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Abstract

In this paper, we propose PolyTransform, a novel

instance segmentation algorithm that produces precise,

geometry-preserving masks by combining the strengths of

prevailing segmentation approaches and modern polygon-

based methods. In particular, we first exploit a segmenta-

tion network to generate instance masks. We then convert

the masks into a set of polygons that are then fed to a de-

forming network that transforms the polygons such that they

better fit the object boundaries. Our experiments on the

challenging Cityscapes dataset show that our PolyTrans-

form significantly improves the performance of the back-

bone instance segmentation network and ranks 1st on the

Cityscapes test-set leaderboard. We also show impressive

gains in the interactive annotation setting. 1

1. Introduction

The goal of instance segmentation methods is to identify

all countable objects in the scene, and produce a mask for

each of them. With the help of instance segmentation, we

can have a better understanding of the scene [68], design

robotics systems that are capable of complex manipulation

tasks [17], and improve perception systems of self-driving

cars [44]. The task is, however, extremely challenging. In

comparison to the traditional semantic segmentation task

that infers the category of each pixel in the image, instance

segmentation also requires the system to have the extra no-

tion of individual objects in order to associate each pixel

with one of them. Dealing with the wide variability in the

scale and appearance of objects as well as occlusions and

motion blur make this problem extremely difficult.

To address these issues, most modern instance segmen-

tation methods employ a two-stage process [21, 63, 42],

where object proposals are first created and then foreground

background segmentation within each bounding box is per-

formed. With the help of the box, they can better handle

situations (e.g., occlusions) where other methods often fail

1The supplementary of this paper can be found here.

[4]. While these approaches have achieved state-of-the-

art performance on multiple benchmarks (e.g., COCO [38],

Cityscapes [11]) their output is often over-smoothed failing

to capture fine-grained details.

An alternative line of work tackles the problem of inter-

active annotation [5, 2, 62, 39]. These techniques have been

developed in the context of having an annotator in the loop,

where a ground truth bounding box is provided. The goal

of these works is to speed up annotation work by provid-

ing an initial polygon for annotators to correct as annotat-

ing from scratch is a very expensive process. In this line of

work, methods exploit polygons to better capture the geom-

etry of the object [5, 2, 39], instead of treating the problem

as a pixel-wise labeling task. This results in more precise

masks and potentially faster annotation speed as annotators

are able to simply correct the polygons by moving the ver-

tices. However, these approaches suffer in the presence of

large occlusions or when the object is split into multiple dis-

connected components.

With these problems in mind, in this paper we develop a

novel model, which we call PolyTransform, and tackle both

the instance segmentation and interactive annotation prob-

lems. The idea behind our approach is that the segmentation

masks generated by common segmentation approaches can

be viewed as a starting point to compute a set of polygons,

which can then be refined. We performed this refinement

via a deforming network that predicts for each polygon the

displacement of each vertex, taking into account the loca-

tion of all vertices. By deforming each polygon, our model

is able to better capture the local geometry of the object.

Unlike [5, 2, 39], our model has no restriction on the num-

ber of polygons utilized to describe each object. This allows

us to naturally handle cases where the objects are split into

parts due to occlusion.

We first demonstrate the effectiveness of our approach on

the Cityscapes dataset [11]. On the task of instance segmen-

tation, our model improves the initialization by 3.0 AP and

10.3 in the boundary metric on the validation set. Impor-

tantly, we achieve 1st place on the test set leaderboard, beat-

ing the current state of the art by 3.7 AP. We further eval-
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Figure 1. Overview of our PolyTransform model.

uate our model on a new self-driving dataset. Our model

improves the initialization by 2.1 AP and 5.6 in the bound-

ary metric. In the context of interactive annotation, we out-

perform the previous state of the art [62] by 2.0% in the

boundary metric. Finally, we conduct an experiment where

the crowd-sourced labelers annotate the object instances us-

ing the polygon output from our model. We show that this

can speed up the annotation time by 35%!

2. Related Work

In this section, we briefly review the relevant literature

on instance segmentation and annotation in the loop.

Proposal-based Instance Segmentation: Most modern

instance segmentation models adopt a two-stage pipeline .

First, an over-complete set of segment proposals is iden-

tified, and then a voting process is exploited to determine

which one to keep [8, 14] As the explicit feature extraction

process [53] is time-consuming [19, 20], Dai et al. [13, 12]

integrated feature pooling into the neural network to im-

prove efficiency. While the speed is drastically boosted

comparing to previous approaches, it is still relatively slow

as these approach is limited by the traditional detection

based pipeline. With this problem in mind, researchers have

looked into directly generating instance masks in the net-

work and treat them as proposals [51, 52]. Based on this

idea, Mask R-CNN [21] introduced a joint approach to do

both mask prediction and recognition. It builds upon Faster

R-CNN [54] by adding an extra parallel header to predict

the object’s mask, in addition to the existing branch for

bounding box recognition. Liu et al. [42] propose a path ag-

gregation network to improve the information flow in Mask

R-CNN and further improve performance. More recently,

Chen et al. [6] interleaves bounding box regression, mask

regression and semantic segmentation together to boost in-

stance segmentation performance. Xu et al. [64] fit Cheby-

shev polynomials to instances by having a network learn

the coefficients, this allows for real time instance segmen-

tation. Huang et al. [25] optimize the scoring of the bound-

ing boxes by predicting IoU for each mask rather than only

a classification score. Kuo et al. [34] start with bounding

boxes and refine them using shape priors. Xiong et al. [63]

and Kirillov et al. [31] extended Mask R-CNN to the task

of panoptic segmentation. Yang et al. [65] extended Mask

R-CNN to the task of video instance segmentation.

Proposal-free Instance Segmentation: This line of re-

search aims at segmenting the instances in the scene without

an explicit object proposal. Zhang et al. [67, 66] first pre-

dicts instance labels within the extracted multi-scale patches

and then exploits dense Conditional Random Field [33] to

obtain a consistent labeling of the full image. While achiev-

ing impressive results, their approach is computationally in-

tensive. Bai and Urtasun [4] exploited a deep network to

predict the energy of the watershed transform such that each

basin corresponds to an object instance. With one simple

cut, they can obtain the instance masks of the whole im-

age without any post-processing. Similarly, [32] exploits

boundary prediction to separate the instances within the

same semantic category. Despite being much faster, they

suffer when dealing with far or small objects whose bound-

aries are ambiguous. To address this issue, Liu et al. [41]

present a sequential grouping approach that employs neural

networks to gradually compose objects from simpler ele-

ments. It can robustly handle situations where a single in-

stance is split into multiple parts. Newell and Deng [49] im-

plicitly encode the grouping concept into neural networks

by having the model to predict both semantic class and a

tag for each pixel. The tags are one dimensional embed-

dings which associate each pixel with one another. Kendall

et al. [28] propose a method to assign pixels to objects hav-

ing each pixel point to its object’s center so that it can be

grouped. Sofiiuk et al. [58] use a point proposal network

to generate points where the instances can be, this is then

processed by a CNN to outputs instance masks for each lo-

cation. Neven et al. [48] propose a new clustering loss that

pulls the spatial embedding of pixels belonging to the same

instance together to achieve real time instance segmenta-

tion while having high accuracy. Gao et al. [18] propose

a single shot instance segmentation network that outputs a

pixel pair affinity pyramid to compute whether two pixels

belong to the same instance, they then combine this with a

predicted semantic segmentation to output a single instance
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Figure 2. Our feature extraction network.

segmentation map.

Interactive Annotation: The task of interactive annota-

tion can also be posed as finding the polygons or curves

that best fit the object boundaries. In fact, the concept of de-

forming a curve to fit the object contour can be dated back to

the 80s where the active contour model was first introduced

[27]. Since then, variants of ACM [10, 47, 9] have been

proposed to better capture the shape. Recently, the idea

of exploiting polygons to represent an instance is explored

in the context of human in the loop segmentation [5, 2].

Castrejón et al. [5] adopted an RNN to sequentially predict

the vertices of the polygon. Acuna et al. [2] extended [5]

by incorporating graph neural networks and increasing im-

age resolution. While these methods demonstrated promis-

ing results on public benchmarks [11], they require ground

truth bounding box as input. Ling et al. [39] and Dong et

al. [16] exploited splines as an alternative parameterization.

Instead of drawing the whole polygon/curves from scratch,

they start with a circle and deform it. Wang et al. tack-

led this problem with implicit curves using level sets [62],

however, because the outputs are not polygons, an anno-

tator cannot easily corrected them. In [46], Maninis et al.

use extreme boundary as inputs rather than bounding boxes

and Majumder et al. [45] uses user clicks to generate con-

tent aware guidance maps; all of these help the networks

learn stronger cues to generate more accurate segmenta-

tions. However, because they are pixel-wise masks, they

are not easily amenable by an annotator. Acuna et al. [1]

develop an approach that can be used to refine noisy an-

notations by jointly reasoning about the object boundaries

with a CNN and a level set formulation. In the domain of

offline mapping, several papers from Homayounfar et al.

and Liang et al. [23, 35, 24, 36] have tackled the problem of

automatically annotating crosswalks, road boundaries and

lanes by predicting structured outputs such as a polyline.

3. PolyTransform

Our aim is to design a robust segmentation model that is

capable of producing precise, geometry-preserving masks

for each individual object. Towards this goal, we develop

PolyTransform, a novel deep architecture that combines

prevailing segmentation approaches [21, 63] with modern

polygon-based methods [5, 2]. By exploiting the best of

both worlds, we are able to generate high quality segmenta-

tion masks under various challenging scenarios.

In this section, we start by describing the backbone ar-

chitecture for feature extraction and polygon initialization.

Next, we present a novel deforming network that warps the

initial polygon to better capture the local geometry of the

object. An overview of our approach is shown in Figure 1.

3.1. Instance Initialization

The goal of our instance initialization module is to pro-

vide a good polygon initialization for each individual ob-

ject. To this end, we first exploit a model to generate a mask

for each instance in the scene. Our experiments show that

our approach can significantly improve performance for a

wide variety of segmentation models. If the segmentation

model outputs proposal boxes, we use them to crop the im-

age, otherwise, we fit a bounding box to the mask. The

cropped image is later resized to a square and fed into a

feature network (described in Sec. 3.2) to obtain a set of

reliable deep features. In practice, we resize the cropped

image to (Hc,Wc) = (512, 512). To initialize the polygon,

we use the border following algorithm of [60] to extract the

contours from the predicted mask. We get the initial set

of vertices by placing a vertex at every 10 px distance in

the contour. Empirically, we find such dense vertex inter-

polation provides a good balance between performance and

memory consumption.

3.2. Feature Extraction Network

The goal of our feature extraction network is to learn

strong object boundary features. This is essential as we

want our polygons to capture high curvature and complex

shapes. As such, we employ a feature pyramid network

(FPN) [37] to learn and make use of multi-scale features.

This network takes as input the (Hc,Wc) crop obtained

from the instance initialization stage and outputs a set of

features at different pyramid levels. Our backbone can be

seen in Figure 2.

3.3. Deforming Network

We have computed a polygon initialization and deep fea-

tures of the FPN from the image crop. Next we build a

feature embedding for all N vertices and learn a deforming

model that can effectively predict the offset for each vertex

so that the polygon snaps better to the object boundaries.

Vertex embedding: We build our vertex representation

upon the multi-scale feature extracted from the backbone

FPN network of the previous section. In particular, we take

the P2, P3, P4, P5 and P6 feature maps and apply two lat-

eral convolutional layers to each of them in order to reduce

the number of feature channels from 256 to 64 each. Since

the feature maps are 1/4, 1/8, 1/16, 1/32 and 1/64 of
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training data APval AP AP50 person rider car truck bus train mcycle bcycle

DWT [4] fine 21.2 19.4 35.3 15.5 14.1 31.5 22.5 27.0 22.9 13.9 8.0
Kendall et al. [28] fine − 21.6 39.0 19.2 21.4 36.6 18.8 26.8 15.9 19.4 14.5

Arnab et al. [3] fine − 23.4 45.2 21.0 18.4 31.7 22.8 31.1 31.0 19.6 11.7
SGN [41] fine+coarse 29.2 25.0 44.9 21.8 20.1 39.4 24.8 33.2 30.8 17.7 12.4

PolygonRNN++ [2] fine − 25.5 45.5 29.4 21.8 48.3 21.2 32.3 23.7 13.6 13.6
Mask R-CNN [21] fine 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0
BShapeNet+ [29] fine − 27.3 50.4 29.7 23.4 46.7 26.1 33.3 24.8 20.3 14.1

GMIS [43] fine+coarse − 27.3 45.6 31.5 25.2 42.3 21.8 37.2 28.9 18.8 12.8
Neven et al. [48] fine − 27.6 50.9 34.5 26.1 52.4 21.7 31.2 16.4 20.1 18.9

PANet [42] fine 36.5 31.8 57.1 36.8 30.4 54.8 27.0 36.3 25.5 22.6 20.8
Mask R-CNN [21] fine+COCO 36.4 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

AdaptIS [58] fine 36.3 32.5 52.5 31.4 29.1 50.0 31.6 41.7 39.4 24.7 12.1

SSAP [18] fine 37.3 32.7 51.8 35.4 25.5 55.9 33.2 43.9 31.9 19.5 16.2
BShapeNet+ [29] fine+COCO − 32.9 58.8 36.6 24.8 50.4 33.7 41.0 33.7 25.4 17.8

UPSNet [63] fine+COCO 37.8 33.0 59.7 35.9 27.4 51.9 31.8 43.1 31.4 23.8 19.1
PANet [42] fine+COCO 41.4 36.4 63.1 41.5 33.6 58.2 31.8 45.3 28.7 28.2 24.1

Ours fine+COCO 44.6 40.1 65.9 42.4 34.8 58.5 39.8 50.0 41.3 30.9 23.4
Table 1. Instance segmentation on Cityscapes val and test set: This table shows our instance segmentation results on Cityscape test. We

report models trained on fine and fine+COCO. We report AP and AP50.

fine COCO AP AP50 car truck bus train person rider bcycle+r bcycle mcycle+r mcycle

Mask RCNN [21] X - 26.6 53.5 47.0 41.1 42.8 10.7 32.8 27.5 18.6 10.2 14.8 20.2
PANet [42] X - 26.6 53.5 46.6 41.8 44.2 2.7 32.8 27.4 18.7 11.3 15.1 25.8

UPSNet [63] X - 29.0 56.0 47.1 41.8 47.8 12.7 33.5 27.3 18.6 10.4 20.4 30.2
PANet [42] X X 29.1 55.2 47.4 43.7 47.6 10.7 34.4 30.1 20.5 11.8 17.3 27.4

UPSNet [63] X X 31.5 58.4 46.9 44.0 49.8 21.6 34.1 30.3 21.7 12.8 19.3 34.5
Ours X X 35.3 60.8 50.5 47.3 52.5 23.4 40.4 37.0 25.1 16.0 28.7 32.6

Table 2. Instance segmentation on test set of our new self-driving dataset: This table shows our instance segmentation results our new

dataset’s test set. We report models trained on fine and fine+COCO. We report AP and AP50. +r is short for with rider.

the original scale, we bilinearly upsample them back to the

original size and concatenate them to form a Hc×Wc×320
feature tensor. To provide the network a notion of where

each vertex is, we further append a 2 channel CoordConv

layer [40]. The channels represent x and y coordinates with

respect to the frame of the crop. Finally, we exploit the bi-

linear interpolation operation of the spatial transformer net-

work [26] to sample features at the vertex coordinates of

the initial polygon from the feature tensor. We denote such

N × (320 + 2) embedding as zzz.

Deforming network: When moving a vertex in a poly-

gon, the two attached edges are subsequently moved as

well. The movement of these edges depends on the po-

sition of the neighboring vertices. Each vertex thus must

be aware of its neighbors and needs a way to communicate

with one another in order to reduce unstable and overlap-

ping behavior. In this work, we exploit the self-attending

Transformer network [61] to model such intricate depen-

dencies. We leverage the attention mechanism to propagate

the information across vertices and improve the predicted

offsets. More formally, given the vertex embeddings zzz, we

first employ three feed-forward neural networks to trans-

form it into Q(zzz), K(zzz), V (zzz), where Q, K, V stands for

Query, Key and Value. We then compute the weightings

between vertices by taking a softmax over the dot product

Q(zzz)K(zzz)T . Finally, the weightings are multiplied with the

keys V (zzz) to propagate these dependencies across all ver-

tices. Such attention mechanism can be written as:

Atten(Q(zzz),K(zzz), V (zzz)) = softmax(
Q(zzz)K(zzz)T√

dk
)V (zzz),

where dk is the dimension of the queries and keys, serving

as a scaling factor to prevent extremely small gradients. We

repeat the same operation a fixed number of times, 6 in our

experiments. After the last Transformer layer, we feed the

output to another feed-forward network which predicts N×
2 offsets for the vertices. We add the offsets to the polygon

initialization to transform the shape of the polygon.

3.4. Learning

We train the deforming network and the feature extrac-

tion network in an end-to-end manner. Specifically, we min-

imize the weighted sum of two losses. The first penalizes

the model for when the vertices deviate from the ground

truth. The second regularizes the edges of the polygon to

prevent overlap and unstable movement of the vertices.
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Init Backbone COCO AP APgain AF AFgain

DWT Res101 - 18.7 +2.2 44.2 +5.8

UPSNet Res50 - 33.3 +3.0 41.4 +10.3

UPSNet Res50 X 37.8 +2.4 45.7 +7.8

UPSNet WRes38+PANet X 41.4 +1.6 51.1 +4.9

UPSNet WRes38+PANet+DCN X 43.0 +1.6 51.5 +4.2

Table 3. Improvement on Cityscapes val instance segmentation

initializations: We report the AP, AF of the initialization and gain

in AP, AF from the initialization instances when running our Poly-

Transform model for Cityscapes val.

Init Backbone COCO AP APgain AF AFgain

M-RCNN Res50 - 28.8 +2.2 44.2 +5.6

UPSNet Res101 - 31.7 +1.6 45.7 +3.2

UPSNet Res101 X 34.2 +1.9 45.8 +3.4

UPSNet WRes38+PANet+DCN X 36.1 +1.4 50.1 +3.4

Table 4. Improvement over instance segmentation initializa-

tions on the validation of our new self-driving dataset: We re-

port the AP, AF of the initialization and gain in AP, AF from the

initialization instances when running our PolyTransform model for

the validation of our new self-driving dataset.

Polygon Transforming Loss: We make use of the Cham-

fer Distance loss similar to [23] to move the vertices of our

predicted polygon P closer to the ground truth polygon Q.

The Chamfer Distance loss is defined as:

Lc(P,Q) =
1

|P |
∑

i

min
q∈Q

‖pi − q‖
2
+

1

|Q|
∑

j

min
p∈P

‖p− qj‖2

where p and q are the rasterized edge pixels of the polygons
P and Q. To prevent unstable movement of the vertices, we

add a deviation loss on the lengths of the edges eee between

vertices. Empirically, we found that without this term the

vertices can suddenly shift a large distance, incurring a large

loss and causing the gradients to blow up. We define the

standard deviation loss as: Ls(P ) =

√∑
‖eee−ēee‖

2

n
, where ēee

denotes the mean length of the edges.

4. Experiments

We evaluate our model in the context of both instance

segmentation and interactive annotation settings.

Experimental Setup: We train our model on 8 Titan 1080

Ti GPUs using the distributed training framework Horovod

[56] for 1 day. We use a batch size of 1, ADAM [30], 1e-4

learning rate and a 1e-4 weight decay. We augment our data

by randomly flipping the images horizontally. During train-

ing, we only train with instances whose proposed box has an

Intersection over Union (IoU) overlap of over 0.5 with the

ground truth (GT) boxes. We train with both instances pro-

duced using proposed boxes and GT boxes to further aug-

ment the data. For our instance segmentation experiments,

we augment the box sizes by −3% to +3% during train-

ing and test with a 2% box expansion. For our interactive

annotation experiments, we train and test on boxes with an

expansion of 5px on each side; we only compute a chamfer

loss if the predicted vertex is at least 2px from the ground

Cityscapes (fine+COCO) AP AF

UPSNet 43.0 51.5

Baseline 1 43.8 52.6

Baseline 2 43.5 52.4

Ours 44.6 55.7

Table 5. Comparison with naive refiners on Cityscapes val set.

truth polygon. When placing weights on the losses, we

found ensuring the loss values were approximately balanced

produced the best result. For our PolyTransform FPN, we

use ResNet50 [22] as the backbone and use the same pre-

trained weights from UPSNet [63] on Cityscapes. For our

deforming network we do not use pretrained weights.

4.1. Instance Segmentation

Datasets: We use Cityscapes [11] which has high quality

pixel-level instance segmentation annotations. The 1024 ×
2048 images were collected in 27 cities, and they are split

into 2975, 500 and 1525 images for train/val/test. There are

8 instance classes: bicycle, bus, person, train, truck, mo-

torcycle, car and rider. We also report results on a new

dataset we collected. It consists of 10235/1139/1186 im-

ages for train/val/test split annotated with 10 classes: car,

truck, bus, train , person, rider, bicycle with rider, bicycle,

motorcycle with rider and motorcycle. Each image is of size

1200× 1920.

Metrics: For our instance segmentation results, we report

the average precision (AP and AP50) for the predicted mask.

Here, the AP is computed at 10 IoU overlap thresholds rang-

ing from 0.5 to 0.95 in steps of 0.05 following [11]. AP50

is the AP at an overlap of 50%. We also introduce a new

metric that focusses on boundaries. In particular, we use a

metric similar to [62, 50] where a precision, recall and F1

score is computed for each mask, where the prediction is

correct if it is within a certain distance threshold from the

ground truth. We use a threshold of 1px, and only compute

the metric for true positives. We use the same 10 IoU over-

lap thresholds ranging from 0.5 to 0.95 in steps of 0.05 to

determine the true positives. Once we compute the F1 score

for all classes and thresholds, we take the average over all

examples to get AF.

Instance Initialization: We want to use a strong instance

initialization to show that we can still improve the results.

We take the publicly available UPSNet [63], and replace its

backbone with WideResNet38 [55] and add all the elements

of PANet [42] except for the synchronized batch normaliza-

tion (we use group normalization instead). We then pretrain

on COCO and use deformable convolution (DCN) [15] in

the backbone.

Comparison to SOTA: As shown in 1 we outperform

all baselines in every metric on the val and test sets of

Cityscapes. We achieve a new state-of-the-art test result
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Input Image Our Instance Segmentation GT Instance Segmentation
Figure 3. We showcase qualitative instance segmentation results of our model on the Cityscapes validation set.

of 40.1AP. This outperforms PANet by 3.7 and 2.8 points

in AP and AP50m respectively. It also ranks number 1 on

the official Cityscapes leaderboard. We report the results on

our new dataset in Table 2. We achieve the strongest test

AP result in this leaderboard. We see that we improve over

PANet by 6.2 points in AP and UPSNet by 3.8 points in AP.

Robustness to Initialization: We report the improvement

over different instance segmentation networks used as ini-

tialization in Table 3 on Cityscapes, showing significant and

consistent improvements in val AP across all models. When

we train our model on top of the DWT [4] instances we see

an improvement of +2.2, +5.8 points in AP and AF. We

also train on top of the UPSNet results from the original

paper along with UPSNet with WRes38+PANet as a way

to reproduce the current SOTA val AP of PANet. We show

an improvement of +1.6, +4.9 points in AP and AF. Fi-

nally we improve on our best initialization by +1.6,+4.2
AP points in AP and AF. As we can see, our boundary met-

ric sees a very consistent 4% − 10% gain in AF across all

models. This suggests that our approach significantly im-

provs the instances at the boundary. We notice that a large

gain in AP (WRes38+PANet to WRes38+PANet+DCN)

does not necessarily translate to a large gain in AF, how-

ever, our model will always provide a significant increase in

this metric. We also report the validation AP improvement

over different instance segmentation networks in Table 4 for

our new dataset. We see that we can improve on Mask R-

CNN [21] by +2.2, +5.6 points in AP, AF. For the differ-

ent UPSNet models, we improve upon it between 1.4-2.2

AP points. Once again, our model shows a consistent and

strong improvement over all initializations. We also see a

very consistent 3%− 6% gain in AF across all the models.

Annotation Efficiency: We conduct an experiment where

we ask crowd-sourced labelers to annotate 150 images from

our new dataset with instances larger than 24x24px for ve-

hicles and 12x14px for pedestrians/riders. We performed a

control experiment where the instances are annotated com-

pletely from scratch (without our method) and a parallel ex-

periment where we use our model to output the instances

for them to fix to produce the final annotations. In the

fully manual experiment, it took on average 60.3 minutes

to annotate each image. When the annotators were given

the PolyTransform output to annotate on top of, it took on

average 39.4 minutes to annotate each image. Thus reduc-

ing 35% of the time required to annotate the images. This

resulted in significant cost savings.
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Figure 4. We showcase the qualitative instance segmentation results of our model on the validation set of our new self-driving dataset

Mean bicycle bus person train truck mcycle car rider F1px F2px

DEXTR* [46] 79.11 71.92 87.42 78.36 78.11 84.88 72.41 84.62 75.18 54.00 68.60
Deep Level Sets [62] 80.86 74.32 88.85 80.14 80.35 86.05 74.10 86.35 76.74 60.29 74.40

Ours 80.90 74.22 88.78 80.73 77.91 86.45 74.42 86.82 77.85 62.33 76.55
Table 6. Interactive Annotation (Cityscapes Stretch): This table shows our IoU % performance in the setting of annotation where we

are given the ground truth boxes. DEXTR* represents DEXTR without extreme points.

Mean bicycle bus person train truck mcycle car rider F1px F2px

Polygon-RNN [5] 61.40 52.13 69.53 63.94 53.74 68.03 52.07 71.17 60.58 − −
Polygon-RNN++ [2] 71.38 63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 46.57 62.26

Curve GCN [39] 73.70 67.36 85.43 73.72 64.40 80.22 64.86 81.88 71.73 47.72 63.64
Deep Level Sets [62] 73.84 67.15 83.38 73.07 69.10 80.74 65.29 81.08 70.86 48.59 64.45

Ours 78.76 72.97 87.53 78.58 72.25 85.08 72.50 85.36 75.83 56.89 71.60
Table 7. Interactive Annotation (Cityscapes Hard): This table shows our IoU % performance in the setting of annotation where we are

given the ground truth boxes.

Naive refiner: We implemented two baselines that apply

a semantic segmentation network on top of the initial mask.

1) We replace PolyTransform with a refinement network in-

spired by DeepLabV3 [7] and PWC-Net [59] . It takes as

input the same initialization mask, the cropped RGB image

and the cropped feature, and exploits a series of convolu-

tions to refine the binary mask. 2) We add an extra head to

UPSNet, with the initialization mask and the cropped fea-

ture as input to refine the binary mask. The head’s archi-

tecture is similar to that of the semantic head (i.e., uses the

features from UPSNet’s FPN). For fairness, the number of

parameters of both baselines are similar to PolyTransform.

As shown in Tab. 5, our approach performs the best.

Timing: Our model takes 575 ms to process each image

on Cityscapes. This can easily be improved with more GPU

memory, as this will allow to batch all the instances. Fur-

thermore, the hidden dimension of the FPN can be tuned to

speed up the model.

Qualitative Results: We show qualitative results of our

model on the validation set in Figure 3. In our instance

segmentation outputs we see that in many cases our model

is able to handle occlusion. For example, in row 3, we see

that our model is able to capture the feet of the purple and

blue pedestrians despite their feet being occluded from the

body. We also show qualitative results on our new dataset

in Figure 4. We see that our model is able to capture precise

boundaries, allowing it to capture difficult shapes such as

car mirrors and pedestrians.

Failure Modes: Our model can fail when the initializa-

tion is poor (left image in Figure 5). Despite being able to

handle occlusion, our model can still fail when the occlu-

sion is complex or ambiguous as seen in the right of Figure

5. Here there is a semi-transparent fence blocking the car.
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BBone COCO mIOU mIOUgain F1 F1,gain F2 F2,gain

FCN R50 - 79.93 +0.15 59.43 +1.53 73.64 +1.30

FCN R101 - 80.94 +0.11 60.64 +1.14 74.78 +1.06

FCN R101 X 80.65 +0.08 59.21 +1.39 73.47 +1.10

DeepLabV3 R50 - 80.41 +0.17 59.70 +1.51 73.81 +1.48

DeepLabV3 R101 - 80.93 +0.09 60.50 +1.18 74.44 +1.33

DeepLabV3+ R101 X 80.90 +0.08 61.10 +1.23 75.25 +1.30

Table 8. Improvement on Cityscapes Stretch segmentation

initializations: We report the metric improvements when run-

ning our PolyTransform model on different models. We re-

port our model results trained on FCN [57] and DeepLabV3 [7].

DeepLabV3+ uses the class balancing loss from [46]. We report

on models with various backbones (Res50 vs Res101) and also

with and without pretraining on COCO [38].

4.2. Interactive Annotation

The goal is to annotate an object with a polygon given its

ground truth bounding box. The idea is that the annotator

provides a ground truth box and our model works on top of

it to output a polygon representation of the object instance.

Dataset: We follow [5] and split the Cityscapes dataset

such that the original val set is the test set and two cities

from the training (Weimar and Zurich) form the val set. [62]

further splits this dataset into two settings: 1) Cityscapes

Hard, where the ground truth bounding box is enlarged to

form a square and then the image is cropped. 2) Cityscapes

Stretch, where the ground truth bounding box along with

the image is stretched to a square and then cropped.

Metric: To evaluate our model for this task, we report the

intersection over union (IoU) on a per-instance basis and

average for each class. Then, following [5] this is averaged

across all classes. We also report the boundary metric re-

ported in [62, 50], which computes the F measure along the

contour for a given threshold. The thresholds used are 1 and

2 pixels as Cityscapes contains a lot of small instances.

Instance Initialization: For our best model we use a vari-

ation of DeepLabV3 [7], which we call DeepLabV3+ as the

instance initialization network. The difference is that we

train DeepLabV3 with the class balancing loss used in [46].

Comparison to SOTA: Tables 6 and 7 show results on the

test set in both Cityscapes Stretch and Hard. For Cityscapes

Stretch, we see that our model significantly outperforms the

SOTA in the boundary metric, improving it by up to 2%.

Unlike the Deep Level Sets [62] method which outputs a

pixel wise mask, our method outputs a polygon which al-

lows for it to be amenable to modification by an annotator

by simply moving the vertices. For Cityscapes Hard, our

model outperforms the SOTA by 4.9%, 8.3% and 7.2% in

mean IOU, F at 1px and F at 2px respectively.

Figure 5. Failure modes: (Left) Our model fails because the ini-

tialization is poor. (Right) The model fails because of complex

occlusion. (Yellow: Initialization; Cyan: Ours)

Robustness to Initalization: We also report improve-

ments over different segmentation initializations in Table

8, the results are on the test set. Our models are trained

on various backbone initialization models (FCN [57] and

DeepLabV3 [7] with and without pretraining on COCO

[38]). Our model is able to consistently and significantly

improve the boundary metrics at 1 and 2 pixels by up to

1.5% and we improve the IOU between 0.1-0.2%. We

also note that the difference in mean IOU between FCN

and DeepLabV3 is very small (at most 0.5%) despite

DeepLabV3 being a much stronger segmentation model.

We argue that the margin for mean IOU improvement is

very small for this dataset.

Timing: Our model runs on average 21 ms per object in-

stance. This is 14x faster than Polygon-RNN++ [2] and 1.4x

faster than Curve GCN [39] which are the state of the arts.

5. Conclusion

In this paper, we present PolyTransform, a novel deep

architecture that combines the strengths of both prevailing

segmentation approaches and modern polygon-based meth-

ods. We first exploit a segmentation network to generate a

mask for each individual object. The instance mask is then

converted into a set of polygons and serve as our initializa-

tion. Finally, a deforming network is applied to warp the

polygons to better fit the object boundaries. We evaluate

the effectiveness of our model on the Cityscapes dataset as

well as a novel dataset that we collected. Experiments show

that our approach is able to produce precise, geometry-

preserving instance segmentation that significantly outper-

forms the backbone model. Comparing to the instance seg-

mentation initialization, we increase the validation AP and

boundary metric by up to 3.0 and 10.3 points, allowing us

to achieve 1st place on the Cityscapes leaderboard. We also

show that our model speeds up annotation by 35%. Com-

paring to previous work on annotation-in-the-loop [2], we

outperform the boundary metric by 2.0%. Importantly, our

PolyTransform generalizes across various instance segmen-

tation network.
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