Fig. 3, by

using Poincaré distance, two successive perturbations are

less similar, and then, the adversarial example updating di-

rection is steeper than using cross-entropy one.

Influence of triplet loss. In this experiment, we divide

the adversarial examples into three parts, target transfer suc-

cess samples (Tar), non-target transfer success samples (un-

Tar) and correctly classified samples (correct). The percent-

age of correctly classified examples suggests whether the

adversarial examples are away from true class, while the

percentage of target transfer success samples suggests tar-

get examples’ transferability. We test both on DI2 and TI

setting. All the settings are the same with Sec. 4.2.

As shown in Fig. 7, though Poincaré attack success-

fully finds the steeper noise addition direction and generates

more transfer targeted adversarial samples, it also brings

a drawback that the target class minima may not be far

from the discriminant boundary of true class, which leads

to more adversarial examples being correctly classified by

target model. But with the use of triplet loss, the adversarial

examples are away from the true class and it also makes the

adversarial examples more transferable.

5. Conclusion

In this paper, we take a different perspective of targeted

attack rather than treating targeted attack as an extension of

non-targeted attack. Based on the special properties that we

discover in targeted attack, a novel method for transferable

targeted attack is proposed by using Poincaré distance and

triplet loss in this paper. Specifically, our method avoids the

noise curing by using high capacity Poincaré space as met-

ric space, and additional true label information is effectively

exploited by metric learning based approach. Compared

with traditional attacks, the extensive results on ImageNet

show that the proposed attack method achieves significantly

higher success rates for both black-box models and white-

box models in targeted attack.
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