
A Spatial RNN Codec for End-To-End Image Compression

Chaoyi Lin, Jiabao Yao, Fangdong Chen, Li Wang

Hikvision Research Institute

Hangzhou, China

{linchaoyi, yaojiabao, chenfangdong, wangli7}@hikvision.com

Abstract

Recently, deep learning has been explored as a promis-

ing direction for image compression. Removing the spatial

redundancy of the image is crucial for image compression

and most learning based methods focus on removing the re-

dundancy between adjacent pixels. Intuitively, to explore

larger pixel range beyond adjacent pixel is beneficial for re-

moving the redundancy. In this paper, we propose a fast yet

effective method for end-to-end image compression by in-

corporating a novel spatial recurrent neural network. Block

based LSTM is utilized to remove the redundant information

between adjacent pixels and blocks. Besides, the proposed

method is a potential efficient system that parallel computa-

tion on individual blocks is possible. Experimental results

demonstrate that the proposed model outperforms state-of-

the-art traditional image compression standards and learn-

ing based image compression models in terms of both PSNR

and MS-SSIM metrics. It provides a 26.73% bits-saving

than High Efficiency Video Coding (HEVC), which is the

current official state-of-the-art video codec.

1. Introduction

Image compression is an important technique for re-

ducing communication traffic and saving data storage.

Most traditional lossy image compression standards such as

JPEG [25], WebP [4] and Better Portable Graphics (BPG)

[5] are based on transform coding [9] framework. In this

framework, a prediction transform module is used to map

image pixel into a quantized latent representation and then

compress the latents by entropy coding.

Recently, the deep neural networks (DNNs) have shown

their great advantages in various areas. Along with this

progress of deep learning, learning based image compres-

sion models also have derived significant interests [14, 8,

19, 17, 3, 18, 10, 1, 11]. Auto-encoder is usually applied in

image compression that an encoder transforms input image

into a latent representation, and the decoder inversely trans-

forms a quantized latent representation into the reconstruc-

Figure 1. The effective of block based methods. In the blue re-

gion, both the correlation for adjacent pixels and adjacent blocks

are large. In the red region, due to the similar texture in different

blocks, the correlation between adjacent blocks are larger than that

between adjacent pixels.

tion of input image. The neural networks in auto-encoder

approximate nonlinear functions, which can map pixels into

a more compressible latent space than the linear transform

used by traditional image compression standards. Another

advantage of learning based image compression models is

that they can be easily optimized for specific metric such as

SSIM [26] and MS-SSIM [27] by changing the loss func-

tion.

Very recently, a few learning based image compression

models have outperformed the state-of-the-art traditional

image compression standard BPG in terms of PSNR met-

ric [28, 13, 18, 7]. These works focus on removing the

redundant information between adjacent pixels by CNN.

However, in the latest developing image/video compression

standards, such as Versatile Video Coding (VVC) [6], block

based processing is preferred. By using the block based pro-

cessing, the redundant information for both adjacent pix-

els and blocks can be removed through block based pre-

diction transform [15]. Figure 1 illustrates the effective of

block based methods. High correlation for adjacent pix-

els and blocks can be found in the region marked by blue

line. In this case, both pixel based methods and block based

methods are effective. However, in the red region, the pixel

13269



based methods can barely capture the redundancy because

correlation for adjacent pixels is low. By using block based

methods, the similar textures can be found between adjacent

blocks and the spatial redundancy can be removed effec-

tively in this case. This demonstrates that block based meth-

ods can further improve compression performance. How-

ever, it is seldom explored in learning based image com-

pression model.

Inspired by the latest compression standards, we propose

a spatial RNN architecture for lossy image compression

model. The spatial RNN architecture fully exploits spa-

tial correlations existing in adjacent blocks through block

based LSTM, which can further remove spatial redundant

information. Besides, the adaptive quantization is adopted

in our model where the network would learn to automati-

cally allocate bits for the latent map according to its con-

tents. Moreover, two hyperprior network are adopted in-

stead of context model in proposed entropy model by con-

sidering both the performance and efficiency. Experimen-

tal results demonstrate that proposed image compression

model can outperform state-of-the-art traditional compres-

sion standards BPG and other deep learning based image

compression models. Moreover, proposed method is poten-

tial for parallel computing which is highly efficient.

2. Related work

Many standard codecs have been developed for lossy im-

age compression. The most widely used lossy compres-

sion standard is JPEG. More sophisticated standards such

as WebP and BPG are developed to be portable and more

compression-efficient than JPEG. To our knowledge, BPG

has the highest compression performance among existing

lossy image compression standards.

Recently, applying neural network to image compres-

sion has attracted considerable attention. Neural network

architecture for image compression are usually based on

auto-encoder framework. In this framework, both recur-

rent neural network (RNN) [5, 24, 28] and convolution neu-

ral network (CNN) [1, 17, 2, 22, 10] based models have

been developed. Toderici et al. [5] propose RNN architec-

ture for variable-rate image compression framework which

compresses a 32x32 image in a progressive manner. In [24],

a general architecture for compressing full resolution im-

age with RNN, residual scaling and a variation of gated re-

current unit (GRU) is presented. Weber et al. [28] utilize

RNN based architecture for image compression and clas-

sification. Different with works [5, 24], which only focus

on removing the redundant information within each block,

the redundancy between adjacent blocks is explored in our

block based LSTM recurrent network.

Entropy model, which approximates the distribution of

discrete latent representation, improves the image compres-

sion performance significantly. Thus, recent methods have

given increasing focus to entropy model to improve com-

pression performance. Ballé et al. [3] propose to use hy-

perprior to effectively capture the spatial dependencies in

the latent representation. They model the distribution of

latent representation as a zero-mean Gaussian distribution

with standard deviation σ. A scale hyperprior is introduced

to estimate the σ by stacking another auto-encoder on latent

representation. Minnen et al. [18] further utilize the hyper-

prior to estimate the mean and standard deviation of learned

latent representation to help removing spatial dependencies

from the latents. Besides, context model is adopted in their

model for achieving higher compression rate and it is the

first learning based model that outperform BPG on PSNR

metric. Lee et al. [13] also represent a lossy image com-

pression with context model and a parametric model for an

entropy model of hyperprior. In above works, only one hy-

perprior network is used to estimate the entropy parameter µ

and σ. However, in the proposed model, we find that using

two joint hyperprior networks to estimate the entropy pa-

rameter respectively can further improve compression per-

formance. Besides, though context model can improve the

performance, it is time-consuming during decoding process.

Thus, context model is not included in the proposed model

for achieving lower computational complexity.

3. Proposed method

3.1. Overall framework

The overall framework is shown in Figure 2, where en-

coder E, decoder D, quantization net Qz , and hyperprior

networks Eh1

, Dh1

, Eh2

, Dh2

are neural networks. The

proposed method incorporates analysis and synthesis trans-

form, adaptive quantization and entropy model. The analy-

sis transform generates the latent representation of the raw

image while the synthesis transform maps the quantized la-

tent back to reconstructed image. Firstly, the analysis trans-

form E maps a block of one image x to the latent repre-

sentation z. It is in this module that most spatial redun-

dancy is removed. The quantization network Qz generates

the quantization steps s adaptively, which is then quantized

to form the quantized latent ẑ = Q(z; s). To achieve a

higher compression performance, the latent is modeled as

Gaussian distribution in our entropy model and two hyper-

prior networks are used to estimate the entropy parameters

mean m and variance v of the distribution, respectively. En-

coder then uses estimated entropy parameters to compress

and transmit the quantized latent representation ẑ. It is

worth noting that quantization steps s, quantized hyperprior

ĥ1, and ĥ2 are also transmitted as side information. On the

decoder side, The quantization steps s is first recovered to

decode the hyperprior ĥ1 and ĥ2. The two hyperpriors are

used to estimate the entropy parameters and then the esti-

mated entropy parameters are utilized to recover the quan-

13270



Q
Hyper 

Encoder1

AE

Hyper 

Decoder1

Hyper 

Encoder2

Hyper 

Decoder2

x ẑ 1h 2̂h2hm v

s

ẑ

z

Entropy 

parameter

N(m,v)

AE AE

Q Q

Quantization 

Network 

Q
z

2

i
b

AE

m

v

2 3,i i
b b

ẑ

Hyper 

Decoder1

Hyper 

Decoder2

s

1̂h

2̂h

AD

AD

1

i
b

AD

Entropy 

parameter

N(m,v)

s

In
p

u
t 

Im
a
g

e

O
u
tp

u
t 

Im
a
g

e

Encoder

Decoder

Analysis

Transform

Synthesis

Transform

2̂h

bitstream

hyperprior model

x̂

3

i
b

1

i
b

4

i
b

4

i
b

d

ẑ

1̂h

1̂h

Figure 2. Network architecture of the proposed method. Qz represents the quantization net, Q represents the quantization operation. z
represents the full-precision latent representation of x, s represents the quantization step of Q , ẑ is the integer-precision value of z/s. AE
and AD represent the arithmetic encoder and arithmetic decoder respectively. ĥ1 and ĥ2 represent the quantized latent representation of

the mean value m and variance value v of the Gaussian probabilistic density model N , d represents the pixel wise subtraction.

tized ẑ. Finally, synthesis transform maps the latent into the

reconstructed image x̂.

3.2. Analysis and synthesis transform

To take full use of the adjacent blocks to reduce the de-

pendency between the blocks, we propose the block based

Long Short-Term Memory (LSTM) architecture for image

compression.

The Figure 3 (a) presents the proposed individual block

based RNN (BRNN) process for removing the redundancy

between the adjacent sub-blocks. The input image is firstly

divided into non-overlapping blocks χ. The i-th block χi is

then split into four sub-blocks χT
i : {χt

i, χ
t+1

i , χt+2

i , χt+3

i }
with the size of h×w for temporary processing. The LSTM

is used to process these sub-blocks recurrently in the or-

der of: TopLeft → TopRight → BottomRight →
BottomLeft. The redundancy between sub-blocks can

be removed in this recurrent process since the previous

sub-block is used as the reference of current sub-block.

In addition to the redundancy removing, each block χi

is mapped to the latent representation individually, which

demonstrates the potential to parallel computation for ac-

celerating the encoding and decoding process.

Figure 3 (b) shows the highly recurrent RNN (HRNN)

process to explore the redundancy removing between adja-

cent blocks. It is similar to the process of (a) except that

there are some sub-blocks χt+1

i take the state of previous

sub-blocks χtn
i−m(0 < m < 4, 0 < n < 4) as input of

hidden state. For example, sub-block χ2
i is the input of

χ1
i+1 which lies in the second blockχi+1. This methods

can further exploit the correlation between adjacent blocks

and achieve a higher performance. However, in this method,

each block can not be computed concurrently and thus it is

slower than method described in (a). Based on above anal-

ysis, method (a) is adopted in our model.

Let the split sub-block χt
i denotes the input, hidt and ct

denote the hidden and cell states, respectively. After pass-

ing LSTM layer, the new hidden state hidt+1, cell ct+1 are

computed as:

{ot, f t, it, gt} = act(Ws ⊗ hidt +Wi ⊗ xt)

ct+1 = f t ⊙ ct + it ⊙ gt

hidt+1 = ot ⊙ tanh(ct)

(1)

where ⊗ and ⊙ represent the convolution and element-wise

multiplication operation, Wi and Ws are the weights of

convolution layer Ci and Cs for the input components and

state-to-state gates, respectively. The ot, f t, it, gt denotes

the output gates, forget gates, input gates and contents gates,

respectively. The act() is the activation function, which is

sigmoid function for ot, f t, it and is tanh function when re-

ferred to gt.

13271



(a) (b)
Figure 3. Visualization of the input-to-state and state-to-state map-

pings for the proposed partitions. The left shows the process of

BRNN, the right shows the process of HRNN.

Figure 4. For LSTM in encoder side, the k represents the kernel

size for both state-to-state convolutional layer Cs and input con-

volutional layer Ci, the c represents the output channel number of

the hidden cell and output cell, the channel number of Cs and Ci

must be set to the quadruple of c, the s represents the stride number

of Ci. For LSTM in decoder side, the Ci is set to de-convolution

operation with the up-sample factor s. For the last convolution

layer in encoder, the channel number M is chosen based on the λ.

The layer details of encoder E and decoder D are shown

in Figure 4. We denote Ci as the state-to-state convolu-

tional layer and Cs is the input convolutional layer. The

size of the tensor Ti and Ts, which is the output of Ci

and Cs separately, is 4c × h
2
× w

2
(where c corresponds

to the number of channels). After the activation opera-

tion, the tensor is split into 4 chunks which are the in-

put of four gates, respectively. The size of each chunk is

c× h
2
× w

2
. It should be noted that each sub-block χt

i shares

the same weights of LSTM to ensure the invariance of the

computed features. Finally, the output latents representa-

tion Z{zt, zt+1, zt+2, zt+3} for each block are generated

with the size of 4×M × h
16

× w
16

(M represents the output

channel number of the last layer in encoder).

3.3. Quantization

It is found that great variability exists in the latents rep-

resentation across channels, which means the importance of

each channel should be different. Figure 5 shows the latent

map for channel in a specific image. It can be seen that the

first latent map preserves the high frequency characteristic

since it preserves the details of the original images. Mean-

while, the last latent map represents the low frequency in-

formation. It can also be seen that the low frequency latent

map is usually smooth and exists larger spatial redundancy

than high frequency latent map. In practice, the smooth re-

gions usually require less coding bits. Thus, less bits are

allocated to the low frequency features by applying a larger

quantization step. On the contrary, the high frequency fea-

tures need a smaller quantization steps for achieving a better

reconstruction quality. A quantization network is proposed

to learn the quantization step adaptively in our model. As

shown in the right side of Figure 5, the learned quantization

steps are highly correlated with the latent feature maps.

Fabian et al. [17] use the importance map to allocate dif-

ferent regions with different amounts of bits. However, we

train the quantization step si for each channel of the latent

representation. The quantization step si can be obtained by

the quantization net Qz:

si = Qz(z̃i; θq) (2)

where the θq represents the weights of quantization network

Qz as shown in Figure 6.

The quantization of the latent representation z is a chal-

lenge for the end-to-end training, since the quantization op-

eration is non-differentiable. Here we adopt Ballé’s quanti-

zation operation [2] that the additive uniform noise is added

to the latent during training to replace the non-differentiable

quantization. This quantization is denoted by z̃i. In the test-

ing stage, actual quantization represented by ẑi is used. The

equations are shown as follow:

z̃i = Q(zi, si) = zi + µ(−
si

2
,
si

2
)

ẑi = Q(zi, si) =

⌊

zi

si
+ 0.5

⌋

× si
(3)

where µ(− si

2
, si

2
) represents the uniform noise which range

from − si

2
to si

2
, ⌊·⌋ represents the floor operation.

3.4. Advanced multiple correlated hyperprior
model

To improve the efficiency and reduce the dependency of

the context, we adopt the hyperprior model [3] to estimate

the probability of the current element individually instead

of the context-based method. Furthermore, we extend the

hyperprior model by analyzing the correlation among the

mean mi, the variance σi of Gaussian probability density

model and the latent representations zi. Two experiments

are designed to control each variable. Firstly, we fix the

variance σi and quantization step s of each latent represen-

tations, and derive the optimal mean mi for the latent zi.

Then we fix the mean mi and quantization step s to derive

13272



(a. The original image.) (b. The latent maps.) (c. The trained quantization steps.)
Figure 5. The visualization of the latent representation in each channel, and the average quantization step of the corresponding latent

representation.

Max

Pooling

Average

Pooling

z

F
u

lly
-c

o
n

n
e

c
te

d
 +

 S
ig

m
o

id

C
: 1

0
2

4

F
u

lly
-c

o
n

n
e

c
te

d
 +

 S
ig

m
o

id

C
: 5

1
2

F
u

lly
-c

o
n

n
e

c
te

d
 +

 S
ig

m
o

id

C
: 2

5
6

F
u

lly
-c

o
n

n
e

c
te

d
 

C
: M Sigmoid

z

s

zm

za

Figure 6. The architecture of Qz . The weights of the fully con-

nected layer are shared between zm and za, which is inspired by

[30]. The green arrows represent the data flow of zm and the blue

arrows represent the data flow of za. Each fully connected layer

is followed by sigmoid function and the number of channels is

denoted by C. For the last fully connected layer, the number of

channels is equal to that of z.

Figure 7. The correlation coefficient curve from training samples.

the optimal variance σi. The green line of Figure 7 presents

the results of correlation coefficient between the mi and the

zi, which indicates the latent representation and mean value

are highly correlated. The red line represents the correlation

coefficient between the mi and the σi, which is less corre-

lated than green line. Then we further analysis the correla-

tion of σi and distance di = zi−mi. As shown in Figure 7,

the σi is much more correlated with di than mi. Therefore,

different with previous works on estimating the entropy pa-

rameters of Gaussian distribution, the hyperprior is split into

two sub-hyperpriors, one adopts the latent representation ẑi

as the input to estimate the mean value, the other estimates

the σi based on the distance di.

(a)

(b)
Figure 8. The figure on the top is the architecture of H1, the bot-

tom is the architecture of H2. Q represents the quantization with

the step si trained by Qz . The Encoder LSTMs and Decoder

LSTMs share all the weights of LSTM layers in encoder E and

decoder D respectively.

We use two sub-modules H1 and H2, which generates

mean mi and variance vi respectively to estimate the cur-

rent latent value’s probability. For the Gaussian distribution

model, as the quantization step s is fixed, we can only get

the max probability when ẑi = mi. For H1, it is taken as

a data compression process same as encoder E and decoder

D, therefore we share the same LSTM weights with them

to save the memory allocation and training time. For H2,

the distance d(ẑi,mi) between ẑi and mi in element-wise

is taken as the input of H2 to generate the variance vi. The

probability mass functions can be described as:

pẑi(ẑi|mi, vi, si) = (N(mi, vi)∗µ(−
si

2
,
si

2
))(ẑi) (4)

13273










