
Graph-guided Architecture Search for Real-time Semantic Segmentation

Peiwen Lin1,∗ Peng Sun2,∗ Guangliang Cheng1 Sirui Xie3 Xi Li2,† Jianping Shi1,†

1SenseTime Research 2Zhejiang University 3University of California, Los Angeles

{linpeiwen,chengguangliang,shijianping}@sensetime.com

{sunpeng1996,xilizju}@zju.edu.cn srxie@ucla.edu

Abstract

Designing a lightweight semantic segmentation network

often requires researchers to find a trade-off between per-

formance and speed, which is always empirical due to

the limited interpretability of neural networks. In order

to release researchers from these tedious mechanical tri-

als, we propose a Graph-guided Architecture Search (GAS)

pipeline to automatically search real-time semantic seg-

mentation networks. Unlike previous works that use a sim-

plified search space and stack a repeatable cell to form a

network, we introduce a novel search mechanism with a

new search space where a lightweight model can be effec-

tively explored through the cell-level diversity and latency-

oriented constraint. Specifically, to produce the cell-level

diversity, the cell-sharing constraint is eliminated through

the cell-independent manner. Then a graph convolution

network (GCN) is seamlessly integrated as a communica-

tion mechanism between cells. Finally, a latency-oriented

constraint is endowed into the search process to balance

the speed and performance. Extensive experiments on

Cityscapes and CamVid datasets demonstrate that GAS

achieves the new state-of-the-art trade-off between accu-

racy and speed. In particular, on Cityscapes dataset, GAS

achieves the new best performance of 73.5% mIoU with

speed of 108.4 FPS on Titan Xp.

1. Introduction

As a fundamental topic in computer vision, semantic

segmentation [26, 51, 9, 7] aims at predicting pixel-level

labels for images. Leveraging the strong ability of CNNs

[38, 18, 19, 12], many works have achieved remarkable

performance on public semantic segmentation benchmarks

[13, 15, 4]. To pursue higher accuracy, state-of-the-art mod-

els become increasingly larger and deeper, and thus require

∗The first two authors contributed equally to this paper.
†Corresponding Author

Figure 1. The inference speed and mIoU for different networks

on the Cityscapes test set with only fine training data. Our GAS

achieves the state-of-the-art trade-off between speed and perfor-

mance. The Mark ∗ denotes the speed is remeasured on Titan Xp.

Best viewed in color.

high computational resources and large memory overhead,

which makes it difficult to deploy on resource-constrained

platforms, such as mobile devices, robotics, self-driving

cars, etc.

Recently, many researches have focused on designing

and improving CNN models with light computation cost

and satisfactory segmentation accuracy. For example, some

works [1, 34] reduce the computation cost via the pruning

algorithms, and ICNet [50] uses an image cascade network

to incorporate multi-resolution inputs. BiSeNet [47] and

DFANet [22] utilize a light-weight backbone to speed up,

and is equipped with a well-designed feature fusion or ag-

gregation module to remedy the accuracy drop. To achieve

such design, researchers acquire expertise in architecture

design through enormous trial and error to carefully balance

the accuracy and resource-efficiency.

To design more effective segmentation networks, some

4203



researchers have explored automatically neural architec-

ture search (NAS) methods [25, 53, 30, 21, 36, 5, 44] and

achieved excellent results. For example, Auto-Deeplab [24]

searches cell structures and the downsampling strategy to-

gether in the same round. CAS [49] searches an architecture

with customized resource constraint and a multi-scale mod-

ule which has been widely used in semantic segmentation

field [9, 51].

Particularly, CAS has achieved state-of-the-art segmen-

tation performance in mobile setting [50, 22, 47]. Like the

general NAS methods, such as ENAS [36], DARTS [25]

and SNAS [44], CAS also searches for two types of cells

(i.e. normal cell and reduction cell) and then repeatedly

stacks the identical cells to form the whole network. This

simplifies the search process, but also increases the diffi-

culties to find a good trade-off between performance and

speed due to the limited cell diversity. As shown in Figure

2(a), the cell is prone to learn a complicated structure to pur-

sue high performance without any resource constraint, and

the whole network will result in high latency. When a low-

computation constraint is applied, the cell structures tend to

be over-simplified as shown in Figure 2(b), which may not

achieve satisfactory performance.

Different from the traditional search algorithms with

simplified search space, in this paper, we propose a

novel search mechanism with new search space, where a

lightweight model with high performance can be fully ex-

plored through the well-designed cell-level diversity and

latency-oriented constraint. On one hand, to encourage the

cell-level diversity, we make each cell structure indepen-

dent, and thus the cells with different computation cost can

be flexibly stacked to form a lightweight network in Figure

2(c). In this way, simple cells can be applied to the stage

with high computation cost to achieve low latency, while

complicated cells can be chosen in deep layers with low

computation for high accuracy. On the other hand, we ap-

ply a real-world latency-oriented constraint into the search

process, through which the searched model can achieve bet-

ter trade-off between the performance and latency.

However, simply endowing cells with independence in

exploring its own structures enlarges the search space and

makes the optimization more difficult, which causes accu-

racy degradation as shown in Figure 5(a) and Figure 5(b).

To address this issue, we incorporate a Graph Convolution

Network (GCN) [20] as the communication deliverer be-

tween cells. Our idea is inspired by [29] that different cells

can be treated as multiple agencies, whose achievement of

social welfare may require communication between them.

Specifically, in the forward process, starting from the first

cell, the information of each cell is propagated to the next

adjacent cell with a GCN. Our ablation study exhibits that

this communication mechanism tends to guide cells to se-

lect less-parametric operations, while achieving the satis-

0

1

2 3 0

1

2 3 0

1

2 3

0

1

2 3 0

1

2 3 0

1

2 3

P
rev

io
u

s W
o

rk

(b) Low latency, low performance 

(a) High latency, high performance 

0

1

2 30

1

2 3

O
u

r W
o

rk

(c) Low latency, high performance 

0

1

2 3

Figure 2. (a) The network stacked by complicated cells results in

high latency and high performance. (b) The network stacked by

simple cells leads to low latency and low performance. (c) The cell

diversity strategy, i.e. each cell possesses own independent struc-

ture, can flexibly construct the high accuracy lightweight network.

Best viewed in color.

factory accuracy. We name the method as Graph-guided

Architecture Search (GAS).

We conduct extensive experiments on the standard

Cityscapes [13] and CamVid [4] benchmarks. Compared

to other real-time methods, our method locates in the top-

right area in Figure 1, which is the state-of-the-art trade-off

between the performance and latency.

The main contributions can be summarized as follows:

• We propose a novel search framework, for real-time

semantic segmentation, with a new search space in

which a lightweight model with high performance can

be effectively explored.

• We integrate the graph convolution network seam-

lessly into neural architecture search as a communi-

cation mechanism between independent cells.

• The lightweight segmentation network searched with

GAS is customizable in real applications. Notably,

GAS has achieved 73.5% mIoU on the Cityscapes test

set and 108.4 FPS on NVIDIA Titan Xp with one

769× 1537 image.

2. Related Work

Semantic Segmentation Methods FCN [26] is the pio-

neer work in semantic segmentation. To improve the seg-

mentation performance, some remarkable works have uti-

lized various heavy backbones [38, 18, 19, 12] or effective

modules to capture multi-scale context information [51, 7,

8]. These outstanding works are designed for high-quality

4204



GCN

!!"#

!!

Building Graphs

Reasoning

!!
$

(a) Network Architecture

Normal
Cell_0

GGM

Conv3x3
Stride 2 2

Conv3x3

Stride 1

Conv3x3
Stride 2

GGM

Reduction
Cell_1

Normal
Cell_7

Reduction
Cell_8

Normal
Cell_13

GGM

... ... ASPP

(b) GCN-Guided Module (GGM)

Figure 3. Illustration of our Graph-Guided Network Architecture Search. In reduction cells, all the operations adjacent to the input

nodes are of stride two. (a) The backbone network, it’s stacked by a series of independent cells. (b) The GCN-Guided Module (GGM), it

propagates information between adjacent cells. αk and αk−1 represent the architecture parameters for cell k and cell k − 1, respectively,

and α
′

k is the updated architecture parameters by GGM for cell k. The dotted lines indicate GGM is only utilized in the search progress.

Best viewed in color.

segmentation, which is inapplicable to real-time applica-

tions. In terms of efficient segmentation methods, there are

two mainstreams. One is to employ relatively lighter back-

bone (e.g. ENet [34]) or introduce some efficient operations

(depth-wise dilated convolution). DFANet [22] utilizes a

lightweight backbone to speed up and equips with a cross-

level feature aggregation module to remedy the accuracy

drop. Another is based on multi-branch algorithm that con-

sists of more than one path. For example, ICNet [50] pro-

poses to use the multi-scale image cascade to speed up the

inference. BiSeNet [47] decouples the extraction for spatial

and context information using two paths.

Neural Architecture Search Neural Architecture

Search (NAS) aims at automatically searching network ar-

chitectures. Most existing architecture search works are

based on either reinforcement learning [52, 17] or evo-

lutionary algorithm [37, 11]. Though they can achieve

satisfactory performance, they need thousands of GPU

hours. To solve this time-consuming problem, one-shot

methods [2, 3] have been developed to greatly solve the

time-consuming problem by training a parent network from

which each sub-network can inherit the weights. They can

be roughly divided into cell-based and layer-based meth-

ods according to the type of search space. For cell-based

methods, ENAS [36] proposes a parameter sharing strat-

egy among sub-networks, and DARTS [25] relaxes the dis-

crete architecture distribution as continuous deterministic

weights, such that they could be optimized with gradient

descent. SNAS [44] proposes novel search gradients that

train neural operation parameters and architecture distri-

bution parameters in the same round of back-propagation.

What’s more, there are also some excellent works [10, 32]

to reduce the difficulty of optimization by decreasing grad-

ually the size of search space. For layer-based methods,

FBNet [42], MnasNet [39], ProxylessNAS [5] use a multi-

objective search approach that optimizes both accuracy and

real-world latency.

In the field of semantic segmentation, DPC [6] is the

pioneer work by introducing meta-learning techniques into

the network search problem. Auto-Deeplab [24] searches

cell structures and the downsampling strategy together in

the same round. More recently, CAS [49] searches an ar-

chitecture with customized resource constraint and a multi-

scale module which has been widely used in semantic seg-

mentation field. And [31] over-parameterises the architec-

ture during the training via a set of auxiliary cells using re-

inforcement learning. Recently, NAS also has been used in

object detection, such as NAS-FPN [16], DetNAS [48] and

Auto-FPN [45].

Graph Convolution Network Convolutional neural net-

works on graph-structure data is an emerging topic in deep

learning research. Kipf [20] presents a scalable approach

for graph-structured data that is based on an efficient vari-

ant of convolutional neural networks which operate directly

on graphs, for better information propagation. After that,

Graph Convolution Networks (GCNs) [20] is widely used

in many domains, such as video classification [41] and ac-

tion recognition [46]. In this paper, we apply the GCNs to

4205



𝑖" 𝑖#

𝑥"

𝑥#

Figure 4. The structure of cell in our GAS. Each colored edge

represents one candidate operation.

model the relationship of adjacent cells in network architec-

ture search.

3. Methods

As shown in Figure 3, GAS searches for, with GCN-

Guided module (GGM), an optimal network constructed by

a series of independent cells. In the search process, we take

the latency into consideration to obtain a network with com-

putational efficiency. This search problem can be formu-

lated as:

min
a∈A

Lval + β ∗ Llat (1)

where A denotes the search space, Lval and Llat are the

validation loss and the latency loss, respectively. Our goal

is to search an optimal architecture a ∈ A that achieves the

best trade-off between the performance and speed.

In this section, we will describe three main components

in GAS: 1) Network Architecture Search; 2) GCN-Guided

Module; 3) Latency-Oriented Optimization.

3.1. Network Architecture Search

As shown in Figure 3(a), the whole backbone takes an

image as input which is first filtered with three convolu-

tional layers followed by a series of independent cells. The

ASPP [9] module is subsequently used to extract the multi-

scale context for the final prediction.

A cell is a directed acyclic graph (DAG) as shown in

Figure 4. Each cell has two input nodes i1 and i2, N or-

dered intermediate nodes, denoted by N = {x1, ..., xN},

and an output node which outputs the concatenation of all

intermediate nodes N . Each node represents the latent rep-

resentation (e.g. feature map) in the network, and each di-

rected edge in this DAG represents an candidate operation

(e.g. conv, pooling).

The number of intermediate nodes N is 2 in our work.

Each intermediate node takes all its previous nodes as input.

In this way, x1 has two inputs I1 = {i1, i2} and node x2

takes I2 = {i1, i2, x1} as inputs. The intermediate nodes xi

can be calculated by:

xi=
∑

c∈Ii

Õh,i(c) (2)

where Õh,i is the selected operation at edge (h, i).

To search the selected operation Õh,i, the search space is

represented with a set of one-hot random variables from a

fully factorizable joint distribution p(Z) [44]. Concretely,

each edge is associated with a one-hot random variable

which is multiplied as a mask to the all possible operations

Oh,i = (o1h,i, o
2

h,i, ..., oMh,i) in this edge. We denote the one-

hot random variable as Zh,i = (z1h,i, z
2

h,i, ..., zMh,i) where

M is the number of candidate operations. The intermediate

nodes during search process in such way are:

xi=
∑

c∈Ii

Õh,i(c) =
∑

c∈Ii

M∑

m=1

zmh,io
m
h,i(c) (3)

To make P (Z) differentiable, reparameterization [27] is
used to relax the discrete architecture distribution to be con-
tinuous:

Zh,i= fαh,i
(Gh,i) = softmax((logαh,i +Gh,i)/λ) (4)

where αh,i is the architecture parameters at the edge (h, i),
and Gh,i = −log(−log(Uh,i)) is a vector of Gumbel random

variables, Uh,i is a uniform random variable and λ is the

temperature of softmax.

For the set of candidate operations O, we only use the

following 8 kinds of operations to better balance the speed

and performance:

• 3 × 3 max pooling • skip connection

• 3 × 3 conv • zero operation

• 3 × 3 separable conv

• 3 × 3 dilated separable conv (dilation=2)

• 3 × 3 dilated separable conv (dilation=4)

• 3 × 3 dilated separable conv (dilation=8)

3.2. GCNGuided Module

With cell independent to each other, the inter-cell rela-

tionship becomes very important for searching efficiently.

We propose a novel GCN-Guided Module (GGM) to nat-

urally bridge the operation information between adjacent

cells. The total network architecture of our GGM is shown

in Figure 3(b). Inspired by [41], the GGM represents

the communication between adjacent cells as a graph and

perform reasoning on the graph for information delivery.

Specifically, we utilize the similarity relations of edges in

adjacent cells to construct the graph where each node rep-

resents one edge in cells. In this way, the state changes for

previous cell can be delivered to current cell by reasoning

on this graph.

As stated in Section 3.1, let αk represents the architec-

ture parameter matrix for the cell k, and the dimension of

αk is p × q where p and q represents the number of edges

and the number of candidate operations respectively. Same

for cell k, the architecture parameter αk−1 for cell k − 1
also is a p × q matrix. To fuse the architecture parame-

ter information of previous cell k − 1 into the current cell

4206



k and generate the updated α′
k, we model the information

propagation between cell k − 1 and cell k as follows:

α′
k = αk + γΦ2(G(Φ1(αk−1), Adj)) (5)

where Adj represents the adjacency matrix of the reasoning

graph between cells k and k−1, and the function G denotes

the Graph Convolution Networks (GCNs) [20] to perform

reasoning on the graph. Φ1 and Φ2 are two different trans-

formations by 1D convolution. Specifically, Φ1 maps the

original architecture parameter to embedding space and Φ2

transfers it back into the source space after the GCN rea-

soning. γ controls the fusion of two kinds of architecture

parameter information.

For the function G, we construct the reasoning graph be-

tween cell k − 1 and cell k by their similarity. Given a edge

in cell k, we calculate the similarity between this edge and

all other edges in cell k − 1 and a softmax function is used

for normalization. Therefore, the adjacency matrix Adj of

the graph between two adjacent cells k and k − 1 can be

established by:

Adj = Softmax(φ1(αk) ∗ φ2(αk−1)
T ) (6)

where we have two different transformations φ1 = αkw1 and

φ2 = αk−1w2 for the architecture parameters, and parame-

ters w1 and w2 are both q× q weights which can be learned

via back propagation. The result Adj is a p× p matrix.

Based on this adjacency matrix Adj, we use the GCNs

to perform information propagation on the graph as shown

in Equation 7. A residual connection is added to each layer

of GCNs. The GCNs allow us to compute the response of a

node based on its neighbors defined by the graph relations,

so performing graph convolution is equivalent to perform-

ing message propagation on the graph.

G(Φ1(αk−1), Adj) = AdjΦ1(αk−1)W
g

k−1
+Φ1(αk−1) (7)

where the W
g
k−1

denotes the GCNs weight with dimension

d× d, which can be learned via back propagation.

The proposed well-designed GGM seamlessly integrates

the graph convolution network into neural architecture

search, which can bridge the operation information between

adjacent cells.

3.3. LatencyOriented Optimization

To obtain a real-time semantic segmentation network,

we take the real-world latency into consideration during the

search process, which orients the search process toward the

direction to find an optimal lightweight model. Specifically,

we create a GPU-latency lookup table [5, 42, 49, 39] which

records the inference latency of each candidate operation.

During the search process, each candidate operation m at

edge (h, i) will be assigned a cost latmh,i given by the pre-

built lookup table. In this way, the total latency for cell k is

accumulated as:

latk=
∑

h,i

M∑

m=1

zmh,ilat
m
h,i (8)

where zmh,i is the softened one-hot random variable as stated

in Section 3.1. Given an architecture a, the total latency cost

is estimated as:

LAT (a)=

K∑

k=0

latk (9)

where K refers to the number of cells in architecture a. The

latency for each operation latmh,i is a constant and thus total

latency loss is differentiable with respect to the architecture

parameter αh,i. The total loss function is designed as fol-

lows:

L(a, w)= CE(a, wa) + β log(LAT (a)) (10)

where CE(a, wa) denotes the cross-entropy loss of archi-

tecture a with parameter wa, LAT (a) denotes the over-

all latency of architecture a, which is measured in micro-

second, and the coefficient β controls the balance between

the accuracy and latency. The architecture parameter α and

the weight w are optimized in the same round of back-

propagation.

4. Experiments

In this section, we conduct extensive experiments to ver-

ify the effectiveness of our GAS. Firstly, we compare the

network searched by our method with other works on two

standard benchmarks. Secondly, we perform the ablation

study for the GCN-Guided Module and latency optimiza-

tion settings, and close with an insight about GCN-Guided

Module.

4.1. Benchmark and Evaluation Metrics

Datasets In order to verify the effectiveness and ro-

bustness of our method, we evaluate our method on the

Cityscapes [13] and CamVid [4] datasets. Cityscapes [13]

is a public released dataset for urban scene understanding.

It contains 5,000 high quality pixel-level fine annotated im-

ages (2975, 500, and 1525 for the training, validation, and

test sets, respectively) with size 1024 × 2048 collected from

50 cities. The dense annotation contains 30 common classes

and 19 of them are used in training and testing. CamVid [4]

is another public released dataset with object class seman-

tic labels. It contains 701 images in total, in which 367 for

training, 101 for validation and 233 for testing. The images

have a resolution of 960 × 720 and 11 semantic categories.

4207



Evaluation Metrics For evaluation, we use mean of

class-wise intersection over union (mIoU), network forward

time (Latency), and Frames Per Second (FPS) as the evalu-

ation metrics.

4.2. Implementation Details

We conduct all experiments using Pytorch 0.4 [35] on

a workstation, and the inference time in all experiments is

reported on one Nvidia Titan Xp GPU.

The whole pipeline contains three sequential steps:

search, pretraining and finetuning. It starts with the search

progress on the target dataset and obtains the light-weight

architecture according to the optimized α followed by the

ImageNet [14] pretraining, and this pretrained model is sub-

sequently finetuned on the specific dataset for 200 epochs.

In search process, the architecture contains 14 cells and

each cell has N = 2 intermediate nodes. With the consid-

eration of speed, the initial channel for network is 8. For

the training hyper-parameters, the mini-batch size is set to

16. The architecture parameters α are optimized by Adam,

with initial learning rate 0.001, β = (0.5, 0.999) and weight

decay 0.0001. The network parameters are optimized using

SGD with momentum 0.9, weight decay 0.001, and cosine

learning scheduler that decays learning rate from 0.025 to

0.001. For gumbel softmax, we set the initial temperature

λ in equation 4 as 1.0, and gradually decrease to the min-

imum value of 0.03. The search time cost on Cityscapes

takes approximately 10 hours with 16 TitanXP GPU.

For finetuning details, we train the network with mini-

batch 8 and SGD optimizer with ‘poly’ scheduler that decay

learning rate from 0.01 to zero. Following [43], the online

bootstrapping strategy is applied to the finetuning process.

For data augmentation, we use random flip and random re-

size with scale between 0.5 and 2.0. Finally, we randomly

crop the image with a fixed size for training.

For the GCN-guided Module, we use one Graph Convo-

lution Network (GCN) [20] between two adjacent cells, and

each GCN contains one layer of graph convolutions. The

kernels size of the GCN parameters W in equation 7 is 64

× 64. We set the γ as 0.5 in equation 5 in our experiments.

4.3. Realtime Semantic Segmentation Results

In this part, we compare the model searched by GAS

with other existing real-time segmentation methods on se-

mantic segmentation datasets. The inference time is mea-

sured on an Nvidia Titan Xp GPU and the speed of other

methods reported on Titan Xp GPU in CAS [49] are used

for fair comparison. Moreover, the speed is remeasured on

Titan Xp if the origin paper reports it on different GPU and

is not mentioned in CAS [49].

Results on Cityscapes. We evaluate the network

searched by GAS on the Cityscapes test set. The valida-

tion set is added to train the network before submitting to

Method Input Size mIoU (%) Latency(ms) FPS

FCN-8S [26] 512x1024 65.3 227.23 4.4

PSPNet [51] 713x713 81.2 1288.0 0.78

DeepLabV3∗ [7] 769x769 81.3 769.23 1.3

SegNet [1] 640x360 57.0 30.3 33

ENet [34] 640x360 58.3 12.7 78.4

SQ [40] 1024x2048 59.8 46.0 21.7

ICNet [50] 1024x2048 69.5 26.5 37.7

SwiftNet [33] 1024x2048 75.1 26.2 38.1

ESPNet [28] 1024x512 60.3 8.2 121.7

BiSeNet [47] 768x1536 68.4 9.52 105.8

DFANet A§ [22] 1024x1024 71.3 10.0 100.0

DFANet A† [22] 1 1024x1024 71.3 19.01 52.6

CAS [49] 768x1536 70.5 9.25 108.0

CAS∗ [49] 768x1536 72.3 9.25 108.0

GAS 769x1537 71.8 9.22 108.4

GAS∗ 769x1537 73.5 9.22 108.4

Table 1. Comparing results on the Cityscapes test set. Methods

trained using both fine and coarse data are marked with ∗. The

mark § represents the speed on TitanX, and the mark † represents

the speed is remeasured on Titan Xp.

Cityscapes online server. Following [47, 49], GAS takes as

an input image with size 769 × 1537 that is resized from

origin image size 1024 × 2048. Overall, our GAS gets

the best performance among all methods with the speed

of 108.4 FPS. With only fine data and without any eval-

uation tricks, our GAS yields 71.8% mIoU which is the

state-of-the-art trade-off between performance and speed

for real-time semantic segmentation. GAS achieves 73.5%

when the coarse data is added into the training set. The

full comparison results are shown in Table 1. Compared

to BiSeNet [47] and CAS [49] that have comparable speed

with us, our GAS surpasses them along multiple perfor-

mance points with 3.4% and 1.3%, respectively. Compared

to other methods such as SegNet [1], ENet [34], SQ [40]

and ICNet [50], our method achieves significant improve-

ment in speed while getting performance gain over them

about 14.8%, 13.5%, 12.0%, 2.3%, respectively.

Results on CamVid. We directly transfer the network

searched on Cityscapes to Camvid to verify the transfer-

ability of GAS. Table 2 shows the comparison results with

other methods. With input size 720 × 960, GAS achieves

the 72.8% mIoU with 148.0 FPS which is also the state-

of-the-art trade-off between performance and speed, which

demonstrates the superior transferability of GAS.

1After merging the BN layers for DFANet, there still has a speed gap

between the original paper and our measurement. We suspect that it’s

caused by the inconsistency of implementation platform in which DFANet

has the optimized depth-wise convolution (DW-Conv). GAS also have

many candidate operations using DW-Conv, so the speed of our GAS is still

capable of beating it if the DW-Conv is optimized correctly like DFANet.

4208



Method mIoU (%) Latency(ms) FPS

SegNet [1] 55.6 34.01 29.4

ENet [34] 51.3 16.33 61.2

ICNet [50] 67.1 28.98 34.5

BiSeNet [47] 65.6 - -

DFANet A [22] 64.7 8.33 120

CAS [49] 71.2 5.92 169

GAS 72.8 6.53 153.1

Table 2. Results on the CamVid test set with resulotion 960 ×
720. ”-” indicates the corresponding result is not provided by the

methods.

4.4. Ablation Study

To verify the effectiveness of each component in our

framework, extensive ablation studies for the GCN-Guided

Module and the latency loss are performed. In addition,

we also give some insights about the role of GCN-Guided

Module in the search process.

4.4.1 Effectiveness of the GCN-Guided Module

We propose the GCN-Guided Module (GGM) to build the

connection between cells. To verify the effectiveness of the

GGM, we conduct a series of experiments with different

strategies: a) network stacked by shared cell; b) network

stacked by independent cell; c) based on strategy-b, using

fully connected layer to infer the relationship between cells;

d) based on strategy-b, using GGM to infer the relationship

between cells. Experimental results are shown in Figure 5.

The performance reported here is the average mIoU over

five repeated experiments on the Cityscapes validation set

with latency loss weight β = 0.005. The numbers below

the horizontal axis are the average model size of five archi-

tectures (e.g. 2.18M) and the purple line is the variance of

mIoU for each strategy. Overall, with only independent cell,

the performance degrades a lot due to the enlarged search

space which makes optimization more difficult. This perfor-

mance drop is mitigated by adding communication mecha-

nism between cells. Especially, our GCN-Guided Module

can bring about 3% performance improvement compared to

the fully-connected mechanism (i.e. setting (c)).

68.5 
66.9 

69.4 
72.4 

60.0

62.0

64.0

66.0

68.0

70.0

72.0

74.0

(a) Cell shared
(6.5M)

(b) Cell independent
(4.24M)

(c) Cell independent + FC
(3.12M)

(d) Cell independent + GCN
(2.18M)

Effectiveness of GCN-Guided Module

mIoU (%)

Figure 5. Ablation study for the effectiveness of GCN-Guided

Module on Cityscapes validation dataset. Best viewed in color.

Comparison against Random Search As discussed in

[23], random search is a competitive baseline for hyper-

parameter optimization. To further verify the effectiveness

of GCN-Guided Module, we randomly sample ten archi-

tectures from the search space and evaluate them on the

Cityscapes validation set with ImageNet pretrained. Specif-

ically, we try two types of random settings in our experi-

ments: a) fully random search without any constraint; b)

randomly select the networks that meet the speed require-

ment about 108 FPS from the search space. The results

are shown in Table 3, in which each value is the average

result of ten random architectures. In summary, the net-

work searched by GAS can achieve an excellent trade-off

between performance and latency, while random search will

result in high overhead without any latency constraint or

low performance with latency constraint.

Methods mIoU (%) FPS

GAS 72.3 108.2

Random setting (a) 69.6 61.2

Random setting (b) 65.8 105.6

Table 3. Comparison to random search on the Cityscapes valida-

tion set.

Dimension Selection The dimension selection of GCN

weight W in Equation 7 is also important, thus we con-

duct experiments with different GCN weight dimensions

(denoted by d). Experimental results are shown in Table 4

in which the values are the average mIoU over five repeated

experiments on the Cityscapes validation set with latency

loss weight β = 0.005. Experimental result indicates that

GAS achieves the best performance when d = 64.

Methods mIoU (%) FPS

GCN with d = 16 71.6 108.6

GCN with d = 32 71.8 102.2

GCN with d = 64 72.4 108.4

GCN with d = 128 72.1 104.1

GCN with d = 256 71.5 111.2

Table 4. Ablation study for different GCN weight dimensions of

the GCN-Guided Module.

Reasoning Graph For GCN-Guided Module, in addition

to the way described in Section 3.2, we also try another

way to construct the reasoning graph. Specifically, we treat

each candidate operation in a cell as a node in the reasoning

graph. Given the architecture parameter αk for cell k with

dimension p× q, we first flatten the αk and αk−1 to the one

dimensional vector α′
k and α′

k−1
, and then perform matrix

multiplication to get adjacent matrix Adj = α′
k(α

′
k−1

)T .

Different from the “edge-similarity” reasoning graph in

Section 3.2, we call this graph “operation-identity” reason-

ing graph. We conduct the comparison experiment for two

4209



types of graphs on the Cityscapes validation set under the

same latency loss weight β = 0.005, the comparison results

are shown in Table 5.

Reasoning Graph mIoU (%) FPS

Edge-similarity 72.4 108.4

Operation-identity 70.9 102.2

Table 5. The comparison results for reasoning graph for edges and

operations.

Intuitively, the “operation-identity” way provides more

fine-grained information about operation selection for other

cells, while it also breaks the overall properties of an edge,

and thus doesn’t consider the other operation information at

the same edge when making decision. After visualizing the

network, we also found that the “operation-identity” reason-

ing graph tends to make cell select the same operation for

all edge, which increases the difficulty of trade-off between

performance and latency. This can also be verified from re-

sult in Table 5. So we choose the “edge-similarity” way to

construct the reasoning graph as described in Section 3.2.

Network Visualization We illustrate the network struc-

ture searched by GAS in the supplementary material. An in-

teresting observation is that the operations selected by GAS

with GGM have fewer parameters and less computational

complexity than GAS without GGM, where more dilated or

separated convolution kernels are preferred. This exhibits

the emergence of concept of burden sharing in a group of

cells when they know how much others are willing to con-

tribute.

4.4.2 Effectiveness of the Latency Constraint

As mentioned above, GAS provides the ability to flexi-

bly achieve a superior trade-off between the performance

and speed with the latency-oriented optimization. We con-

ducted a series of experiments with different loss weight

β in Equation 10. Figure 6 shows the variation of mIoU

and latency as β changes. With smaller β, we can obtain a

model with higher accuracy, and vice-versa. When the β in-

creases from 0.0005 to 0.005, the latency decreases rapidly

and the performance is slightly falling. But when β in-

creases from 0.005 to 0.05, the performance drops quickly

while the latency decline is fairly limited. Thus in our ex-

periments, we set β as 0.005. We can clearly see that the

latency-oriented optimization is effective for balancing the

accuracy and latency.

4.4.3 Analysis of the GCN-Guided Module

One concern is about what kind of role does GCN play in

the search process. We suspect that its effectiveness is de-

rived from the following two aspects: 1) to search a light-

Figure 6. The validation accuracy on Cityscapes dataset for differ-

ent latency constraint. Best viewed in color.

weight network, we do not allow the cell structures to share

with each other to encourage structure diversity. Appar-

ently, learning cell independently makes the search more

difficult and does not guarantee better performance, thus

the GCN-Guided Module can be regraded as a regulariza-

tion term to the search process. 2) We have discussed that

p(Z) is a fully factorizable joint distribution in above sec-

tion. As shown in Equation 4, p(Zh,i) for current cell be-

comes a conditional probability if the architecture parame-

ter αh,i depends on the probability αh,i for previous cell.

In this case, the GCN-Guided Module plays a role to model

the condition in probability distribution p(Z).

5. Conclusion & Discussion

In this paper, a novel Graph-guided architecture search

(GAS) framework is proposed to tackle the real-time se-

mantic segmentation task. Different from the existing NAS

approaches that stack the same searched cell into a whole

network, GAS explores to search different cell architectures

and adopts the graph convolution network to bridge the in-

formation connection among cells. In addition, a latency-

oriented constraint is endowed into the search process for

balancing the accuracy and speed. Extensive experiments

have demonstrated that GAS performs much better than the

state-of-the-art real-time segmentation approaches.

In the future, we will extend the GAS to the following

directions: 1) we will search networks directly for the seg-

mentation and detection tasks without retraining. 2) we will

explore some deeper research on how to effectively com-

bine the NAS and the graph convolution network.

Acknowledgement This paper is carried out at Sense-

Time Research in Beijing, China, and is supported by

key scientific technological innovation research project by

Ministry of Education, Zhejiang Provincial Natural Sci-

ence Foundation of China under Grant LR19F020004, Zhe-

jiang University K.P.Chao’s High Technology Development

Foundation.

4210



References

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. IEEE trans. PAMI, 39(12):2481–

2495, 2017.

[2] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In ICML, pages 549–558, 2018.

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick

Weston. Smash: one-shot model architecture search through

hypernetworks. arXiv:1708.05344, 2017.

[4] Gabriel J. Brostow, Jamie Shotton, Julien Fauqueur, and

Roberto Cipolla. Segmentation and recognition using struc-

ture from motion point clouds. In ECCV (1), pages 44–57,

2008.

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Di-

rect neural architecture search on target task and hardware.

arXiv:1812.00332, 2018.

[6] Liang-Chieh Chen, Maxwell D. Collins, Yukun Zhu, George

Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam,

and Jonathon Shlens. Searching for efficient multi-scale ar-

chitectures for dense image prediction. In NeurIPS, pages

8713–8724, 2018.

[7] Liang-Chieh Chen, George Papandreou, Florian Schroff, and

Hartwig Adam. Rethinking atrous convolution for semantic

image segmentation. CoRR, abs/1706.05587, 2017.

[8] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

ECCV, pages 833–851, 2018.

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE trans. PAMI, 40(4):834–

848, 2018.

[10] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-

ferentiable architecture search: Bridging the depth gap be-

tween search and evaluation. arXiv:1904.12760, 2019.

[11] Yukang Chen, Qian Zhang, Chang Huang, Lisen Mu,

Gaofeng Meng, and Xinggang Wang. Reinforced evolution-

ary neural architecture search. CoRR, abs/1808.00193, 2018.

[12] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, pages 1800–1807, 2017.

[13] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In CVPR,

pages 3213–3223, 2016.

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, pages 248–255. Ieee, 2009.

[15] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-

pher KI Williams, John Winn, and Andrew Zisserman. The

pascal visual object classes challenge: A retrospective. IJCV,

111(1):98–136, 2015.

[16] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V

Le. Nas-fpn: Learning scalable feature pyramid architecture

for object detection. In CVPR, 2019.

[17] Minghao Guo, Zhao Zhong, Wei Wu, Dahua Lin, and Junjie

Yan. IRLAS: inverse reinforcement learning for architecture

search. CoRR, abs/1812.05285, 2018.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

pages 770–778, 2016.

[19] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely

connected convolutional networks. CVPR, pages 1–9, 2016.

[20] Thomas N Kipf and Max Welling. Semi-supervised

classification with graph convolutional networks.

arXiv:1609.02907, 2016.

[21] Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve

Renals. Dynamic evaluation of neural sequence models.

arXiv:1709.07432, 2017.

[22] Hanchao Li, Pengfei Xiong, Haoqiang Fan, and Jian Sun.

Dfanet: Deep feature aggregation for real-time semantic seg-

mentation. In CVPR, pages 9522–9531, 2019.

[23] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In Proceedings of

the Thirty-Fifth Conference on Uncertainty in Artificial In-

telligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, page

129, 2019.

[24] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan Yuille, and Li Fei-Fei. Auto-deeplab:

Hierarchical neural architecture search for semantic image

segmentation. In CVPR, 2019.

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

differentiable architecture search. In ICLR, 2019.

[26] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, pages 3431–3440, 2015.

[27] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The

concrete distribution: A continuous relaxation of discrete

random variables. arXiv:1611.00712, 2016.

[28] Sachin Mehta, Mohammad Rastegari, Anat Caspi, Linda

Shapiro, and Hannaneh Hajishirzi. Espnet: Efficient spatial

pyramid of dilated convolutions for semantic segmentation.

In ECCV, pages 552–568, 2018.

[29] Marvin Minsky. The Society of Mind. Simon & Schuster,

1988.

[30] Renato Negrinho and Geoff Gordon. Deeparchitect:

Automatically designing and training deep architectures.

arXiv:1704.08792, 2017.

[31] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid.

Fast neural architecture search of compact semantic segmen-

tation models via auxiliary cells. In CVPR, pages 9126–

9135, 2019.

[32] Asaf Noy, Niv Nayman, Tal Ridnik, Nadav Zamir, Sivan

Doveh, Itamar Friedman, Raja Giryes, and Lihi Zelnik-

Manor. Asap: Architecture search, anneal and prune.

arXiv:1904.04123, 2019.

[33] Marin Orsic, Ivan Kreso, Petra Bevandic, and Sinisa Segvic.

In defense of pre-trained imagenet architectures for real-time

semantic segmentation of road-driving images. CVPR, pages

12599–12608, 2019.

4211



[34] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Euge-

nio Culurciello. Enet: A deep neural network architecture for

real-time semantic segmentation. arXiv:1606.02147, 2016.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-

son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,

Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An

imperative style, high-performance deep learning library. In

NIPS, 2019.

[36] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. In ICML, pages 4092–4101, 2018.

[37] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V.

Le. Regularized evolution for image classifier architecture

search. CoRR, abs/1802.01548, 2018.

[38] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014.

[39] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In CVPR, pages 2820–2828, 2019.

[40] Michael Treml, José Arjona-Medina, Thomas Unterthiner,

Rupesh Durgesh, Felix Friedmann, Peter Schuberth, An-

dreas Mayr, Martin Heusel, Markus Hofmarcher, Michael

Widrich, et al. Speeding up semantic segmentation for au-

tonomous driving. In MLITS, NIPS Workshop, volume 2,

page 7, 2016.

[41] Xiaolong Wang and Abhinav Gupta. Videos as space-time

region graphs. In ECCV, pages 399–417, 2018.

[42] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

CVPR, pages 10734–10742, 2019.

[43] Zifeng Wu, Chunhua Shen, and Anton van den Hengel.

High-performance semantic segmentation using very deep

fully convolutional networks. CoRR, abs/1604.04339, 2016.

[44] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin.

SNAS: stochastic neural architecture search. In ICLR, 2019.

[45] Hang Xu, Lewei Yao, Wei Zhang, Xiaodan Liang, and Zhen-

guo Li. Auto-fpn: Automatic network architecture adap-

tation for object detection beyond classification. In ICCV,

2019.

[46] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-

ral graph convolutional networks for skeleton-based action

recognition. In AAAI, 2018.

[47] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-

tion network for real-time semantic segmentation. In ECCV,

pages 334–349, 2018.

[48] Xiangyu Zhang Gaofeng Meng Xinyu Xiao Jian Sun

Yukang Chen, Tong Yang. Detnas: Backbone search for ob-

ject detection. In NeurIPS, 2019.

[49] Yiheng Zhang, Zhaofan Qiu, Jingen Liu, Ting Yao, Dong

Liu, and Tao Mei. Customizable architecture search for se-

mantic segmentation. In CVPR, pages 11641–11650, 2019.

[50] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping

Shi, and Jiaya Jia. Icnet for real-time semantic segmentation

on high-resolution images. In ECCV, pages 405–420, 2018.

[51] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, pages 2881–2890, 2017.

[52] Barret Zoph and Quoc V. Le. Neural architecture search with

reinforcement learning. In ICLR, 2017.

[53] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In CVPR, pages 8697–8710, 2018.

4212


