Visual-Semantic Matching by Exploring High-Order Attention and Distraction

Yongzhi Li¹, Duo Zhang², Yadong Mu³∗
¹Center for Data Science, ²EECS, ³Wangxuan Institute of Computer Technology, Peking University
{yongzhili,zhduodyx,myd}@pku.edu.cn

Abstract

Cross-modality semantic matching is a vital task in computer vision and has attracted increasing attention in recent years. Existing methods mainly explore object-based alignment between image objects and text words. In this work, we address this task from two previously-ignored aspects: high-order semantic information (e.g., object-predicate-subject triplet, object-attribute pair) and visual distraction (i.e., despite the high relevance to textual query, images may also contain many prominent distracting objects or visual relations). Specifically, we build scene graphs for both visual and textual modalities. Our technical contributions are two-folds: firstly, we formulate the visual-semantic matching task as an attention-driven cross-modality scene graph matching problem. Graph convolutional networks (GCNs) are used to extract high-order information from two scene graphs. A novel cross-graph attention mechanism is proposed to contextually reweigh graph elements and calculate the inter-graph similarity; Secondly, some top-ranked samples are indeed false matching due to the co-occurrence of both highly-relevant and distracting information. We devise an information-theoretic measure for estimating semantic distraction and re-ranking the initial retrieval results. Comprehensive experiments and ablation studies on two large public datasets (MS-COCO and Flickr30K) demonstrate the superiority of the proposed method and the effectiveness of both high-order attention and distraction.

1. Introduction

The rapid growth of various multimedia data such as text, images, and videos has brought great difficulties to users in accurate and effective search nowadays. Among them, cross-modal search between vision and language is of great importance in practical applications. Therefore, cross-modal retrieval between images and text has attracted plenty of attention from researchers in recent years [43]. This paper focuses on cross-modal retrieval of text and images with complex semantics. For this task, how to effectively eliminate the huge gap between data of two different modalities is the key to solve the problem.

Thanks to advances in computer vision and natural language processing, some early developments [17, 5] have proposed to use pre-trained neural networks that encode multi-modality data into feature vectors, then project them into a common feature space and measure the similarity by computing the distance between their representations. Although such methods are capable of capturing global semantic information, they lack accurate modeling of high-level semantic information and are not clearly interpretable. Some modern methods have attempted to perform some more granular semantic learning to enhance the feature representation of data. For example, Karpathy et al. [14] aligned textual words and image regions for image captioning. The work in [10, 35] proposed using CNN to extract semantic concepts from pictures to enhance the representation of global features. Kuang et al. [20] introduced an attention mechanism to identify important parts of text and images.

A majority of these methods are based on first-order
information like semantic concepts or objects. However, high-order information such as the relationships between objects and object attributes, are rarely explored in current literatures. When facing structural queries, these methods are often frustrated by ambiguous false matching. Some examples are provided in Figure 1. In the first example, even all key objects and scene concepts (man, horse and street) relevant to the querying sentence ("a man riding on a horse on a street") are precisely detected, one would still be unable to distinguish some confusing samples without considering high-order information in the query (e.g., triplet relation person-ride-horse in this example). We regard object-attribute pair as another kind of informative high-order information. An example is found in the second row of Figure 1, which illustrates the importance of the color attribute.

To address this issue, we adopt scene graphs [13, 12] for representing highly-structural visual or textual semantics, and formulate visual-semantic matching as a heterogeneous graph matching problem. Figure 2 shows two exemplar scene graphs that encapsulate various pairwise or triple relationships, respectively. We propose to use Graph Convolutional Networks (GCNs) [16, 46] to contextualize each individual graph node. Both cross-graph attention and intra-graph self-attention mechanisms are developed to reweight each graph element and calculate the similarity between querying and reference scene graphs.

Additionally, we argue that the issue of semantic distraction still remains unexplored in the previous literatures. In specific, most of existing methods primarily concern the relevance between query and reference samples. However, whether matched semantics dominate a reference image or text is not considered. An example is provided in the third row of Figure 1. The rightmost image is highly-ranked since it contains all key words in the query, yet shall be actually classified as false matching given the co-occurrence of vast distracting contents (e.g., the children, the pedestrians etc.). We are thus inspired to propose an information-theoretic metric to explicitly quantify visual distraction, which is used to re-rank the initial retrieved top matchings.

Our contributions can be summarized as below:

1) We aim to effectively explore high-order information in the visual-semantic matching task, particularly the object-predicate-subject and object-attribute types. Technically, GCNs are incorporated into our model for encoding above-mentioned high-order information. Multiple attention mechanisms are tailored for computing the similarity between querying and reference scene graphs.

2) To our best knowledge, we are the first to explicitly explore the visual distraction problem in structural visual-semantic matching. Informational entropy is novelty adapted to gauge the dominance of distracting factors in a reference image or text.

Figure 2. An image-text pair and their corresponding scene graphs. Graphical shapes represent different types of graph nodes.

2. Related Work

Embedding based methods. A widely used framework is to map the semantic embedding vectors of image and text into a common space and calculate the similarities according to the cosine or euclidean distance [37, 40, 18, 21, 4, 30, 3, 17, 7]. Kiros et al. [17] first used convolutional neural network (CNN) and recurrent neural network (RNN) to encode image and sentence features, and learned a cross-modal representation from triplet ranking loss. Gu et al. [7] proposed using generative objective to enhance the fine-grained feature representations. Zheng et al. [51] suggested using a dual-task to embed the semantic features more discriminatively in the shared space. [39] introduced two-branch embeddings and proposed novel neighborhood constraints.

Semantic knowledge based methods. Several modern works explored the alignment of visual objects and textual words, as found in [31, 11, 29, 13]. The pioneering work [4-14] adopted an R-CNN [6] model to detect local regions from an image and aligned them with words in the sentence. Huang et al. [10] proposed learning semantics and orders to improve the image representations. A context-modulated attention scheme was developed in [9] to selectively attend instances appearing in both the image and sentence. Furthermore, Lee et al. proposed a method in [20], which used stacked cross attention to match two modalities in a finer-grained model. Some other research [38, 35] adopted external knowledge to further enhance the model capability.

Graph matching. Similarity-based graph search or matching has been a long-standing research task in a number of communities including data mining [45, 2, 28, 23] and natural language processing [44, 27]. Regarding the domain of computer vision, graph matching has been used for video re-identification [47] and 3D model retrieval [26] etc. With the development of graph convolutional networks (GCNs) [16] in recent years, the authors of [49] proposed a GMN network to align key-points in different images. [41] furthermore suggested an embedding based cross-graph affinity method to model the graph structure.
3. Approach

The image-text (or referred as visual-semantic) matching problem is defined as follows: given an image-sentence pair, our model aims to calculate a similarity score between them, such that accurate cross-modality search is feasible.

As shown in Figure 3, our model utilize scene graphs to represent visual or textual semantic modalities. The extracted scene graphs first go through two graph convolutional networks (GCNs) to obtain contextualized embeddings. Intuitively, the importance of an object or relation in the reference data. Such asymmetry significantly affects the design of optimization objective, as later described in Section 3.7 and experiments.

3.1. Text Encoding and Sentence Scene Graph

To acquire the representation of a given sentence S, a bi-directional LSTM [8] is adopted to model the long-range context information. For each word in S, its index first passes an embedding layer to get a word embedding vector, which is then fed into the bi-LSTM to get a temporally-contextual representation h_i. The output of the last step h_{10} is used to represent the whole sentence.

1 There are two settings: image-to-text or text-to-image matching. In each setting, one modality serves as the query and the other plays the role of reference data. Such asymmetry significantly affects the design of optimization objective, as later described in Section 3.7 and experiments.

3.2. Image Encoding and Scene Graph

Given an input image, we first use a Faster-RCNN model [32] pretrained on MS-COCO [24] to get a number of object proposals and corresponding ROI features f_{roi}. Global average pooling is applied on the feature map to get a global image feature f_{global}.

To generate the image scene graph (ISG), we borrow the visual scene graph detector from [50] to predict the relationships between the object proposals. Another classifier pre-trained on Visual Genome [19] is used for predicting

Figure 3. The overall architectural diagram of our model. Yellow arrows in the figure represent the data stream of visual information, and green arrows show the data stream of textual semantic information. The generation of two kinds of scene graph data is detailed in the main text. The final output of our proposed model is a similarity score for semantically matching these two heterogeneous scene graphs.
the attributes of each object proposal. Similar to G_S, there are also three kinds of nodes in the ISG G_I. However, the object nodes n^o_i in G_I take the ROI features as the node features, while the relation nodes n^r_i and attribute nodes n^a_i take the class-label embeddings \[46\] as the original features.

3.3. Graph Convolutional Networks (GCNs)

To effectively explore the high-order information in G_S and G_I, GCNs are adopted to merge the local information from each node and its neighbors into a new set of context-aware embeddings at some d-dimensional feature space. We hereafter use variable x (with proper index) to denote such embedding vectors. There are three types of embeddings: relation embedding $x_{r_{ij}}$ for relation node r_{ij}, object embedding x_{o_i} for object node o_i, and attribute embedding x_{a_i} for attribute node a_i, respectively. Inspired by the previous work \[46\], we propose four spatial graph convolutions: $g_r, g_o, g_a, \text{and } g_0$ to generate above-mentioned embeddings. In practice, these four functions are implemented as multi-layer perception (MLP) with same network architecture but independent parameters. For brevity, we only elaborate on SSG. The derivation of ISG is similar.

For each r_{ij} in SSG, the relation embedding $x_{r_{ij}}$ is processed according to Eqn. (1) as below to jointly represent a relation r_{ij}, shown in green color in Figure 2:

$$x_{r_{ij}} = g_r \left(\text{concat}(n^r_{o_i}, n^r_{r_{ij}}, n^r_{s_{r_{ij}}}) \right).$$

(1)

For the attribute nodes, the spacial convolution operation is depicted in blue color in Figure 2. The information of all attribute nodes connected to each object node o_i is merged to get a single contextual feature vector:

$$x_{a_i} = \frac{1}{N_{r_i}} \sum_{j=1}^{N_{r_i}} g_o \left(\text{concat}(n^a_{o_i}, n^a_{r_{ij}}, n^a_{s_{r_{ij}}}) \right),$$

(2)

where $\{a_i\}$ forms o_i's attribute-related neighbor set with a cardinality of N_{r_i}.

To compute object embedding x_{o_i}, we collect information from all nodes that have a relationship with o_i, according to:

$$x_{o_i} = \frac{1}{N_{r_i}} \left[\sum_{j \in \text{obj}(o_i)} g_o(\text{concat}(n^a_{o_i}, n^a_{r_{ij}}, n^a_{s_{r_{ij}}})) + \sum_{o_j \in \text{obj}(o_i)} g_o(\text{concat}(n^a_{o_j}, n^a_{r_{ij}}, n^a_{s_{r_{ij}}})) \right].$$

(3)

where $o_j \in \text{obj}(o_i)$ implies that o_j acts as the subject in some relation with the object o_i, $o_k \in \text{obj}(o_i)$ implies a role of object. And $N_{r_i} = |\text{obj}(o_i)| + |\text{obj}(o_i)|$. This operation is shown in yellow color in Figure 2.

3.4. Cross-Graph Attention

As stated before, it is crucial to calculate the asymmetric correlation between any two cross-graph nodes, either from G_S to G_I or from G_I to G_S. We design a cross heterogeneous graph attention mechanism, shown in Figure 3. For each node x^S_i in G_S, we calculate the cosine similarities with all nodes x^I_j in G_I to get an attention matrix M_{att}, sized $|G_S| \times |G_I|$. Specifically, $M_{att} = [\alpha_{i,j}]$ is calculated as below:

$$\alpha_{i,j} = \cosine(x^S_i, x^I_j), \ i \in 1, \ldots, |G_S|, j \in 1, \ldots, |G_I|,$$

(4)

where $\cosine(\cdot, \cdot)$ returns the cosine value in $[-1, 1]$ for its two inputting vectors.

These similarities are then used as weights to compute the attentive embedding for x^S_i by a weighted sum on all the node embeddings of G_I, namely

$$\tilde{x}^S_i = \frac{\sum_{j=1}^{|G_I|} [\alpha_{i,j}] \cdot x^I_j}{\sum_{j=1}^{|G_I|} [\alpha_{i,j}]+},$$

(5)

where $[x]+ \equiv \max(x, 0)$. We can switch the role of G_I, G_S in above procedure, obtaining attentive embedding \tilde{x}^I_j for each x^I_j in G_I.

3.5. Local Graph Matching

Based on the attentive embedding of each node, we proceed to calculate local-matching vectors for all nodes in both G_S, G_I. The goal is to obtain intra-graph contextually-enhanced features from multiple perspective (i.e., semantics and graph structure). For G_S, a multi-perspective cosine matching function is applied on each node x^S_i and its attentive embedding \tilde{x}^S_i. Similar treatment for G_I. In particular, local-matching vectors m^S_i and m^I_j are computed as below:

$$m^S_i = f_m(x^S_i, \tilde{x}^S_i; W), \quad m^I_j = f_m(x^I_j, \tilde{x}^I_j; W),$$

(6)

where f_m denotes the multi-perspective matching function. Let $W \in \mathbb{R}^{4 \times d}$ be a learnable parameter matrix and W_k be the k-th row of W. l is pre-defined to specify how many perspectives are required. Given two d-dimensional vectors v_1 and v_2, the matching vector m is rendered as below:

$$m_k = \cosine(W_k \circ v_1, W_k \circ v_2), \quad k \in [1, 2, \ldots, l],$$

(7)

$$m = [m_1, m_2, \ldots, m_l],$$

where \circ denotes element-wise product. This implicitly defines f_m.

3.6. Node Attention and Global Matching

Intuitively, different nodes in graphs shall not be equally weighed. Some nodes are more important according to common sense (e.g., human-related objects are often more
likely to be relevant to queries). We thus further design a node attention mechanism to attach a weight β_i to each node x_i in graphs. Take SSG for instance,

$$
\beta^S_i = \frac{\exp(\phi(h_n, x^S_i))}{\sum_{i'=1}^{\vert G_s \vert} \exp(\phi(h_n, x^S_{i'}))},
$$

where x^S_i is the context embedding in G_S as described in Equations (1)(2)(3). ϕ is a learnable sub-network that reads h_n, x^S_i. Recall that h_n is a global feature vector for the entire sentence. Replacing h_n by f_{global}, x^S_i by x^L_i, and $\vert G_s \vert$ by $\vert G_l \vert$ in Eqn. (8) leads to a new formula for ISG.

After getting the importance of each node in the graph, a global weighted sum is adopted to fuse all the matching vectors into a global representation:

$$
\bar{m}^S = \sum_{i=1}^{\vert G_s \vert} \beta^S_i m^S_i, \quad \bar{m}^L = \sum_{j=1}^{\vert G_l \vert} \beta^L_j m^L_j.
$$

Finally, \bar{m}^S, \bar{m}^L are concatenated together and fed into a MLP followed by a sigmoid function to predict the matching similarity, denoted by score_m.

3.7. Distraction Based Re-Ranking

We regard that a good match should simultaneously satisfy two conditions: 1) the matched reference contains all key semantics of the query (i.e., maximal relevance); 2) the contents in the reference irrelevant to the query should not be dominating, since they distract viewers (i.e., minimal distraction). We argue that the second condition is insufficiently explored in previous studies. An example is presented in Figure 4.

This work adopts information entropy to quantify distraction and uses distraction scores to re-rank initial retrieved results. Take text-to-image matching for instance. The computations is purely based on the attention matrix M_{att} described in Section 3.4. For text-to-image matching, we estimate the distraction by asking each node in G_S to vote for each node in G_L. To ensure votes from each node in G_S are equal, we first perform L_1 normalization on the row corresponding to specific node in G_S. Namely $M_{\text{att}}(k,:)$ ← $M_{\text{att}}(k,:)/\sum_j M_{\text{att}}(k,j)$. Next, by column sum we obtain how many votes each node in G_L receives from all nodes in G_S, termed as distraction vector $v_{\text{dist}} \in \mathbb{R}^{\vert G_l \vert}$. It is formally computed via $v_{\text{dist}}(j) = \sum_i M_{\text{att}}(i,j)$. We conduct L_1 normalization to ensure v_{dist} forms a valid probabilistic distribution. Finally, the distraction score, denoted by score_d, is computed by information entropy:

$$
\text{score}_d = -\sum_{i=1}^{\vert G_l \vert} (v_{\text{dist},i} + \epsilon) \log (v_{\text{dist},i} + \epsilon),
$$

where ϵ is a tiny constant introduced for numeric stability. For true matches, there are few distractions. Therefore most entries in its v_{dist} are large (see the left image in Figure 4). For false matches, v_{dist} tends to be sparse, with most zeros attribute to the distracting objects or relations. It is known that sparse distribution leads to smaller information entropy.

In practice, we let $\text{score}_f = \text{score}_m + \gamma \cdot \text{score}_d$ be a fused score for re-ranking initial results. γ is set to 4×10^{-3} in our experiments. For efficiency, we only calculate the distraction scores for top-10 results in the inference time. Similar derivation for image-to-text matching is omitted due to space limit.

3.8. Loss Function of Joint Learning

For image-to-text or text-to-image matching, we use a composite loss function with two components. One is the triplet loss L_t [33] to maximize the margin of positive sample and negative samples. The other binary cross entropy loss L_{ce} aims to effectively decrease the negative samples’ scores. Definitions are:

$$
\begin{align*}
L_t &= \sum_i \left[\text{score}_{m,i} - \text{score}_{m} + \delta \right]_+, \\
L_{ce} &= \sum_i y_i \log(\text{score}_{m,i}) + (1 - y_i) \log(1 - \text{score}_{m,i}),
\end{align*}
$$

where the δ is a margin hyper-parameter. $\text{score}_{m,i}$ denotes the i-th negative sample’s score and it’s label y_i is set to 0, while score_{m} is the positive sample score and it’s label is set to 1. The entire loss is $\lambda_1 L_t + \lambda_2 L_{ce}$, where λ_1 and λ_2 are two hyper-parameters.

4. Experiments

4.1. Datasets

For experiments, following the previous work [20], we selected two large widely-used datasets: MS-COCO [24] is a large-scale dataset which contains 123,287 images, and each image in it is annotated with five text descriptions. We follow [14] to prepare the training,
Table 1. Results on MS-COCO 1K and 5K. The sentence retrieval and image retrieval utilize images and sentences as queries respectively.

<table>
<thead>
<tr>
<th>Methods</th>
<th>MS-COCO 1K</th>
<th>MS-COCO 5K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sentence Retrieval</td>
<td>Image Retrieval</td>
</tr>
<tr>
<td></td>
<td>R@1</td>
<td>R@5</td>
</tr>
<tr>
<td>DVSA [14]</td>
<td>38.4</td>
<td>69.9</td>
</tr>
<tr>
<td>VQA-ICR [25]</td>
<td>50.5</td>
<td>80.1</td>
</tr>
<tr>
<td>DSPE [40]</td>
<td>50.1</td>
<td>79.7</td>
</tr>
<tr>
<td>VSE++ [4]</td>
<td>64.6</td>
<td>90.0</td>
</tr>
<tr>
<td>TBNN [39]</td>
<td>54.0</td>
<td>84.0</td>
</tr>
<tr>
<td>DPC [51]</td>
<td>65.6</td>
<td>89.8</td>
</tr>
<tr>
<td>DXN [7]</td>
<td>68.5</td>
<td>-</td>
</tr>
<tr>
<td>Sfig [10]</td>
<td>69.9</td>
<td>92.9</td>
</tr>
<tr>
<td>SCAN [20]</td>
<td>72.7</td>
<td>94.8</td>
</tr>
<tr>
<td>SAEM [42]</td>
<td>71.2</td>
<td>94.1</td>
</tr>
<tr>
<td>VSRN [22]</td>
<td>76.2</td>
<td>94.8</td>
</tr>
<tr>
<td>Ours</td>
<td>77.0</td>
<td>96.1</td>
</tr>
<tr>
<td>+Dist</td>
<td>77.8</td>
<td>96.1</td>
</tr>
</tbody>
</table>

Since the visual scene graph detector may introduce some noise in the high-order information, we further add a first-order branch. Specifically, we remove the GCN module, and pool the cross attention matrix produced by the context vectors h_i and ROI features f_{roi} in a LogSumExp [20] manner to obtain a first-order part $score_f^m$. This is fused with the high-order $score,h$ which is detailed in previous section to get the final matching similarity $score_m = score_f^m + 0.1 \cdot score_h$.

We implement all models using the Pytorch framework. For the loss function, we set the hyper-parameters $\lambda_1 = 1.0$, $\lambda_2 = 0.5$, and $\delta = 1.0$. For each positive sample in the triplet loss, ten randomly selected samples are used to form the negative pairs. Adam optimizer [15] with default setting (learning rate=10^{-3}, momentum=0.9, weight-decay=10^{-4}) is applied to tune the model parameters. The learning rate attenuates by 1/10 for every 25 epochs. We adopt early stop strategy to avoid over-fitting.

4.4. Comparison with State-of-the-Art Models

In this section, we first present our quantitative results and comparison with other state-of-the-art methods on the MS-COCO dataset in Table 1. To make a more comprehensive comparison, we used two scales test sets (1K and 5K) on MS-COCO. It can be seen that our model exceeds the current best method VSRN [22] by most of the metrics on both image retrieval and sentence retrieval tasks. In particular, in the 1K setting, compared to the previous method our model has a significant improvement in the image retrieval scenario (by 2.3 on R@1 and 3.4 on R@5).

We also conducted the same experiments on the Flickr30K dataset, Table 2 shows the comparison results on the testing set. Obviously, we can find that our method still dominates other methods under most of the evaluation metrics, which strongly indicates the superiority of the proposed method.
It is clear that the re-ranking strategy further improves the performance in most settings and metrics especially the R@1. This improvement is trivial.

In addition, we also applied the distraction based re-ranking strategy on the initial top-10 results, which is reported at the bottom of Tables 1 and 2 (denoted by ‘+Dist’). It is clear that the re-ranking strategy further improves the performance in most settings and metrics especially the R@1. In the image retrieval scenario, this brings about a 2.8% relative performance boost in the MS-COCO 5K test set on R@1. These results strongly demonstrate the effectiveness of the proposed distraction strategy. While the promotion on the sentence retrieval task is not so impressive, we think this is due to the node number in sentence graphs is relatively small, the entropy-based re-ranking strategy cannot play a big role in this situation. We have also tried to consider the region size of the object proposals as weights when calculating the distraction score, but the final improvement is trivial.

Table 2. Experimental results on Flickr30K.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Flickr30K</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R@1</td>
<td>R@5</td>
<td>R@10</td>
<td>R@1</td>
<td>R@5</td>
</tr>
<tr>
<td>DVSA</td>
<td>22.2</td>
<td>61.4</td>
<td>15.2</td>
<td>37.7</td>
<td>50.5</td>
</tr>
<tr>
<td>VQA-ICR</td>
<td>33.9</td>
<td>74.5</td>
<td>24.9</td>
<td>52.6</td>
<td>64.8</td>
</tr>
<tr>
<td>DSPE</td>
<td>40.3</td>
<td>79.9</td>
<td>29.7</td>
<td>60.1</td>
<td>72.1</td>
</tr>
<tr>
<td>VSE++</td>
<td>41.3</td>
<td>77.9</td>
<td>31.4</td>
<td>59.7</td>
<td>71.2</td>
</tr>
<tr>
<td>TBNR</td>
<td>37.5</td>
<td>75.0</td>
<td>28.4</td>
<td>56.3</td>
<td>67.4</td>
</tr>
<tr>
<td>DPC</td>
<td>55.6</td>
<td>89.5</td>
<td>39.1</td>
<td>69.2</td>
<td>80.9</td>
</tr>
<tr>
<td>DXN</td>
<td>56.8</td>
<td>89.6</td>
<td>41.5</td>
<td>-</td>
<td>80.1</td>
</tr>
<tr>
<td>SCAN</td>
<td>67.4</td>
<td>90.3</td>
<td>48.6</td>
<td>77.7</td>
<td>85.2</td>
</tr>
<tr>
<td>SAEN</td>
<td>69.1</td>
<td>91.0</td>
<td>52.4</td>
<td>81.1</td>
<td>88.1</td>
</tr>
<tr>
<td>VSRN</td>
<td>71.3</td>
<td>90.6</td>
<td>54.7</td>
<td>81.8</td>
<td>88.2</td>
</tr>
<tr>
<td>Ours</td>
<td>70.8</td>
<td>92.7</td>
<td>59.5</td>
<td>85.6</td>
<td>91.0</td>
</tr>
<tr>
<td>+Dist</td>
<td>70.8</td>
<td>92.7</td>
<td>60.9</td>
<td>86.1</td>
<td>91.0</td>
</tr>
</tbody>
</table>

Table 3. Ablation studies on the MS-COCO 1K test set.

4.5. Ablation Studies

To explore the effect of high-order information (relationships and attributes) on visual semantic matching performance, we performed related ablation experiments. The quantitative results on MS-COCO 1K test set are shown in Table 3. First, we removed the relation and attribute information in the data, only used the object information when training and testing. This is denoted by ‘o’ in Table 3. On the basis of this, we added the relation information to the data, and the result is recorded as ‘ora’. Finally, we completed the complete object, relation and attribute information and showed the result on the row noted as ‘ora’. It can be clearly noticed that with the addition of more information, the performance of the model has steadily improved in each indicator, which confirms the validity of the relation and attribute information in the visual semantic matching task.

We also explored the impact of the two attention mechanisms proposed above. We removed the node attention (noted as −nodeatt) and the cross graph attention (noted as −crossatt) separately and used mean pooling instead. The bottom part of Table 3 shows the results. It can be seen that the performance of the model has dropped signifi-
cantly without the attention mechanism. For example, without the cross graph attention, the R@1 result of the image retrieval is reduced by 17.6. After removing the node attention mechanism, the performance on the sentence retrieval is attenuated by 26.4% relatively on R@1. This illustrates the essentiality of the proposed attention mechanisms.

4.6. Visualization and Analysis

To further demonstrate the interpretability of our model, we selected several examples in Figure 5 to visualize the cross graph attention components learned in our model. Given an attention matrix, we first applied a binary mask to get three sub-attention matrices for object, relation, and attribute nodes. Similar to the operation in Section 3.7, we first normalized the contribution of each image node on row and then got the attention value of each image node by column summation. We assigned this value to the region corresponding to this node to get a colorful mask. For the object and attribute node, their corresponding region is the area of object proposal. The corresponding area of the relation node is the union of two related object areas. For the overlapping part, we take the maximum value. The warmer red color in the mask reflects larger attention response value.

In column (A) of Figure 5, we first showed the three kinds of nodes in SSG in bold fonts of different colors. Column (B) shows some of the object proposals extracted by Faster-RCNN. The next three columns show the attention effects of the object, relation, and attribute nodes, respectively. From the results, we can see that our model accurately detects the areas corresponding to the nodes in image that aligned to the sentence nodes. Take the result in the first line as an example, the warm color in 1 (C) reflects the object information of tomatoes, olives, and plate. The red area in 4 (D) contains the information of “ride” and “near” mentioned in the sentence, which shows that our network can effectively extract relevant relation information. For the attribute nodes, the regions with highest attention value in 3 (E) and 4 (E) indicate the “black” attribute of dog and shirt. These examples strongly illustrate that our cross-attention module has learned interpretable alignments between sentence nodes in G_S and image nodes in G_I.

4.7. Distraction Based Re-ranking

To demonstrate the effectiveness of our semantic distracting based re-ranking strategy, we showed several results corrected by the post-processing in Figure 6. Due to the limited space, only the top-3 images and top-5 sentences are presented, the original retrieval ranking is also provided. As shown, the distraction score effectively lowered the ranking of false matching samples. Take the first one for example, in the original top-1, the queried car only accounts for a tiny part of the picture, while the irrelevant bus station and buildings are dominant. In the second sample, the mentioned dolls appears in the top false matching but a storybook accounts for a larger part. As for the sentence retrieval examples, the “bicycles” and “decorations” do not appear in the query images, so the ranking of negative sentences are lowered.

5. Conclusion

We explored and confirmed the importance of higher-order information (relationships and attributes) and distraction-based re-ranking in the visual semantic matching task. Ablation and visualization experiments both confirmed the rationality and interpretability of our model design. Acknowledgement: This work is supported by National Key R&D Program of China (2018AAA0100702), Beijing Natural Science Foundation (Z190001) and National Natural Science Foundation of China (61772037).
References

[38] Huan Wang, Song Liu, and Liang-Tien Chia. Does ontology help in image retrieval?: a comparison between keyword, text ontology and multi-modality ontology approaches. In ACM Multimedia, 2006. 2
[40] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving image-text embeddings. In CVPR, 2016. 2, 6
[45] Xifeng Yan, Philip S Yu, and Jiawei Han. Substructure similarity search in graph databases. In SIGMOD, 2005. 2