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Abstract

Convolutional Neural Networks (CNNs) are generally

prone to noise interruptions, i.e., small image noise can

cause drastic changes in the output. To suppress the noise

effect to the final predication, we enhance CNNs by replac-

ing max-pooling, strided-convolution, and average-pooling

with Discrete Wavelet Transform (DWT). We present gen-

eral DWT and Inverse DWT (IDWT) layers applicable to

various wavelets like Haar, Daubechies, and Cohen, etc.,

and design wavelet integrated CNNs (WaveCNets) using

these layers for image classification. In WaveCNets, fea-

ture maps are decomposed into the low-frequency and high-

frequency components during the down-sampling. The low-

frequency component stores main information including the

basic object structures, which is transmitted into the sub-

sequent layers to extract robust high-level features. The

high-frequency components, containing most of the data

noise, are dropped during inference to improve the noise-

robustness of the WaveCNets. Our experimental results on

ImageNet and ImageNet-C (the noisy version of ImageNet)

show that WaveCNets, the wavelet integrated versions of

VGG, ResNets, and DenseNet, achieve higher accuracy and

better noise-robustness than their vanilla versions.

1. Introduction

Drastic changes due to small variations of the input can

emerge in the output of a well-trained convolutional neural

network (CNN) for image classification [13, 36, 12]. Par-

ticularly, the CNN is associated with weak noise-robustness

[15]. Random noise of data is mostly high-frequency com-

ponents. In the field of signal processing, transforming the

data into different frequency intervals, and denoising the

components in the high-frequency intervals, is an effective

way to denoise it [9, 10]. The transformation, such as Dis-

crete Wavelet Transform (DWT) [26], consists of filtering

and down-sampling. However, the commonly used CNN
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Figure 1. Comparison of max-pooling and wavelet transforms.

Max-pooling is a commonly used down-sampling operation in the

deep networks, which could easily breaks the basic object struc-

tures. Discrete Wavelet Transform (DWT) decomposes an image

X into its low-frequency component Xll and high-frequency com-

ponents Xlh,Xhl,Xhh. While Xlh,Xhl,Xhh represent image de-

tails including most of the noise, Xll is a low resolution version of

the data, where the basic object structures are represented. In the

figures, the window boundary in area A (AP) and the poles in area

B (BP) are broken by max-pooling, while the principal features of

these objects are kept in the DWT output (AW and BW).

architectures (VGG, ResNets, and DenseNet, etc.) do not

perform filtering before the feature map down-sampling.

Without the filtering, down-sampling may result in the

aliasing among low-frequency and high-frequency compo-

nents [28, 42]. In particular, noise in the high-frequency

components could be down-sampled into the following fea-

ture maps, and degrade the noise-robustness of the CNNs.

Meanwhile, the basic object structures presented in the low-

frequency component could be broken, as Fig. 1 shows.

In this paper, to suppress the noise effect to the final pred-

ication and increase the classification accuracy, we integrate

wavelet into commonly used CNN architectures. We firstly

transform DWT and Inverse DWT (IDWT) as general net-

work layers in PyTorch [29]. Then, we design wavelet inte-

grated convolutional network (WaveCNet), by replacing the

commonly used down-sampling with DWT. During down-
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sampling, WaveCNet eliminates the high-frequency compo-

nents of the feature maps to increase the noise-robustness

of the CNNs, and then extracts high-level features from the

low-frequency component for better classification accura-

cy. Using ImageNet [8] and ImageNet-C [15], we evaluate

WaveCNets in terms of classification accuracy and noise-

robustness, when various wavelets and various CNN archi-

tectures are used. At last, we explore the application of

DWT/IDWT layer in image segmentation. In summary:

1. We present general DWT/IDWT layer applicable to

various wavelets, which could be used to design end-

to-end wavelet integrated deep networks.

2. We design WaveCNets by replacing existing down-

sampling operations with DWT to improve the clas-

sification accuracy and noise-robustness of CNNs.

3. We evaluate WaveCNets on ImageNet, and achieve in-

creased accuracy and better noise-robustness.

4. The proposed DWT/IDWT layer is further integrated

into SegNet [2] to improve the segmentation perfor-

mance of encoder-decoder networks.

2. Related works

2.1. Noiserobustness

When the input image is changed, the output of CNN can

be significantly different, regardless of whether the change

can be easily perceived by human or not [13, 12, 21, 36].

While the changes may result from various factors, such as

shift [42, 25], rotation [5], noise [36], blur [15], manual at-

tack [13], etc., we focus on the robustness of CNNs to the

common noise. A high-level representation guided denoiser

is designed in [21] to denoise the contaminated image be-

fore inputting it into the CNN, which may complicate the

whole deep network structure. In [36], the authors propose

denoising block for CNNs to denoise the feature map and

suppress the effect of noise on the final prediction. Howev-

er, the authors design their denoising block using the spacial

filtering, such as Gaussian filtering, mean filtering, and me-

dian filtering, etc., which do denoising in the whole frequen-

cy domain and may break basic object structure contained

in the low-frequency component. Therefore, their denois-

ing block requires a residual structure for the CNN to con-

verge. Recently, a benchmark evaluating CNN performance

on noisy images is proposed in [15]. Our WaveCNets will

be evaluated using this benchmark.

The recent studies show that ImageNet-trained CNNs

prefer to extract features from object textures sensitive to

noise [3, 12]. Stylized ImageNet [12] is proposed via styliz-

ing ImageNet images with style transfer to enable the CNNs

to extract more robust features from object structures. The

noise could be enlarged as the feature maps flow through

layers in the CNNs [21, 36], resulting in the final wrong pre-

dictions. These issues may be related to the down-sampling

operations ignoring the classic sampling theorem.

2.2. Downsampling

For local connectivity and weight sharing, researchers

introduce into deep networks various down-sampling op-

erations, such as max-pooling, average-pooling, mixed-

pooling, stochastic pooling, and strided-convolution, etc.

While max-pooling and average-pooling are simple and ef-

fective, they can erase or dilute details from images [38,

40]. Although mixed-pooling [38] and stochastic pooling

[40] are introduced to address these issues, max-pooling,

average-pooling, and strided-convolution are still the most

widely used operations in CNNs [14, 16, 31, 33].

These down-sampling operations usually ignore the clas-

sic sampling theorem [1, 42], which could break objec-

t structures and accumulate noise. Fig. 1 shows a max-

pooling example. Anti-aliased CNNs [42] integrate the

classic anti-aliasing filtering with the down-sampling. The

author is surprised at the increased classification accuracy

and better noise-robustness. Compared to the anti-aliased

CNNs, our WaveCNets are significantly different in two as-

pects: (1) While Max operation is still used in anti-aliased

CNNs, WaveCNets do not require such operation. (2) The

low-pass filters used in anti-aliased CNNs are empirical-

ly designed based on the row vectors of Pascal’s triangle,

which is ad hoc and no theoretical justifications are giv-

en. As no up-sampling operation, i.e., reconstruction, of

the low-pass filter is available, the anti-aliased U-Net [42]

has to apply the same filtering after normal up-sampling to

achieve the anti-aliasing effect. In comparison, our WaveC-

Nets are justified by the well defined wavelet theory [6, 26].

Both down-sampling and up-sampling can be replaced by

DWT and IDWT, respectively.

In deep networks for image-to-image translation tasks,

the up-sampling operations, such as transposed convolution

in U-Net [30] and max-unpooling in SegNet [2], are widely

applied to upgrade the feature map resolution. Due to the

absence of the strict mathematical terms, these up-sampling

operations can not precisely recover the original data. They

do not perform well in the restoration of image details.

2.3. Wavelets

Wavelets [6, 26] are powerful time-frequency analysis

tools, which have wide applications in signal processing.

While Discrete Wavelet Transform (DWT) decompose a da-

ta into various components in different frequency interval-

s, Inverse DWT (IDWT) could reconstruct the data using

the DWT output. DWT could be applied for anti-aliasing

in signal processing, and we will explore its application in

deep networks. IDWT could be used for detail restoration

in image-to-image tasks.

Wavelet has been combined with neural network for
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function approximation [41], signal representation and clas-

sification [34]. In these early works, the authors apply

shallow networks to search the optimal wavelet in wavelet

parameter domain. Recently, this method is utilized with

deeper network for image classification, but the network is

difficult to train because of the significant amount of com-

putational cost [7]. ScatNet [5] cascades wavelet transfor-

m with nonlinear modulus and average pooling, to extract

a translation invariant feature robust to deformations and

preserve high-frequency information for image classifica-

tion. The authors introduce ScatNet when they explore from

mathematical and algorithmic perspective how to design the

optimal deep network. Compared with the CNNs of the

same period, ScatNet gets better performance on the hand-

written digit recognition and texture discrimination tasks.

However, due to the strict mathematical assumptions, Scat-

Net can not be easily transferred to other tasks.

In deep learning, wavelets commonly play the roles of

image preprocessing or postprocessing [17, 23, 32, 39].

Meanwhile, researchers try to introduce wavelet trans-

forms into the design of deep networks in various tasks

[22, 35, 11, 37], by taking wavelet transforms as sampling

operations. Multi-level Wavelet CNN (MWCNN) proposed

in [22] integrates Wavelet Package Transform (WPT) into

the deep network for image restoration. MWCNN concate-

nates the low-frequency and high-frequency components of

the input feature map, and processes them in a unified way,

while the data distribution in these components significant-

ly differs from each other. Convolutional-Wavelet Neural

Network (CWNN) proposed in [11] applies dual-tree com-

plex wavelet transform (DT-CWT) to suppress the noise and

keep the structures for extracting robust features from SAR

images. The architecture of CWNN contains only two con-

volution layers. While DT-CWT is redundant, CWNN takes

as its down-sampling output the average value of the mul-

tiple components output from DT-CWT. Wavelet pooling

proposed in [35] is designed using a two-level DWT. It-

s back-propagation performs a one-level DWT and a two-

level IDWT, which does not follow the mathematical prin-

ciple of gradient. The authors test their method on vari-

ous dataset (MNIST [20], CIFAR-10 [18], SHVN [27], and

KDEF [24]). However, their network architectures contain

only four or five convolutional layers. The authors do not

study systematically the potential of the method on standard

image dataset like ImageNet [8]. Recently, the application

of wavelet transform in image style transfer is studied in

[37]. In above works, the authors evaluate their methods

with only one or two wavelets, due to the absence of the

general wavelet transform layers.

3. Our method

Our method is trying to apply wavelet transforms to im-

prove the down-sampling operations in deep networks. We

firstly design the general DWT and IDWT layers.

3.1. DWT and IDWT layers

The key issues in designs of DWT and IDWT layers are

the data forward and backward propagations. Although the

following analysis is for orthogonal wavelet and 1D signal,

it can be generalized to other wavelets and 2D/3D signal

with only slight changes.

Forward propagation For a 1D signal s = {sj}j∈Z,

DWT decomposes it into its low-frequency component s1 =
{s1k}k∈Z and high-frequency component d1 = {d1k}k∈Z,

where
{

s1k =
∑

j lj−2ksj ,

d1k =
∑

j hj−2ksj ,
(1)

and l = {lk}k∈Z, h = {hk}k∈Z are the low-pass and high-

pass filters of an orthogonal wavelet. According to Eq. (1),

DWT consists of filtering and down-sampling.

Using IDWT, one can reconstruct s from s1, d1, where

sj =
∑

k

(lj−2ks1k + hj−2kd1k) . (2)

In expressions with matrices and vectors, Eq. (1) and Eq.

(2) can be rewritten as

s1 = Ls, d1 = Hs, (3)

s = LT s1 + HT d1, (4)

where

L =









· · · · · · · · ·
· · · l−1 l0 l1 · · ·

· · · l−1 l0 l1 · · ·
· · · · · ·









, (5)

H =









· · · · · · · · ·
· · · h−1 h0 h1 · · ·

· · · h−1 h0 h1 · · ·
· · · · · ·









. (6)

For 2D signal X, the DWT usually do 1D DWT on its

every row and column, i.e.,

Xll = LXLT , (7)

Xlh = HXLT , (8)

Xhl = LXHT , (9)

Xhh = HXHT , (10)

and the corresponding IDWT is implemented with

X = LT XllL + HT XlhL + LT XhlH + HT XhhH. (11)

Backward propagation For the backward propaga-

tion of DWT, we start from Eq. (3) and differentiate it,

∂s1

∂s
= LT ,

∂d1

∂s
= HT . (12)
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Figure 2. The general denoising approach based on wavelet trans-

forms and the one used in WaveCNet.

Similarly, for the back propagation of the 1D IDWT, differ-

entiate Eq. (4),

∂s

∂s1
= L,

∂s

∂d1

= H. (13)

The forward and backward propagations of 2D/3D DWT

and IDWT are slightly more complicated, but similar to

that of 1D DWT and IDWT. In practice, we choose the

wavelets with finite filters, for example, Haar wavelet with

l = 1√
2
{1, 1} and h = 1√

2
{1,−1}. For finite signal s ∈ R

N

and X ∈ R
N×N , the L,H are truncated to be the size of

⌊N
2
⌋ × N . We transform 1D/2D/3D DWT and IDWT as

network layers in PyTorch. In the layers, we do DWT and

IDWT channel by channel for multi-channel data.

3.2. WaveCNets

Given a noisy 2D data X, the random noise mostly show

up in its high-frequency components. Therefore, as Fig.

2(a) shows, the general wavelet based denoising [9, 10]

consists of three steps: (1) decompose the noisy data X

using DWT into low-frequency component Xll and high-

frequency components Xlh,Xhl,Xhh, (2) filter the high-

frequency components, (3) reconstruct the data with the

processed components using IDWT.

In this paper, we choose the simplest wavelet based “de-

noising”, i.e., dropping the high-frequency components, as

Fig. 2(b) shows. DWTll denotes the transform mapping

the feature maps to the low-frequency component. We de-

sign WaveCNets by replacing the commonly used down-

sampling with DWTll. As Fig. 3 shows, in WaveCNets,

max-pooling and average-pooling are directly replaced by

DWTll, while strided-convolution is upgrated using convo-

lution with stride of 1 followed by DWTll, i.e.,

MaxPools=2 → DWTll, (14)

Convs=2 → DWTll ◦ Convs=1, (15)

AvgPools=2 → DWTll, (16)

where “MaxPools”, “Convs” and “AvgPools” denote

MaxPool
(stride 2)
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AvgPool
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Figure 3. (a) Baseline, the down-sampling operations in deep net-

works. (b) Wavelet integrated down-sampling in WaveCNets.

the max-pooling, strided-convolution, and average-pooling

with stride s, respectively.

While DWTll halves the size of the feature maps, it re-

moves their high-frequency components and denoises them.

The output of DWTll, i.e., the low-frequency component,

saves the main information of the feature map to extract the

identifiable features. During down-sampling of WaveCNet-

s, DWTll could resist the noise propagation in the deep net-

works and helps to maintain the basic object structure in the

feature maps. Therefore, DWTll would accelerate the train-

ing of deep networks and lead to better noise-robustness and

increased classification accuracy.

4. Experiments

The commonly used CNN architectures for image clas-

sification, such as VGG [33], ResNets [14], DenseNet [16],

compose of various max-pooling, average-pooling, and

strided-convolution. By upgrading the down-sampling with

Eqs. (14) - (16), we create WaveCNets, including WVG-

G16bn, WResNets, WDenseNet121. Compared with the

original CNNs, WaveCNets do not employ additional learn-

able parameters. We evaluate their classification accuracies

and noise-robustness using ImageNet [8] and ImageNet-C

[15]. At last, we explore the potential of wavelet integrated

deep networks for image segmentation.

4.1. ImageNet classification

ImageNet contains 1.2M training and 50K validation im-

ages from 1000 categories. On the training set, we train

WaveCNets when various wavelets are used, with the s-

tandard training protocols from the publicly available Py-

Torch [29] repository. Table 1 presents the top-1 accuracy

of WaveCNets on ImageNet validation set, where “haar”,

“dbx”, and “chx.y” denote the Haar wavelet, Daubechies

wavelet with approximation order x, and Cohen wavelet

with orders (x, y). The length of the wavelet filters increase

as the orders increase. While Haar and Cohen wavelets are

symmetric, Daubechies are not.

In Table 1, parenthesized numbers are accuracy differ-

ence compared with the baseline results. The baseline re-

sults, i.e., the results of the original CNNs, are sourced

from the official PyTorch [29]. For all CNN architectures,

Haar and Cohen wavelets improve their classification ac-
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Table 1. Top-1 accuracy of WaveCNets on ImageNet validation set.
Wavelet WVGG16bn WResNet18 WResNet34 WResNet50 WResNet101 WDenseNet121

None (baseline)* 73.37 69.76 73.30 76.15 77.37 74.65

Haar 74.10 (+0.73) 71.47 (+1.71) 74.35 (+1.05) 76.89 (+0.74) 78.23 (+0.86) 75.27 (+0.62)

Cohen

ch2.2 74.31 (+0.94) 71.62 (+1.86) 74.33 (+1.03) 76.41 (+0.26) 78.34 (+0.97) 75.36 (+0.71)

ch3.3 74.40 (+1.03) 71.55 (+1.79) 74.51 (+1.21) 76.71 (+0.56) 78.51 (+1.14) 75.44 (+0.79)

ch4.4 74.02 (+0.65) 71.52 (+1.76) 74.61 (+1.31) 76.56 (+0.41) 78.47 (+1.10) 75.29 (+0.64)

ch5.5 73.67 (+0.30) 71.26 (+1.50) 74.34 (+1.04) 76.51 (+0.36) 78.39 (+1.02) 75.01 (+0.36)

Daubechies

db2 74.08 (+0.71) 71.48 (+1.72) 74.30 (+1.00) 76.27 (+0.12) 78.29 (+0.92) 75.08 (+0.43)

db3 71.08 (+1.32) 74.11 (+0.81) 76.38 (+0.23)

db4 70.35 (+0.59) 73.53 (+0.23) 75.65 (−0.50)

db5 69.54 (−0.22) 73.41 (+0.11) 74.90 (−1.25)

db6 68.74 (−1.02) 72.68 (−0.62) 73.95 (−2.20)
* corresponding to the results of original CNNs, i.e., VGG16bn, ResNets, DenseNet121.
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Figure 4. The loss of ResNet18 and WResNet18(Haar).

curacy, although the best wavelet varies with CNN. For

example, Haar and Cohen wavelets improve the accuracy

of ResNet18 by 1.50% to 1.86%. However, the perfor-

mance of asymmetric Daubechies wavelet gets worse as the

approximation order increases. Daubechies wavelets with

shorter filters (“db2” and “db3”) could improve the CNN

accuracy, while that with longer filters (“db5” and “db6”)

may reduce the accuracy. For example, the top-1 accura-

cy of WResNet18 decreases from 71.48% to 68.74%. We

conclude that the symmetric wavelets perform better than

asymmetric ones in image classification. That is the rea-

son why we do not train WVGG16bn, WResNet101, W-

DenseNet121 with “db3”, “db4”, “db5”, “db6”.

We retrain ResNet18 using the standard ImageNet clas-

sification training repository in PyTorch. In Fig. 4, we com-

pare the losses of ResNet18 and WResNet18(Haar) dur-

ing the training procedure. Fig. 4 adopts red dashed and

green dashed lines to denote the train losses of ResNet18

and WResNet18(Haar), respectively. Throughout the whole

training procedure, the training loss of WResNet18(Haar)

is about 0.08 lower than that of ResNet18, when the two

networks employ the same amount of learnable parame-

ters. This suggests that wavelet accelerates the training of

ResNet18 architecture. On the validation set, WResNet18

loss (green solid line) is also always lower than ResNet18

loss (red solid line), which lead to the increase of final clas-

sification accuracy by 1.71%.

Fig. 5 presents four example feature maps of well trained

CNNs and WaveCNets. In each subfigure, the top row

shows the input image with size of 224 × 224 from Ima-

geNet validation set and the two feature maps produced by

original CNN, while the bottom row shows the related in-

formation (image, CNN and WaveCNet names) and feature

maps produced by the WaveCNet. The two feature maps are

captured from the 16th output channel of the final layer in

the network blocks with tensor size of 56×56 (middle) and

28 × 28 (right), respectively. The feature maps have been

enlarged for better illustration.

From Fig. 5, one can find that the backgrounds of the

feature map produced by WaveCNets are cleaner than that

produced by CNNs, and the object structures in the former

are more complete than that in the latter. For example, in the

top row of Fig. 5(d), the clock boundary in the ResNet50

feature map with size of 56 × 56 are fuzzy, and the ba-

sic structures of clocks have been totally broken by strong

noise in the feature map with size of 28× 28. In the second

row, the backgrounds of feature maps produced by WRes-

Net50(ch3.3) are very clean, and it is easy to figure out the

clock structures in the feature map with size of 56× 56 and

the clock areas in the feature map with size of 28 × 28.

The above observations illustrate that the down-sampling

operations could cause noise accumulation and break the

basic object structures during CNN inference, while DWT

in WaveCNets relieves these drawbacks. We believe that

this is the reason why WaveCNets converge faster in train-

ing and ultimately achieve better classification accuracy.

In [42], the author is surprised at the increased classifi-

cation accuracy of CNNs after filtering is integrated into the

down-sampling. In [12], the authors show that “ImageNet-

trained CNNs are strongly biased towards recognising tex-

tures rather than shapes”. Our experimental results suggest

that this may be sourced from the commonly used down-

sampling operations, which tend to break the object struc-

tures and accumulate noise in the feature maps.
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Figure 5. The feature maps of CNNs (top) and WaveCNets (bottom).
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Figure 6. The noise mCE of WaveCNets.

4.2. Noiserobustness

In [15], the authors corrupt the ImageNet validation set

using 15 visual corruptions with five severity levels, to cre-

ate ImageNet-C and test the robustness of ImageNet-trained

classifiers to the input corruptions. The 15 corruptions are

sourced from four categories, i.e., noise (Gaussian noise,

shot noise, impulse noise), blur (defocus blur, frosted glass

blur, motion blur, zoom blur), weather (snow, frost, fog,

brightness), and digital (contrast, elastic, pixelate, JPEG-

compression). Ef
s,c denotes the top-1 error of a trained clas-

sifier f on corruption type c at severity level s. The authors

present the Corruption Error CEf
c , computed with

CEf
c =

5
∑

s=1

Ef
s,c

/

5
∑

s=1

EAlexNet
s,c , (17)

to evaluate the performance of a trained classifier f . In Eq.

(17), the authors normalize the error using the top-1 error of

AlexNet [19] to adjust the difference of various corruptions.

In this section, we use the noise part (750K images, 50K

× 3 × 5) of ImageNet-C and

mCE
f
noise =

1

3

(

CE
f
Gaussian + CE

f
shot + CE

f
impulse

)

(18)

to evaluate the noise-robustness of WaveCNet f .

We test the top-1 errors of WaveCNets and AlexNet on

each noise corruption type c at each level of severity s,

when WaveCNets and AlexNet are trained on the clean Im-

ageNet training set. Then, we compute mCEWaveCNet
noise ac-

cording to Eqs. (17) and (18). In Fig. 6, we show the

noise mCEs of WaveCNets for different network architec-

tures and various wavelets. The “baseline” corresponds to

the noise mCEs of original CNN architectures, while “dbx”,

“chx.y” and “haar” correspond to the mCEs of WaveCNet-

s with different wavelets. Except VGG16bn, our method
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Figure 7. The feature maps sourced from clean (top) and noisy (bottom) images.

obviously increase the noise-robustness of the CNN archi-

tectures for image classification. For example, the noise

mCE of ResNet18 (with navy blue color and down trian-

gle marker in Fig. 6) decreases from 88.97 (“baseline”)

to 80.38 (“ch2.2”). One can find that the all wavelets in-

cluding “db5” and “db6” improve the noise-robustness of

ResNet18, ResNet34, and ResNet50, although the classi-

fication accuracy of the WResNets with “db5” and “db6”

for the clean images may be lower than that of the origi-

nal ResNets. It means that our methods indeed increase the

noise-robustness of these network architectures.

Fig. 7 shows two example feature maps for well trained

ResNet18 and WResNet18 with noisy images as input. In

every subfigure, the first row shows the clean image with

size of 224 × 224 from ImageNet validation set and fea-

ture maps generated by ResNet18 and WResNet18(ch2.2),

respectively. The second row shows the image added with

Gaussian or impulse noise and the feature maps generat-

ed by the two networks. These feature maps are captured

from the 16th output channel of the last layer in the net-

work blocks with tensor size of 56 × 56. From the two ex-

amples, one can find that it is difficult for the original CNN

to suppress noise, while WaveCNet could suppress the noise

and maintain the object structure during its inference. For

example, in Fig. 7(a), the bottle structures in the two fea-

ture maps generated by ResNet18 and WResNet18(ch2.2)

are complete, when the clean porcelain bottle image is fed

into the networks. However, after the image is corrupted

by Gaussian noise, the ResNet18 feature map contains very

strong noise and the bottle structure vanishs, while the ba-

sic structure could still be observed from the WResNet18

feature map. This advantage improves the robustness of

WaveCNets against different noise.

The noise-robustness of VGG16bn is inferior to that of

ResNet34, although they achieve similar accuracy (73.37%
and 73.30%). Our method can not significantly improve the

noise-robustness of VGG16bn, although it can increase the

accuracy by 1.03%. It means that the VGG16bn may be not

a proper architecture in terms of noise-robustness.
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Figure 8. Wavelet integrated down-sampling in various modes.

4.3. Comparison with other wavelet based down
sampling

Different with our DWT based down-sampling (Fig.

2(b)), there are other wavelet integrated down-sampling

modes in literatures. In [11], the authors adopt as down-

sampling output the average value of the multiple compo-

nents of wavelet transform, as Fig. 8(a) shows. In [22], the

authors concatenate all the components output from DWT,

and process them in a unified way, as Fig. 8(b) shows.

Here, taking ResNet18 as backbone, we compare our

wavelet integrated down-sampling with the previous ap-

proaches, in terms of classification accuracy and noise-

robustness. We rebuild ResNet18 using the three down-

sampling modes shown in Fig. 2(b) and Fig. 8, and denote

them as WResNet18, WResNet18 A, and WResNet18 C,

respectively. We train them on ImageNet when various

wavelets are used. Table 2 shows the accuracy on Ima-

geNet and the noise mCEs on the ImageNet-C. Generally,

the networks using wavelet based down-sampling achieve

better accuracy and noise mCE than that of original net-

work, ResNet18 (69.76% accuracy and 88.97 mCE).

Similar to WResNet18, the number of parameters of

WResNet18 A is the same with that of original ResNet18.

However, the added high-frequency components in the fea-

ture maps damage the information contained in the low-

frequency component, because of the high-frequency noise.

WResNet18 A performs the worst among the networks us-

ing wavelet based down-sampling.

Due to the tensor concatenation, WResNet18 C employs
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Table 2. Comparison with other wavelet based down-sampling.

Network
Top-1 Accuracy (higher is better)

Params.
haar ch2.2 ch3.3 ch4.4 ch5.5 db2

WResNet18 71.47 71.62 71.55 71.52 71.26 71.48 11.69M

WResNet18 A [11] 70.06 69.24 69.91 69.98 70.31 70.52 11.69M

WResNet18 C [22] 71.94 71.75 71.66 71.99 72.03 71.88 21.62M

WResNet34 74.35 74.33 74.51 74.61 74.34 74.30 21.80M

Noise mCE (lower is better)

WResNet18 80.91 80.38 81.02 82.19 83.77 82.54

WResNet18 A [11] 83.17 86.02 86.07 85.22 82.96 84.01

WResNet18 C [22] 81.79 83.67 83.51 82.13 82.60 80.11

WResNet34 76.64 77.61 74.30 76.19 76.00 72.73
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Figure 9. Down-sampling and up-sampling used in SegNet and

WaveUNet.

much more parameters (21.62× 106) than WResNet18 and

WResNet18 A (11.69× 106). WResNet18 C thus increase

the accuracy of WResNet18 by 0.11% to 0.77%, when

various wavelets are used. However, due to the includ-

ed noise, the concatenation does not evidently improve the

noise-robustness. In addition, the amount of parameters for

WResNet18 C is almost the same with that for WResNet34

(21.80×106), while the accuracy and noise mCE of WRes-

Net34 are obviously superior to that of WResNet18 C.

4.4. Image segmentation

The main contributions of our method are the DWT and

IDWT layers. IDWT is a useful up-sampling approach to

recover the data details. With IDWT, WaveCNets can be

easily transferred to image-to-image translation tasks. We

now test their applications in semantic image segmentation.

To restore details in image segmentation, we de-

sign WaveUNets by replacing the max-pooling and max-

unpooling in SegNet [2] with DWT and IDWT. SegNet

adopts encoder-decoder architecture and uses VGG16bn as

its encoder backbone. In its decoder, SegNet recovers the

feature map resolution using max-unpooling, as Fig. 9(a)

shows. While max-unpooling only recover very limited de-

tails, IDWT can recover most of the data details. In the en-

coder, WaveUNets decompose the feature maps into various

frequency components, as Fig. 9(b) shows. While the low-

frequency components are used to extract high-level fea-

tures, the high-frequency components are stored and trans-

mitted to the decoder for resolution restoration with IDWT.

We evaluate WaveUNets and SegNet using CamVid [4]

dataset. CamVid contains 701 road scene images (367, 101,

and 233 for the training, validation, and test). In [2], the au-

thors train the SegNet using an extended CamVid training

Table 3. Results on CamVid test set.

Network
SegNet Our WaveUNets

[2] Ours haar ch2.2 ch3.3 ch4.4 ch5.5 db2

mIoU 60.10 57.89 64.23 63.35 62.90 63.76 63.61 63.78
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Figure 10. Comparison of SegNet and WaveUNet segmentations.

set containing 3433 images, which achieved 60.10% mIoU

on the CamVid test set. We train SegNet and WaveUNet

with various wavelets using only 367 CamVid training im-

ages. Table 3 shows the mIoU on the CamVid test set. Our

WaveUNets get higher mIoU and achieve the best result

(64.23%) with Haar wavelet.

In Fig. 10, we present a visual example for SegNet and

WaveUNet segmentations. Fig. 10 shows the example im-

age, its manual annotation, a region consisting of “build-

ing”, “tree”, “sky” and “pole”, and the segmentation results

achieved using SegNet and WaveUNet. The region has been

enlarged with colored segmentation results for better illus-

tration. From the figure, one can find in the segmentation

result that WaveUNet keeps the basic structure of “tree”,

“pole”, and “building” and restores the object details, such

as the “tree” branches and the “pole”. The segmentation

result of WaveUNet matches the image region much bet-

ter than that of SegNet, even corrects the annotation noise

about “building” and “tree” in the ground truth.

5. Conclusions

We transform Discrete Wavelet Transform (DWT) and

Inverse DWT (IDWT) into general network layers, and de-

sign wavelet integrated convolutional networks (WaveC-

Nets) for image classification. Being able to well keep ob-

ject structures and suppress data noise during network infer-

ence, WaveCNets achieve higher image classification accu-

racy and better noise-robustness for various commonly used

network architectures.
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