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Abstract

Guidewires are thin wires used in coronary angioplasty

to guide different tools to access and repair the obstructed

artery. The whole procedure is monitored using fluoro-

scopic (real-time X-ray) images. Due to the guidewire be-

ing thin in the low quality fluoroscopic images, it is usually

poorly visible. The poor quality of the X-ray images makes

the guidewire detection a challenging problem in image-

guided interventions. Localizing the guidewire could help

in enhancing its visibility and for other automatic proce-

dures. Guidewire localization methods usually contain a

first step of computing a pixelwise guidewire response map

on the entire image. In this paper, we present a steer-

able Convolutional Neural Network (CNN), which is a Fully

Convolutional Neural Network (FCNN) that can detect ob-

jects rotated by an arbitrary 2D angle, without being ro-

tation invariant. In fact, the steerable CNN has an angle

parameter that can be changed to make it sensitive to ob-

jects rotated by that angle. We present an application of

this idea to detecting the guidewire pixels, and compare

it with an FCNN trained to be invariant to the guidewire

orientation. Results reveal that the proposed method is a

good choice, outperforming some popular filter-based and

learning-based approaches such as Frangi Filter, Spherical

Quadrature Filter, FCNN and a state of the art trained clas-

sifier based on hand-crafted feature.

1. Introduction

Convolutional Neural Networks(CNNs) are widely used

and have an impressive performance in detecting and classi-

fying objects. However, the CNNs performance is sensitive

to variations in rotation, position or scaling of the objects

to be detected. In [14], capsules were proposed as accu-

rate generative models to handle such variations and ob-

tain more accurate representations, with promising results.

However, each capsule is trained to handle only a small

range of such variations, hence the need for multiple cap-

sules to handle the same object.

In this paper we propose a steerable CNN that can detect

an object rotated by an arbitrary angle without being rota-

tion invariant. The proposed model is discriminative like a

regular CNN, but it has a latent parameter representing the

object’s 2D orientation. For any value of this parameter,

the steerable CNN will be sensitive to detect only objects

having that orientation.

We apply the steerable CNN to detect the guidewire in

fluoroscopy (real-time X-ray) images. The guidewire is a

thin wire used in coronary angioplasty interventions, which

are visualized using fluoroscopic images. The fluoroscopic

images are usually low-dose in order to limit the amount of

radiation received by the patient. Under these conditions,

the guidewire is a thin and poorly visible wire-like struc-

ture with different orientations, as shown in Figure 1. In

this application, knowing the orientation of the guidewire is

important for its detection, but the scaling is not important

since all guidewires are one or two pixels wide.

In order to find the entire guidewire, a low level measure-

ment that shows how the guidewire passes through any pixel

of the image should be obtained first. More details about

this procedure will be explained in Section 2. There are

two main approaches to obtain the pixelwise detection map,

filter-based approaches and learning-based approaches. For

the filter-based approach, one applies a predefined filter

(Frangi Filter, Steerable Filters, Spherical Quadrature Fil-

ters) to obtain a filtered response map. The learning-based

approach is to find a per-pixel probability map by training a

classifier with some Haar or hand-crafted features.

The best performing methods are trained on rotation-

aligned samples and search for the maximum response ro-

tation angle at detection time. This is done by rotating the

image by a number of angles and applying the classifier to

the rotated images.

Recently, a CNN (Convolutional Neural Network) was

trained for this purpose, which learned its own features us-

ing the training data and obtained an invariant model that

can detect guidewires at any orientation.

In this paper, we are interested in seeing what is to gain

by training a CNN that is tuned to the guidewire orientation.
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Figure 1. Two frames of the guidewire under X-ray images(top

two images) and the X-ray frames of the guidewire with annota-

tions(bottom two images)

However, instead of training a CNN on rotation aligned

samples, which would require us to apply it to rotated im-

ages for detection, we introduce a steerable CNN that can

be trained on the original samples. This steerable CNN has

a steering parameter θ that can be used to make it sensitive

to the parts of the guidewire that have orientation θ. This

way, the steerable CNN eliminates the need to rotate the

image by many angles at detection time. This paper brings

three contributions:

- It introduces a method for training steerable filters [13]

by loss minimization. The steerable filters are rotated filters

that can be obtained from a basis using an arbitrary rota-

tion parameter. They were introduced in [13], but they were

defined by an equation instead of being trainable.

- It introduces a model for a steerable CNN composed of

a number of layers consisting of multiple steerable filters,

and a method for training the steerable CNN from training

examples.

- It presents an application to guidewire detection in

fluoroscopic images. Our experiments indicate that the

steerable CNN outperforms the regular CNN and the other

guidewire detection methods such as the Frangi Filter and a

trained classifier with Haar or hand-crafted features.

1.1. Related Work

Filter-based approaches include the Frangi Filter [12],

which is based on the sorted eigenvalues (λ1, λ2) of the

Hessian matrix. It is widely applied to vascular image anal-

ysis. The sorted eigenvalues of the Hessian matrix were

used to extract and track the guidewire through a spline op-

timization in [1]. [7] used the Frangi Filter as the data term

and fitted the guidewire with B-spline model in clinical X-

ray videos. The beauty of the filter-based approaches con-

sists in their simplicity and interpretability. [4] proposed

a method that votes on many candidate curves through all

pixels, and the method was compared with the Frangi Fil-

ter. Results showed that the Frangi Filter was inferior to the

path voting approach.

Steerable Filters have been introduced in [13] for detecting

edges and ridges in images. A more recent and powerful

type of steerable filters are the Spherical Quadrature Filters

(SQF) [19] that were used by [17] for guidewire detection.

Learning-based approaches include [5, 2, 20, 26, 15, 22,

8]. In [2], the pixel detection step was trained with exam-

ples that were rotated for alignment, using a Probabilistic

Boosting Tree (PBT) [24] and Haar features. The trained

classifier was applied to rotated images by many angles to

obtain the guidewire detection result. A user-constrained

algorithm with PBT was proposed in [20] to localize the

guidewire. The PBT and hand-crafted features were also

employed to track the guidewire in [26] and detecting ves-

sels in [8]. [5] introduced a framework using Boosting and

Haar features for catheter detection, and the method was

compared with the Frangi Filter. The tracking error results

obtained by the learning-based approach were smaller than

the results of the filter-based approach. A boosted classifier

was used to obtain the low-level detection of the guidewire

in [15]. It was trained on ridge and edge features. [9] de-

tected the catheter and vascular structures using a Random

Forest classifier of curvilinear structures trained on hand-

crafted features. A method used the Region Proposal Net-

work to detect the guidewire was presented in [25]. Differ-

ent from our method which is aimed at obtaining a pixel-

wise detection map using CNNs, their work is to place

bounding boxes around the guidewires.

A Fully Convolutional Neural Network was trained in

[17] for guidewire detection. The CNN was invariant to the

guidewire orientation, and difficulties in training were re-

ported. In contrast, the steerable CNN is sensitive to the

guidewire orientation, alleviating some of the training diffi-

culties and obtaining better detection results.

A steerable CNN theory was presented in [11]. The theory

is very generic and only discusses rotations by multiples of

90◦, lacking any specific details on how to apply it for steer-

ing by arbitrary angles. Moreover, the theory is directed

towards invariant models, whereas our steerable CNN ob-

tains models tuned to any orientation, in the spirit of the

steerable filters [13]. Furthermore, the rotation angle can be

estimated in our method as the angle of maximal response,

together with its uncertainty.

Steerable Filter CNNs were developed in [27]. The SFC-

NNs are both translational and rotational equivariant. The

SFCNNs learn the weights of a set of predefined basis of

equivariant steerable filters, while our formulation learns
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Figure 2. Diagram of the steerable CNN, steered (tuned) to an angle θ.

a basis that is not necessarily equivariant, but which is

made close to equivariant by using a special loss function.

Forthermore, the rotation and steering occurs only on the

first layer for the SFCNN and is followed by several group-

convolutional layers[10]. In our method, each layer is steer-

able by the same angle θ, making the entire CNN steerable.

Capsules were introduced in [14] and improved in [23].

The capsules represent object detectors together with pre-

cise values of the deformations and viewing parameters spe-

cific to each object instance. Each capsule is sensitive to a

small range of rotation angles and many capsules are needed

to cover the entire rotation range. In contrast, our steer-

able CNN is a single detector that can be rotated to an ar-

bitrary angle, thus it achieves the rotation goal of multiple

capsules.

2. The Steerable CNN

The steerable CNN consists of a number of steerable

convolutional layers, as illustrated in Figure 2. The steer-

able convolution filters are described next.

2.1. The Trainable Steerable Filters

The steerable filters are oriented filters f(θ) that are ob-

tained as a linear combination from a basis B, and can be

rotated to any angle θ by a simple re-weighting of the basis

as illustrated in Figure 3.

We are interested in deriving such a steerable represen-

tation for a filter f . For that, we start with the steerable filter

[13] of order 2, which for an angle θ is defined as

Gθ
2
= B · a(θ) (1)

where a(θ) = (cos2 θ,−2 cos θ sin θ, sin2 θ)T , B = G
σ4 ·

(x2 − σ2,−xy, y2 − σ2), and G is the 2-D Gaussian with

variance σ2. This inspires us to represent a filter as

f(θ) = B · a(θ) (2)

with some unknown p2 × (d+1) matrix B that needs to be

learned and

a(θ) = (cosd θ, cosd−1 θ sin θ, ..., sind θ)T . (3)

However, higher powers d result in numerical instability,

and since the even powers of the sin and cos are related

to the sin and cos of the angle multiples, we will use an

alternate steerable representation

f(θ) = B ·w(θ) (4)

with

w(θ) = [1, cos(2θ), sin(2θ), ..., cos(2dθ), sin(2dθ)]T ,
(5)

where d controls the number of basis elements. We will

denote the dimension 2d + 1 of the basis B as the rank of

the steerable filter.

Figure 3. Diagram of a trainable steerable convolution filter.

Training steerable filters. Suppose we have n training ex-

amples (xi, yi), i = 1, ..., n where xi ∈ R
p2

is the extracted

patch of size p × p. The positives are patch with center on

the guidewire, and the negatives have center at some dis-

tance from the guidewire. The label of the example is yi,
with yi = −1 for negative patches and yi = k ∈ {1, ...,K}
for positive patches where the tangent angle is in the interval

[θk − π
2K

, θk + π
2K

), where θk = kπ
K

.
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Figure 4. A trained steerable filter example. First row: trained filter basis B. Second and third row: obtained steered filters for different

angles θ.

We can use the foreground-background (FB) loss

L(B) =
1

n−1

∑

i,yi=−1

K
∑

k=1

ℓ(−x
T
iBw(θk))

+

K
∑

k=1

1

nk

∑

i,yi=k

ℓ(xT
iBw(θk))

(6)

for training the steerable filters, where ℓ(u) is a per example

loss function such as the Lorenz loss [3]

ℓ(u) = log(1 +ReLU(1− u)2), (7)

or the Focal loss [18]

ℓ(u) = −αt(1− pt(u))
γ log(pt(u)). (8)

where

pt(u) =

{

σ(u), if y = 1

1− σ(u), if y = −1
, (9)

where σ(u) is the sigmoid function

σ(u) =
1

1 + exp(−u)
. (10)

and αt = α = 0.25 for class 1, γ = 2.

Examples of a trained B with the Lorenz loss (7) for

d = 5 and some steered filters obtained from this B are

shown in Figure 4.

Observe that because of linearity, the convolution of an

image I with the steered filter f(θ) is a linear combination

with weight w(θ) of the convolutions with the filters from

B,

f(θ) ∗ I = (B ·w(θ)) ∗ I = (B ∗ I) ·w(θ). (11)

2.2. The Steerable CNN

The steerable CNN, illustrated in Figure 2, consists of a

number of layers containing multiple steerable filters.

If the basis of each steerable filter contains r filters, then

a layer with k steerable filters will contain r · k filters in

total, grouped in k groups of r filters. The response maps

of that layer for any angle θ can be obtained by convolution

with all the rk filters, followed by linearly combining the

kr responses corresponding to each group using the weight

vector w(θ) from Eq. (5).

2.3. Training the Steerable CNN

Suppose we are given n training examples

(xi, yi, αi), i = 1, ..., n where xi ∈ R
p2

is the patch

of size p × p either with center on the guidewire (a

positive example) or at some distance from the guidewire

(a negative), yi ∈ {−1, 1} is the label, and αi ∈ [0, π)
is the orientation. The orientation at the center location

of each patch is obtained by a Spherical Quadrature Filter

(SQF) [19]. The SQF is also used as a preprocessing step

for detection, so the training examples are extracted only

from locations with high SQF responses. This way the

angle information αi for each training patch has a reliable

value. Alternatively, the steerable CNN can be applied for

a number of discrete angles and the maximum response can

be used as detection map, as illustrated in Figure 5.

Similar to section 2.1, the range [0, π) is discretized

(modulo π) into a number of equally spaced angle bins bj =
[θj −

π
2K

, θj +
π
2K

), j ∈ {1, ...,K} , where θj =
jπ
K

(in this

paper we used K = 30 angle bins). Then the orientation an-

gles αi of the training examples are converted to angle bin

indices ai ∈ {1, ...,K} and the examples with the same an-

gle index j are collected into the set Sj = {(xi, yi, ai), ai =
j}. For simplicity, we assume that all angles are equally

represented, so |Sj | = |Sk|, ∀j, k ∈ {1, ...,K}.

Training is done using the Adam optimizer [16]. For

each minibatch, an angle index j ∈ {1, ...,K} is chosen

and only examples with ai = j are selected, so they have

approximately the same angle θj , the center of the bin bj .

In this case, the examples share the same weight vector

wj = w(θj) from Eq (5) and the network is equivalent to

a CNN where each convolution layer is followed by a lin-

ear layer that takes each group of k responses and combines

them linearly with weights wj . One epoch of the training is

described in Algorithm 1 below. An example of the trained

basis B of the first layer in the rank 11 4-layer steerable

CNN is show in Figure 6.

2.4. Implementation Details

CNN architecture. The Steerable CNN for this task con-

sists of 4 steerable convolutional layers. The third steerable

convolutional layer is followed by ReLU activation, and the
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Figure 5. Examples of one frame Steerable CNN detection results: input image, response map for angle index j = 5, 10, 15, and final

detection result.

Algorithm 1 One epoch of Steerable CNN Training

Input: Training patches {(xi, yi, ai)}
N
i=1

, minibatch size

m
Output: Trained steerable CNN.

1: Set N batch = ⌊|Sj |/m⌋.

2: for j = 1 to K do

3: Shuffle the set Sj .

4: end for

5: for b = 1 to N batch do

6: for j = 1 to K do

7: Set the steerable CNN angle θ = αj , so w(θ) =
wj

8: Use the b-th minibatch from Sj to update the

weights by backpropagation.

9: end for

10: end for

Figure 6. Trained basis B for the first layer of the rank 11 steerable

CNN.

last one returns the response.

The steerable filters are of size 7 × 7, with their basis

containing r = 7 filters or r = 11 filters. The first layer has

10 steerable filters (thus the layer has 70 or 110 total filters),

the second and the third one have 20 steerable filters and

the last one has 1 steerable filter. The receptive field of the

SCNN is of size 25× 25.

We also implemented a Fully Convolutional Network

(FCNN) for comparison. The network consist of 4 convo-

lutional layers, the third one is followed by ReLU, and the

last convolutional layer returns a guidewire/non-guidewire

response.

The first convolutional layer for a 25× 25 receptive field

of size contains 16 filters size 7 × 7, the next two convolu-

tional layers contain 32 7 × 7 filters, and the last convolu-

tional layer contains one 7× 7 filter.

For both the FCNN and the steerable CNN we used the

Pytorch[21] Soft Margin Loss

ℓ(u, y) =
1

m

∑

i

log(1 + exp(−yiui)) (12)

to guide the training, where m is the minibatch size.

We also used the Focal loss [18] in Eq 8, since it can deal

with the class imbalance.

Training details. The weights of convolutional layers were

initialized from the normal distribution with standard devi-

ation 0.01. For the Steerable CNN of rank 7 and rank 11,

we started with a learning rate of 3 · 10−6 and a mini-batch

of 32. For training the FCNN, we started with learning rate

10−5 and mini-batch 32. After every 50 epochs the learning

rate was multiplied by 0.8 and the minibatch was doubled.

The training was done for a total of 300 epochs.

3. Experiments

Dataset. The evaluation results are conducted on 75 flu-

oroscopic sequences obtained during coronary angioplasty

intervention. The sequences contain a total of 826 frames

of various sizes and aspect ratios in the range [512, 1024]×
[512, 960]. In the 75 fluoroscopic sequences, 39 sequences

are used for training, with 424 frames in total, and the re-

maining 36 sequences with 402 frames are used for testing.

The guidewire annotations of each frame were obtained us-

ing B-splines. An examples of B-spline annotation is shown

in Figure 7.

SQF NMS Alignment In [17], the authors observed that

the guidewire annotation is imprecise because the wire is
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Figure 7. Example of input frame (left), and its B-spline annotation

(right).

so thin and barely visible. For that reason we decided to

use the Cauchy SQF filter followed by non-maximum sup-

pression in the style of the Canny edge detection [6] as a

preprocessing step.

Training examples. The size of the training patches are of

size 25× 25 for both the positive and negative examples.

For the training set without SQF NMS alignment we ex-

tracted positive patches centered on the guidewire, and neg-

ative patches at a distance between 8 and 30 pixels from the

guidewire, subsampled to 5%.

The SQF NMS aligned training examples were extracted

from locations that were detected by the SQF with NMS de-

scribed above. The positives patches were centered at dis-

tance at most 2 from the guidewire annotation and the neg-

atives at distance at least 5, subsampled to 5%. The training

set without SQF NMS alignment has 279,000 positives and

578,000 negatives. The training set with SQF NMS align-

ment has 193,000 positives and 535,000 negatives.

3.1. Angle estimation Experiments

In a first experiment, we evaluate the accuracy of differ-

ent methods in estimating the guidewire angle. First, we

show in Figure 8 the average responses for different meth-

ods on positive patches with true angle 60 degrees. We see

that all methods have a peak at 60 degrees, and some other

smaller peaks.

The evaluation of the Frangi filter, Cauchy SQF, Trained

steerable filters of ranks 5-11 trained with different losses

and the rank 11 steerable CNN on the training and test pos-

itive patches is shown in Table 1. We see that the trained

steerable filters have better accuracy than the predefined

steerable filters. Also, the steerable filters trained with

NMS-aligned patches have a much better accuracy than

those trained on non-NMS aligned patches.

3.2. Guidewire Detection Experiments

We present an evaluation of the pixelwise guidewire de-

tection for both filter-based methods and learning based

methods. As filter-based approaches we evaluated the pop-

ular Frangi Filter [12], as well as the Spherical Quadrature

Figure 8. Average responses for test patches with angle 60
◦.

Angle Error

Method Train Test

Frangi filter [12] 13.16 13.69

SQF [19] Cauchy, f0 = 1/6, rk. 11 7.58 7.13

Steerable filter (6), rk. 5 8.89 9.72

Steerable filter (6), rk. 7 4.49 5.20

Steerable filter (6), rk. 9 4.85 5.69

Steerable filter (6), rk. 11 5.12 6.02

Steerable filter (6), rk. 11 w/ NMS 2.14 2.42

Steerable filter (6) Focal[18], rk. 11 6.62 7.51

Steerable filter (6), Focal [18], rk. 11 w/NMS 2.63 2.78

Steerable CNN, rk. 11 w/ NMS (Focal [18]) 4.68 6.70
Table 1. Average angle estimation error (degrees) of different

methods on 25× 25 patches.

Filters (SQF) [19] with different types and ranks (dimension

of the basis), and we show the performance of the best rank

with different isometric filters. As learning based meth-

ods we compare the steerable CNN, the FCNN, and trained

25 × 25 steerable filters with the Lorenz loss[3] and Fo-

cal loss[18], which can be considered as using only the last

layer of the steerable CNN, with a larger filter size. We

also implemented [8] using about 100,000 oriented Haar

features and PBT [24], and trained it on our training set

without SQF NMS alignment.

The guidewire detection examples are shown in Figures

9 (one frame from the train set) and 10 (one frame from the

test set). A threshold was chosen to obtain the results with

an average detection rate of 90% from the response map.

Note that the input image shown in Figure 10 is noisier than

the one from Figure 9.

The detection performance was evaluated on the training

and test sets. The detected guidewire pixels were those that

had a corresponding response above the detection thresh-

old at a distance of at most 2 pixels. A response above

the detection threshold was considered a false positive if it
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Figure 9. Guidewire detection training examples. First row: input image, Frangi filter [12], Cauchy SQF [19] of rank 11, trained Steerable

filters(Focal loss[18] w/ NMS) rank 11. Second row: PBT with Haar features[2, 20, 26, 8], FCNN w/ NMS-aligned training examples,

Steerable CNN of rank 11 w/o NMS-aligned training examples, Steerable CNN of rank 11(Focal loss[18]).

Det. rate FP rate # of trained

Method Train Test Train Test parameters

Frangi Filter [12] 90.44 90.44 26.99 24.19 -

SQF [19] Gauss deriv, f0=1/2, rk. 7 90.00 90.08 6.92 7.04 -

SQF [19] Cauchy, f0 = 1/6, rank 7 89.98 90.00 5.98 6.35 -

SQF [19] log-Gabor, f0 = 1/6, rk. 11 90.04 90.03 5.32 5.21 -

SQF [19] Cauchy, f0 = 1/6, rk. 11 90.13 90.02 5.12 5.87 -

SQF [19] Cauchy, f0 = 1/6, rk. 11 w/ SQF NMS 90.03 90.00 4.19 3.93 -

Trained equivariant SFCNN Filters [27] w/ SQF NMS 89.99 90.00 6.31 6.46 0.12k

Trained rank 11 steerable filter, FB loss (6) + Lorenz loss[3] w/ NMS 90.09 89.98 2.48 2.94 6.9k

Trained rank 11 steerable filter, FB loss (6) + Focal loss[18] w/ NMS 90.01 90.11 2.91 3.44 6.9k

PBT and Haar features[2, 20, 26, 8] 90.07 90.19 3.87 3.98 8.4k

2-layer Steerable CNN rank 11, FB loss (6) + Lorenz loss[3] w/ NMS 89.78 89.96 2.17 2.89 18.7k

FCNN with NMS-aligned training examples 90.07 90.08 1.43 2.65 78k

4-layer Steerable CNN rank 7 w/ SQF NMS (Soft Margin loss (12)) 90.08 90.02 0.94 2.01 217k

4-layer Steerable CNN rank 11 w/ SQF NMS (Soft Margin loss (12)) 90.05 90.05 0.78 1.90 341k

4-layer Steerable CNN rank 11 w/ SQF NMS (Focal loss [18]) 90.18 90.10 0.76 1.82 341k

FCNN w/o NMS-aligned training examples 90.09 90.01 3.72 8.28 78k

4-layer Steerable CNN rank 7 w/o SQF NMS (Soft Margin loss (12)) 89.96 90.01 3.34 6.69 217k

4-layer Steerable CNN rank 11 w/o SQF NMS (Soft Margin loss (12)) 90.01 90.07 2.95 5.94 341k

4-layer Steerable CNN rank 11 w/o SQF NMS (Focal loss [18]) 90.07 90.01 2.92 6.08 341k

Table 2. Evaluation of different guidewire detection approaches.

was at distance of at least 3 pixels from the guidewires and

catheters.

In Table 2 are shown the average per-image detection

rates and false positive rates for the different methods eval-

uated. The steerable CNN obtains the lowest false posi-

tive rate on both the training and test set. It outperforms

all the other methods. Among the filter-based methods, the

SQF with a Cauchy filter of rank 11 with NMS performs the

best, but it is outperformed by all the training based meth-

ods. The FCNN with NMS training examples has a very

small training error but it does not generalize as well as the

steerable CNN.

Ablation study. We also show in Table 2 the influence of

training the FCNN with the NMS-based training examples

vs examples extracted directly based on the annotation. We

see that both training and test FP rate are lower using the
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Figure 10. Guidewire detection test examples. First row: input image, Frangi filter [12], Cauchy SQF [19] of rank 11, trained Steerable

filters(Focal loss[18] w/ NMS) rank 11. Second row: PBT with Haar features[2, 20, 26, 8], FCNN w/ NMS-aligned training examples,

Steerable CNN of rank 11 w/o NMS-aligned training examples, Steerable CNN of rank 11(Focal loss[18]).

NMS-aligned examples.

To see whether the SQF are useful in screening the im-

age and proposing the angle for the steerable CNN, we also

evaluated in Table 2 the trained steerable CNN by directly

applying it to the whole image and obtaining the maximum

response from 30 discrete angles in the range [0, π] (Steer-

able CNN w/o SQF NMS). Again we see that the SQF-

based screening is useful, reducing the test FP rate from

6.08 to 1.82.

4. Conclusion

In this paper, we introduced a simple steerable CNN that

can be tuned using a parameter θ to be sensitive to objects

aligned to any orientation θ, instead of being rotation invari-

ant.

We presented the mathematical formulation of the train-

able steerable filters and the steerable CNN, and how to

train it using examples at any orientation, without rotating

them for alignment. As an application, we used the steer-

able CNN to detect guidewire pixels in fluoroscopic images,

where a regular CNN overfits because the wire is very thin

and covers only a small percentage of the receptive field.

We reported the difficulties we encountered while train-

ing the steerable or the regular CNN due to the fact that

the guidewire is thin and noisy, and imprecision in anno-

tation makes the training more difficult. To address these

issues, we explained how to obtain better aligned training

patches using the Spherical Quadrature Filters [19] and non-

maximal suppression.

Experiments reveal that the Steerable Convolutional

Neural Network trained on SQF NMS-aligned data per-

formed the best. We also observed that the learning based

methods outperform the filter-based methods such as the

Frangi filter [12] and the Spherical Quadrature Filters [19].

For the future study, we plan to employ the steerable

CNN for automatic guidewire localization and for retina

vessel detection. The guidewire localization is the higher-

level process of finding in the image the entire guidewire

as a curve. It will use the guidewire detection response

as a data term to guide the search in the high dimensional

space of smooth curves for the most likely guidewire lo-

cation. The retina vessel detection problem has the added

challenge that the vessel can have a wide range of widths,

and a classifier should accommodate them in some way. It

would be interesting to see whether a steerable CNN could

be designed to be steered in both the orientation and the

width of the vessel that needs to be detected.
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