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Abstract

Neural network pruning offers a promising prospect

to facilitate deploying deep neural networks on resource-

limited devices. However, existing methods are still chal-

lenged by the training inefficiency and labor cost in pruning

designs, due to missing theoretical guidance of non-salient

network components. In this paper, we propose a novel fil-

ter pruning method by exploring the High Rank of feature

maps (HRank). Our HRank is inspired by the discovery that

the average rank of multiple feature maps generated by a

single filter is always the same, regardless of the number of

image batches CNNs receive. Based on HRank, we develop

a method that is mathematically formulated to prune filters

with low-rank feature maps. The principle behind our prun-

ing is that low-rank feature maps contain less information,

and thus pruned results can be easily reproduced. Besides,

we experimentally show that weights with high-rank feature

maps contain more important information, such that even

when a portion is not updated, very little damage would be

done to the model performance. Without introducing any

additional constraints, HRank leads to significant improve-

ments over the state-of-the-arts in terms of FLOPs and pa-

rameters reduction, with similar accuracies. For example,

with ResNet-110, we achieve a 58.2%-FLOPs reduction by

removing 59.2% of the parameters, with only a small loss

of 0.14% in top-1 accuracy on CIFAR-10. With Res-50,

we achieve a 43.8%-FLOPs reduction by removing 36.7%
of the parameters, with only a loss of 1.17% in the top-

1 accuracy on ImageNet. The codes can be available at

https://github.com/lmbxmu/HRank.

∗Corresponding author

1. Introduction

Convolutional Neural Networks (CNNs) have demon-

strated great success in computer vision applications, like

classification [33, 11], detection [7, 30], and segmentation

[25, 2]. However, their high demands in computing power

and memory footprint prohibit most state-of-the-art CNNs

to be deployed in edge devices such as smartphones or

wearable devices. While good progress has been made in

designing new hardware and/or hardware-specific CNN ac-

celeration frameworks like TensorRT, it retains as a signif-

icant demand to reduce the FLOPs and size of CNNs, with

limited compromise on accuracy [4]. Popular techniques

include filter compression [6], parameter quantization [3],

and network pruning [10].

Among them, network pruning has shown broad

prospects in various emerging applications. Typical works

either prune the filter weights to obtain sparse weight matri-

ces (weight pruning) [10, 9, 1], or remove entire filters from

the network (filter pruning) [18, 19, 20]. Besides network

compression, weight pruning approaches can also achieve

acceleration on specialized software [28] or hardware [8].

However, they have limited applications on general-purpose

hardware or BLAS libraries. In contrast, filter pruning ap-

proaches do not have this limitation since entire filters are

removed. In this paper, we focus on the filter pruning to

achieve model compression (reduction in parameters) and

acceleration (reduction in FLOPs), aiming to provide a ver-

satile solution for devices with low computing power.

The core of filter pruning lies in the selection of filters,

which should yield the highest compression ratio with the

lowest compromise in accuracy. Based on the design of

filter evaluation functions, we empirically categorize filter

pruning into two groups as discussed below.
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Property Importance: The filters are pruned based on

the intrinsic properties of CNNs. These pruning approaches

do not modify the network training loss. After the pruning,

the model performance is enhanced through fine-tuning.

Among these methods, Hu et al. [14] utilized the spar-

sity of outputs in a large network to remove filters with

a high percentage of zero activations. The ℓ1-norm based

pruning [18] assumes that parameters or features with small

norms are less informative, and thus should be pruned first.

Molchanov et al. [27] considered the first-order gradient

to evaluate the importance of filters and removed the least

important ones. In [34], the importance scores of the final

responses are propagated to every filter in the network and

the CNNs are pruned by removing the one with the least im-

portance. He et al. [12] calculated the geometric median in

the layers, and the filters closest to this are pruned. Most de-

signs for filter evaluation functions are ad-hoc, which brings

the advantage of low time complexity, but also limits the ac-

celeration and compression ratios.

Adaptive Importance: Different from the property im-

portance based approaches, another direction embeds the

pruning requirement into the network training loss, and em-

ploys a joint-retraining optimization to generate an adaptive

pruning decision. Liu et al. [24] and Zhao et al. [36] im-

posed a sparsity constraint on the scaling factor of the batch

normalization layer, allowing channels with lower scaling

factors to be identified as unimportant. Huang et al. [16]

and Lin et al. [23] introduced a new scaling factor pa-

rameter (also known as a mask) to learn a sparse struc-

ture pruning where filters corresponding to a scaling fac-

tor of zero are removed. Compared with property impor-

tance based filter pruning, adaptive importance based meth-

ods usually yield better compression and acceleration re-

sults due to their joint optimization. However, because the

loss is changed, the required retraining step is heavy in both

machine time and human labor, usually demanding another

round of hyper-parameter tuning. For some methods, e.g.,

the mask-based scheme, the modified loss even requires

specialized optimizers [16, 23], which affects the flexibility

and ease of using approaches based on adaptive importance.

Overall, filter pruning remains an open problem so far.

On one hand we pursuit higher compression/acceleration

ratios, while on the other hand we are restricted by heavy

machine time and human labor (especially for adaptive im-

portance based methods). We attribute these problems to the

lack of practical/theoretical guidance regarding to the filter

importance and redundancy. In this paper, we propose an

effective and efficient filter pruning approach that explores

the High Rank of the feature map in each layer (HRank), as

shown in Fig. 1. The proposed HRank performs as such

a guidance, which is a property importance based filter

pruner. It eliminates the need of introducing additional aux-

iliary constraints or retraining the model, thus simplifying

Feature Map

Generation

𝜹

rank

Fine-Tuning/Inference Phase

…

Filter	Selection

…

…

…

…

…

rank

Figure 1. Framework of HRank. In the left column, we first use

images to run through the convolutional layers to get the feature

maps. In the middle column, we then estimate the rank of each

feature map, which is used as the criteria for pruning. The right

column shows the pruning (the red filters), and fine-tuning where

the green filters are updated and the blue filters are frozen.

the pruning complexity. Moreover, compared with existing

property importance based methods, HRank also leads to

significant improvements in acceleration and compression

[18, 34] , achieving even better results than state-of-the-art

adaptive importance based methods [13, 24, 26, 16, 23, 36].

The motivation behind enforcing the high rank of feature

maps comes from an empirical and quantitative observa-

tion. As shown in Fig. 2, we have found that the average

rank of feature maps generated by a single filter is always

the same, regardless of how much data the CNN has seen.

It suggests that the ranks of feature maps in deep CNNs can

be accurately estimated using only a small portion of the in-

put images, and thus can be highly efficient. Based on this

idea, we mathematically prove that feature maps with lower

ranks contribute less to accuracy. Thus the filters generating

these feature maps can be removed first.

We conduct extensive experiments on two benchmarks,

CIFAR-10 [17] and ImageNet [31], using many repre-

sentative large CNN models, including VGGNet [32],

GoogLeNet [33], ResNet [11] and DenseNet [15]. The re-

sults demonstrate the superior performance of HRank over

existing filter pruning methods, including property impor-

tance based approaches[18, 34] and state-of-the-art adaptive

importance based models [13, 24, 26, 16, 23, 36]. We also

carry out experiments to show that, even when we freeze

a portion of filters with high-rank feature maps during the

fine-tuning after pruning, the model still retains high accu-

racy, which verifies our assumption.

To summarize, our main contributions are three-fold:

• Based upon extensive statistical verification, we em-

pirically demonstrate that the average rank of feature

maps generated by a single filter is almost unchanged.

To the best of our knowledge, this is the first time this

observation is reported.

• We mathematically prove that filters with lower-rank

feature maps are less informative and thus less impor-

tant to preserve accuracy, which can be removed first.

The opposite is true for high-rank feature maps.
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• Extensive experiments demonstrate the efficiency and

effectiveness of HRank in both model compression and

acceleration over a variety of state-of-the-arts [18, 34,

13, 24, 26, 16, 23, 36].

2. Related Work

Filter Pruning. Opposed to weight pruning, which

prunes the weight matrices, filter pruning removes the en-

tire filters according to certain metrics. Filter pruning not

only significantly reduces storage usage, but also decreases

the computational cost in online inference. As discussed

in Sec. 1, filter pruning can be divided into two categories:

property importance approaches and adaptive importance

approaches. Property importance based filter pruning aims

to exploit the intrinsic properties of CNNs (e.g., ℓ1-norm

and gradient, etc), and then uses them as criteria for discrim-

inating less important filters. For example, the sparser fil-

ters in [27] are considered less important while [14] prunes

filters with smaller ℓ1-norm. In contrast, adaptive impor-

tance based filter pruning typically retrain the networks with

additional constraints to generate an adaptive pruning deci-

sion. Beyond the related work discussed in Sec. 1, Luo et al.

[26] established filter pruning as an optimization problem,

where the filters are pruned based on the statistics informa-

tion from the next layer. He et al. [13] proposed a two-step

algorithm including a LASSO regression to remove redun-

dant filters and a linear least square to construct the outputs.

Low-rank Decomposition. As shown in [5], neural net-

works tend to be over-parameterized, which suggests that

the parameters in each layer can be accurately recovered

from a small subset. Inspired by this, low-rank decomposi-

tion has emerged as an alternative for network compression.

It approximates convolutional operations by representing

the weight matrix as a low-rank product of two smaller ma-

trices. Unlike pruning, it aims to reduce the computational

costs of the network instead of changing the original num-

ber of filters. To this end, Denton et al. [6] exploited the

linear structure of CNNs by exploring an appropriate low-

rank approximation of the weights and keeping the accuracy

within a 1% loss of the original model. Further, Zhang et

al. [35] considered the subsequent nonlinear units while

learning the low-rank decomposition to provide significant

speed-up. Lin et al. [21] proposed a low-rank decomposi-

tion for both convolutional filters and fully-connected ma-

trices, which are then solved by a closed-form solver with

a fixed rank. Though low-rank decomposition can benefit

the compression and speedup of CNNs, it normally incurs a

large loss in accuracy under high compression ratios.

Discussion. Compared with weight pruning, filter prun-

ing tends to be more favorable in reducing model complex-

ity. Besides, its structured pruning can be easily integrated

into the highly efficient BLAS libraries without specialized

software or hardware support. Nevertheless, existing fil-

ter pruning methods suffer from inefficient acceleration and

compression (property importance based filter pruning) or

machine and labor costs (adaptive importance based filter

pruning), as discussed in Sec. 1. These two issues bring

fundamental challenges to the deployment of deep CNNs on

resource-limited devices. We attribute the dilemma to the

missing of practical/theoretical guidance regarding to the

filter importance and redundancy. We focus on the rank of

feature maps and analyze its effectiveness both theoretically

and experimentally. Note that our approach is orthogonal

to low-rank decomposition approaches. We aim to prune

filters generating low-rank feature maps rather than decom-

pose filters. Note that, the low-rank methods can be inte-

grated into our model (e.g., to decompose fully-connected

layers) to achieve higher compression and speedup ratios.

3. The Proposed Method

3.1. Notations

Assume a pre-trained CNN model has a set of K con-

volutional layers1, and Ci is the i-th convolutional layer.

The parameters in Ci can be represented as a set of 3-

D filters WCi = {wi
1,w

i
2, ...,w

i
ni
} ∈ R

ni×ni−1×ki×ki ,

where the j-th filter is w
i
j ∈ R

ni−1×ki×ki . ni represents

the number of filters in Ci and ki denotes the kernel size.

The outputs of filters, i.e., feature maps, are denoted as

Oi = {oi
1,o

i
2, ...,o

i
ni
} ∈ R

ni×g×hi×wi , where the j-th

feature map o
i
j ∈ R

g×hi×wi is generated by w
i
j . g is

the size of input images. hi and wi are the height and

width of the feature map, respectively. In filter pruning,

WCi can be split into two groups, i.e., a subset to be kept

ICi = {wi
Ii
1

,wi
Ii
2

, ...,wi
Ii
ni1

} and a subset, with less impor-

tance, to be pruned UCi = {wi
Ui

1

,wi
Ui

2

, ...,wi
Ui

ni2

}, where

Ii
j and U i

j are the indices of the j-th important and unim-

portant filter, respectively. ni1 and ni2 are the number of

important and unimportant filters, respectively. We have:

ICi ∩ UCi = ∅, ICi ∪ UCi = WCi and ni1 + ni2 = ni.

3.2. HRank

Filter pruning aims to identify and remove the less im-

portant filter set from ICi , which can be formulated as an

optimization problem:

min
δij

K
∑

i=1

ni
∑

j=1

δijL(w
i
j),

s.t.

ni
∑

j=1

δij = ni2,

(1)

1For simplicity, a convolutional layer includes the non-linear opera-

tions, e.g., pooling, batch normalization, ReLU, dropout and so on. Be-

sides, for ease of FLOPs computation and parameters calculation, in this

paper, we ignore the cost of these non-linear operations.
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(a) VGGNet-16 1. (b) VGGNet-16 6. (c) VGGNet-16 12. (d) GoogLeNet 1. (e) GoogLeNet 5 3x3.

(f) GoogLeNet 10 5x5. (g) ResNet-56 1. (h) ResNet-56 28. (i) ResNet-56 55. (j) ResNet-110 1.

(k) ResNet-110 54. (l) ResNet-110 108. (m) DenseNet-40 1. (n) DenseNet-40 20. (o) DenseNet-40 39.

Figure 2. Average rank statistics of feature maps from different convolutional layers and architectures on CIFAR-10. For each subfigure,

the x-axis represents the indices of feature maps and the y-axis is the batches of training images (each batch size is set to 128). Different

colors denote different rank values. As can be seen, the rank of each feature map (column of the subfigure) is almost unchanged (the same

color), regardless of the image batches. Hence, even a small number of images can effectively estimate the average rank of each feature

map in different architectures.

where δij is an indicator which is 1 if wi
j is grouped to UCi ,

or 0 if w
i
j is grouped to ICi . L(·) measures the impor-

tance of a filter input to the CNN. Thus minimizing Eq. (1)

is equal to removing the ni2 least important filters in Ci.

In this framework, most prior works resort to directly

designing L(·) on the filters. We argue that ad-hoc designs

of L on the filters ignore the distribution of the input im-

ages as well as the output labels, and might be the reason

why property importance based approaches show subopti-

mal performance. In contrast, in this paper, we propose to

define L on the feature maps. The rationale lies in that the

feature maps are an intermediate step that can reflect both

the filter properties and the input images. As investigated in

[37], individual feature maps, even within the same layer,

play different roles in the network. Furthermore, they can

capture how an input image is transformed in each layer,

and finally, to the predicted labels. To that effect, we refor-

mulate Eq. (1) as:

min
δij

K
∑

i=1

ni
∑

j=1

δijEI∼P (I)

[

L̂
(

o
i
j(I, :, :)

)]

,

s.t.

ni
∑

j=1

δij = ni2,

(2)

where I is the input image, which is sampled from a dis-

tribution P (I). L̂(·) is used to estimate the information of

feature maps o
i
j(I, :, :) generated by the filter wi

j . In our

settings, the expectation of L̂(·) is proportional to L(·) in

Eq. (1), i.e., the more information the feature map contains,

the more important the corresponding filter is.

Thus our key problem falls in designing a proper func-

tion L̂(·) which can well reflect the information richness

of feature maps. Prior property importance based method

[14] utilizes the sparsity of feature maps. It calculates the

zero activations from extensive input images and removes

the filters with a large portion of zeros in the feature maps.

However, such a data-driven scheme heavily relies on the

distribution P (I) of the input images, which is extremely

complex to describe. While the Monte-Carlo approxima-

tion can be adopted, it is still intractable since a large num-

ber of input images (over ten thousand in [14]) are required

to maintain a reasonable prediction.

Instead, we exploit the rank of feature maps which is

demonstrated to be not only an effective measure of infor-

mation, but also a stable representation across P (I). We

first define our information measurement as:

L̂
(

o
i
j(I, :, :)

)

= Rank
(

o
i
j(I, :, :)

)

, (3)

where Rank(·) is the rank of a feature map for input image

I . We conduct a Singular Value Decomposition (SVD) for

o
i
j(I, :, :):

o
i
j(I, :, :) =

r
∑

i=1

σiuiv
T
i

=

r′
∑

i=1

σiuiv
T
i +

r
∑

i=r′+1

σiuiv
T
i ,

(4)
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where r = Rank(oi
j(I, :, :)) and r′ < r. δi, ui and vi are

the top-i singular values, left singular vector and right sin-

gular vector of oi
j(I, :, :), respectively. It can be seen that a

feature map with rank r can be decomposed into a lower-

rank feature map with rank r′, i.e.,
∑r′

i=1 σiuiv
T
i , and

some additional information, i.e.,
∑r

i=r′+1 σiuiv
T
i . Hence,

higher-rank feature maps actually contain more information

than lower-rank ones. Thus, the rank can serve as a reliable

measurement for information richness.

3.3. Tractability of Optimization

One critical point in the pruning procedures discussed

above falls in the calculation of ranks. However, it is pos-

sible that the rank of the feature maps o
i
j ∈ R

g×hi×wi is

sensitive to the distribution of input images, P (I). For ex-

ample, the rank of oi
j(1, :, :) is not necessarily the same as

that of oi
j(2, :, :). To accurately estimate the expectation of

ranks, extensive input images have to be used, as with [14].

This poses a great challenge when evaluating the relative

importance of filters.

Fortunately, we empirically observe that the expectation

of ranks generated by a single filter is robust to the input im-

ages. To illustrate, we plot the average of rank values w.r.t.

different numbers of input batches in Fig. 2. It is obvious

that the colors (which indicate the values) of the average

ranks from a single filter are the same, which are irrespec-

tive to the image that CNNs receive. To explain, although

different images may have different ranks, the variance is

negligible. Hence, a small batch of input images can be

used to accurately estimate the expectation of the feature

map rank. Then, we define the rank expectation of feature

map o
i
j as:

EI∼P (I)

[

L̂
(

o
i
j(I, :, :)

)]

≈

g
∑

t=1

Rank
(

o
i
j(t, :, :)

)

. (5)

In our experiments, we set the number of images, g =
500, to estimate the average rank, which is several orders of

magnitude smaller than [14], where over ten thousand input

images are used to estimate the sparsity of feature maps.

Besides, calculating the ranks of feature maps can be im-

plemented offline. Hence, Eq. (3) is easily tractable using

the above approximation. Combining Eq. (2) and Eq. (5),

we derive our final optimization objective as follows:

min
δij

K
∑

i=1

ni
∑

j=1

δij(w
i
j)

g
∑

t=1

Rank
(

o
i
j(t, :, :)

)

,

s.t.

ni
∑

j=1

δij = ni2.

(6)

It is intuitive that Eq. (6) can be minimized by pruning

the filters with ni2 least average ranks of feature maps.

Pruning Procedure. Given filters WCi in Ci and their

generated feature maps Oi, as defined in Sec. 3.1, we

prune WCi as follows: First, we calculate the average

rank of feature map o
i
j in Oi, forming a rank set Ri =

{ri1, r
i
2, ..., r

i
ni
} ∈ R

ni . Second, we re-rank the rank set in

decreasing order R̂i = {ri
Ii
1

, ri
Ii
2

, ..., ri
Ii
ni

} ∈ R
ni , where

Iij is the index of the j-th top value in Ri. Third, we

determine the values of ni1 (number of preserved filters)

and ni2 (number of pruned filters). Fourth, we obtain the

important filter set ICi = {wi
Ii
1

,wi
Ii
2

, ...,wi
Ii
ni1

} where

the rank of w
i
Ii
j

is ri
Ii
j

. Similarly, we obtain the filter set

UCi = {wi
Ui

1

,wi
Ui

2

, ...,wi
Ui

ni2

}. Lastly, we remove the set

UCi and fine-tune the network with ICi as the initialization.

4. Experiments

4.1. Experimental Settings

Datasets and Baselines. To demonstrate our efficiency

in reducing model complexity, we conduct experiments on

both small and large datasets, i.e., CIFAR-10 [17] and Im-

ageNet [31]. We study the performance of different al-

gorithms on the mainstream CNN models, including VG-

GNet with a plain structure [32], GoogLeNet with an in-

ception module [33], ResNet with a residual block [11] and

DenseNet with a dense block [15]. Fig. 3 provides stan-

dards for pruning these popular networks. For all bench-

marks and architectures, we randomly sample 500 images

to estimate the average rank of each feature map.

Evaluation Protocols. We adopt the widely-used proto-

cols, i.e., number of parameters and required Float Points

Operations (denoted as FLOPs), to evaluate model size and

computational requirement. To evaluate the task-specific

capabilities, we provide top-1 accuracy of pruned models

and the pruning rate (denoted as PR) on CIFAR-10, and top-

1 and top-5 accuracies of pruned models on ImageNet.

Configurations. We use PyTorch [29] to implement the

proposed HRank approach. We solve the optimization prob-

lem by using Stochastic Gradient Descent algorithm (SGD)

with an initial learning rate of 0.01. The batch size, weight

decay and momentum are set to 128, 0.0005 and 0.9, re-

spectively. For each layer, we retrain the network for 30
epochs after pruning2, with the learning rate being divided

by 10 at epochs 5 and 10 on CIFAR-10, and divided by

10 every 10 epochs on ImageNet. All experiments are con-

ducted on two NVIDIA GTX 1080Ti GPUs. It is worth not-

ing that for ResNet-50 on ImageNet, instead of fine-tuning

the network every time after pruning a convolution layer, we

prune the network in a per-block fashion, i.e. we fine-tune

the network only after performing pruning within the entire

2Better accuracy can be observed when training more epochs. How-

ever, it requires more training time.
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Next	layer

Last	layer

convolution

Last	layer

max	pooling
3x3
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1x1
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1x1
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3x3
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3x3

convolution
1x1

convolution
3x3
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convolution
1x1
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3x3

convolution
1x1

(a)Plain structure

convolution
3x3

convolution
3x3

concatenation

(b)Inception module

(c)	Residual block (d)Dense block

Figure 3. An illustration of mainstream network structures to

be pruned, including Plain structure [32], Inception module [33],

Residual block [11] and Dense block [15]. The black lines denote

the inference streams of CNNs. The red dots denote the outputs

of a convolutional layer (i.e., feature maps). The red dashed lines

denote the to-be-pruned layers after observing the ranks of feature

maps. Note that, for 1× 1 convolutions followed by n×n convo-

lution (n = 3 in (b)), we do not consider pruning the 1 × 1 filter

since it contains fewer parameters and less computation compared

with an n× n filter.

block, as shown in Fig. 3 (c). So the computational cost

can be further reduced, which is important for large-scale

datasets such as ImageNet. For a fair comparison, we fix

the accuracy to be similar to the baselines and measure the

parameters and FLOPs reductions, or fix similar reductions

of parameters and FLOPs, and measure the accuracy.

4.2. Results and Analysis

4.2.1 Results on CIFAR-10

We analyze the performance on CIFAR-10, compar-

ing against several popular CNNs, including VGG-16,

GoogLeNet, ResNet56/110 and DenseNet-40. We use a

variation of VGG-16, as in [18]. Following the state-of-

the-art baseline [23], the output of the original GoogLeNet

is changed to fit the class number in CIFAR-10. And for

DenseNet-40, it has 40 layers with a growth rate of 12.

VGG-16. Tab. 1 shows the performance of different

methods, including a property importance based method,

i.e., L1 [18] and several adaptive importance based meth-

ods, i.e., SSS [16], Zhao et al. [36] and GAL [23]. Com-

pared with L1, HRank provides significantly better param-

eters and FLOPs reductions (53.5% vs. 34.3% and 82.9%

vs. 64.0%), which demonstrates the superiority of exploit-

ing the rank of feature maps as an intrinsic property of

Table 1. Pruning results of VGGNet on CIFAR-10.

Model Top-1% FLOPs(PR) Parameters(PR)

VGGNet 93.96 313.73M(0.0%) 14.98M(0.0%)

L1 [18] 93.40 206.00M(34.3%) 5.40M(64.0%)

SSS [16] 93.02 183.13M(41.6%) 3.93M(73.8%)

Zhao et al. [36] 93.18 190.00M(39.1%) 3.92M(73.3%)

HRank(Ours) 93.43 145.61M(53.5%) 2.51M(82.9%)

GAL-0.05 [23] 92.03 189.49M(39.6%) 3.36M(77.6%)

HRank(Ours) 92.34 108.61M(65.3%) 2.64M(82.1%)

GAL-0.1 [23] 90.73 171.89M(45.2%) 2.67M(82.2%)

HRank(Ours) 91.23 73.70M(76.5%) 1.78M(92.0%)

Table 2. Pruning results of GoogLeNet on CIFAR-10.

Model Top-1% FLOPs(PR) Parameters(PR)

GoogLeNet 95.05 1.52B(0.0%) 6.15M(0.0%)

Random 94.54 0.96B(36.8%) 3.58M(41.8%)

L1 [18] 94.54 1.02B(32.9%) 3.51M(42.9%)

HRank(Ours) 94.53 0.69B(54.9%) 2.74M(55.4%)

GAL-ApoZ [14] 92.11 0.76B(50.0%) 2.85M(53.7%)

GAL-0.05 [23] 93.93 0.94B(38.2%) 3.12M(49.3%)

HRank(Ours) 94.07 0.45B(70.4%) 1.86M(69.8%)

CNNs. Compared with adaptive importance based meth-

ods, HRank yields a better compression and acceleration

rate than SSS and Zhao et al., while maintaining a higher

accuracy (93.43% vs. 93.02% by SSS and 93.18% by Zhao

et al.). Compared with GAL-0.05, HRank is advantageous

in all aspects (65.3% vs. 39.6% in FLOPs reduction, 82.1%

vs. 77.6% in parameters reduction, and 92.34% vs. 92.03%

in top-1 accuracy). Lastly, compared with GAL-0.1, where

only a 90.73% top-1 accuracy is obtained, the proposed

HRank gains a better result of 91.23%. Moreover, over 76%
of FLOPs are reduced and 90% of parameters are removed.

Hence, HRank demonstrates its ability to compress and ac-

celerate a neural network with a plain structure.

GoogLeNet. The results for GoogLeNet are shown

in Tab. 2. HRank again demonstrates its ability to ob-

tain a high accuracy of 94.53%, with around 55% FLOPs

and parameters reduction. This is significantly better than

L1 and randomized pruning, which indicates that pruning

with HRank is more compact and efficient. Furthermore,

compared with adaptive importance based methods, GAL-

ApoZ and GAL-0.05, HRank obtains a better top-1 accu-

racy (94.07% vs. 92.11% by GAL-ApoZ and 93.93% by

GAL-0.05), faster acceleration (70.4% vs. 50.0% by GAL-

ApoZ and 38.2% by GAL-0.05.) and more compact pa-

rameters (69.8% reduction vs. 53.7% by GAL-ApoZ and

49.3% by GAL-0.05%). Without introducing additional

constraints, HRank still reduces model complexity while

maintaining a good accuracy, showing that the ranks of fea-

ture maps can serve as a discriminative property for iden-

tifying the redundant filters. Besides, it demonstrates that

HRank can be effectively applied to compressing neural

networks with inception modules.

ResNet-56/110. We compress ResNet-56 and ResNet-

110, results of which are displayed in Tab. 3. We begin

with ResNet-56. Under similar FLOPs and parameters re-

duction with L1, HRank obtains an excellent top-1 accu-

racy (93.52% vs. 93.06%), which is even better than the

1534



Table 3. Pruning results of ResNet-56/110 on CIFAR-10.

Model Top-1% FLOPs(PR) Parameters(PR)

ResNet-56 93.26 125.49M(0.0%) 0.85M(0.0%)

L1 [18] 93.06 90.90M(27.6%) 0.73M(14.1%)

HRank(Ours) 93.52 88.72M(29.3%) 0.71M(16.8%)

NISP [34] 93.01 81.00M(35.5%) 0.49M(42.4%)

GAL-0.6 92.98 78.30M(37.6%) 0.75M(11.8%)

HRank(Ours) 93.17 62.72M(50.0%) 0.49M(42.4%)

He et al. [13] 90.80 62.00M(50.6%) -

GAL-0.8 90.36 49.99M(60.2%) 0.29M(65.9%)

HRank(Ours) 90.72 32.52M(74.1%) 0.27M(68.1%)

ResNet-110 93.50 252.89M(0.0%) 1.72M(0.0%)

L1 [18] 93.30 155.00M(38.7%) 1.16M(32.6%)

HRank(Ours) 94.23 148.70M(41.2%) 1.04M(39.4%)

GAL-0.5 [23] 92.55 130.20M(48.5%) 0.95M(44.8%)

HRank(Ours) 93.36 105.70M(58.2%) 0.70M(59.2%)

HRank(Ours) 92.65 79.30M(68.6%) 0.53M(68.7%)

Table 4. Pruning results of DenseNet-40 on CIFAR-10.

Model Top-1% FLOPs(PR) Parameters(PR)

DenseNet-40 94.81 282.00M(0.0%) 1.04M(0.0%)

Liu et al.-40% [24] 94.81 190.00M(32.8%) 0.66M(36.5%)

GAL-0.01 [23] 94.29 182.92M(35.3%) 0.67M(35.6%)

HRank(Ours) 94.24 167.41M(40.8%) 0.66M(36.5%)

Zhao et al. [36] 93.16 156.00M(44.8%) 0.42M(59.7%)

GAL-0.05 [23] 93.53 128.11M(54.7%) 0.45M(56.7%)

HRank(Ours) 93.68 110.15M(61.0%) 0.48M(53.8%)

baseline model (93.52% vs. 93.26%). Besides, we observe

that HRank shares the same parameters reduction as NISP,

another property importance based method, but achieves a

better accuracy (93.17% vs. 93.01) and larger FLOPs reduc-

tion (50.0% vs. 35.5%). Moreover, HRank can effectively

deal with filters with more computation costs, leading to a

significant acceleration. Similar observations can be found

when compared with adaptive importance based methods,

including He et al. and GAL-0.8. HRank yields an impres-

sive acceleration (74.1% vs. 50.6% for He et al. and 60.2%

for GAL-0.8).

Next, we analyze the performance on ResNet-110. Sim-

ilar to what we have found with ResNet-56, HRank leads

to an improvement in accuracy over the baseline model

(94.23% vs. 93.50%) with around 41.2% FLOPs and 39.4%

parameters reduction. Besides, compared with L1, with a

slightly better complexity reduction, HRank again benefits

from better accuracy performance (94.23% vs. 93.30%).

Therefore, the rank can effectively reflect the relative im-

portance of a filter and serve as a better intrinsic property.

Finally, in comparison with GAL-0.5, HRank greatly re-

duces the model complexity (58.2% vs. 48.5% for FLOPs

and 59.2% vs. 44.8% for parameters) with only a small loss

in accuracy of 0.14%, while GAL-0.5 suffers a 0.95% accu-

racy drop. Moreover, we also maintain a similar accuracy

with GAL-0.5 (92.65% vs. 92.55%). Obviously, HRank

further accelerates the computation (68.6% vs. 48.5%) and

relieves the overload (68.7% vs. 44.8%). This indicates that

HRank is especially suitable for pruning neural networks

with residual blocks.

DenseNet-40. Tab. 4 summarizes the experimental re-

sults on DenseNet. We observe that HRank has the poten-

Table 5. Pruning results of ResNet-50 on ImageNet.

Model Top-1% Top-5% FLOPs Parameters

ResNet-50 [26] 76.15 92.87 4.09B 25.50M

SSS-32 [16] 74.18 91.91 2.82B 18.60M

He et al. [13] 72.30 90.80 2.73B -

GAL-0.5 [23] 71.95 90.94 2.33B 21.20M

HRank(Ours) 74.98 92.33 2.30B 16.15M

GDP-0.6 [22] 71.19 90.71 1.88B -

GDP-0.5 [22] 69.58 90.14 1.57B -

SSS-26 [16] 71.82 90.79 2.33B 15.60M

GAL-1 [23] 69.88 89.75 1.58B 14.67M

GAL-0.5-joint [23] 71.80 90.82 1.84B 19.31M

HRank(Ours) 71.98 91.01 1.55B 13.77M

ThiNet-50 [26] 68.42 88.30 1.10B 8.66M

GAL-1-joint [23] 69.31 89.12 1.11B 10.21M

HRank(Ours) 69.10 89.58 0.98B 8.27M

tial to remove more FLOPs. Though Liu et al. retains the

accuracy of the baseline, it produces only 32.8% FLOPs re-

ductions. In contrast, over 40.8% of FLOPs are removed by

HRank. Compared with Zhao et al. and GAL-0.05, HRank

achieves higher accuracy and FLOPs reduction, though it

removing fewer parameters. Overall, HRank has the poten-

tial to better accelerate neural networks. Hence, it can also

be applied in networks with dense blocks.

4.2.2 Results on ImageNet

We also conduct experiments for ResNet-50 on the chal-

lenging ImageNet dataset. The results are shown in Tab. 5.

Generally, HRank surpasses its counterparts in all aspects,

including top-1 and top-5 accuracies, as well as FLOPs

and parameters reduction. More specifically, 1.78× FLOPs

(2.30B vs. 4.09B for ResNet-50) and 1.58× parameters

(16.15M vs. 25.50M of ResNet-50) are removed by HRank,

while it still yields 74.98% top-1 accuracy and 92.33% top-

5 accuracy, significantly better than GAL-0.5. Moreover,

HRank obtains 71.98 top-1 accuracy and 91.01 top-5 ac-

curacy with 2.64× and 1.85× reductions of FLOPs and

parameters, respectively. Further, between ThiNet-50 and

GAL-1-joint, we observe that GAL-1-joint advances in bet-

ter accuracies, while ThiNet-50 shows more advantages in

FLOPs and parameters reductions. Nevertheless, HRank

outperforms both GAL-1-joint and ThiNet-50. Compared

with GAL-1-joint, which gains 69.31% top-1 and 89.12%

top-5 accuracies, HRank obtains 69.10% top-1 and 89.58%

top-5 accuracies. When comparing to ThiNet-50, bet-

ter complexity reductions are observed (0.98B FLOPs vs.

1.10B FLOPs for ThiNet-50 and 8.27M parameters vs.

8.66M for ThiNet-50). Hence, HRank also works well on

complex datasets.

4.3. Ablation Study

We conduct detailed ablation studies on variants of

HRank and keeping a portion of filters frozen during fine-

tuning. For brevity, we report the results of the ResNet-56

with top-1 accuracy of 93.17% in Tab. 3. Similar observa-

tions can be found in other networks and datasets.
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Figure 4. Top-1 accuracy for variants of HRank.

Variants of HRank. Three variants are proposed to

demonstrate the appropriateness of preserving filters with

high-rank feature maps, including: (1) Edge: Filters gener-

ating both low- and high-rank feature maps are pruned, (2)

Random: Filters are randomly pruned. (3) Reverse: Filters

generating high-rank feature maps are pruned. The pruning

rate is set to be the same as that with 93.17% top-1 accuracy

of HRank in Tab. 3. We report the corresponding top-1 ac-

curacy for each variant in Fig. 4. Among the variants, Edge

shows the best performance. To analyze, though part of fil-

ters with high-rank feature maps removed, it retains some

of those with relatively high-rank feature maps, which con-

tains rich information. Besides, HRank obviously outper-

forms its variants and Reverse performs the worst, demon-

strating that low-rank feature maps contain less information

and the corresponding filters can be safely removed.

Freezing Filters during Fine-tuning. We show that not

updating filters with higher-rank feature maps does little

damage to the model performance. To that effect, we show

the top-1 accuracy w.r.t. different rates of untrained weights

in Fig. 5. In Fig. 5(a), all the reserved filters are involved in

updating, which yields a top-1 accuracy of 93.17% (this can

be seen as the upper boundary for Fig. 5(b) and Fig. 5(c)). In

Fig. 5(b), around 15% - 20% of filters are untrained, which

returns a top-1 accuracy of 93.13%, which is only slightly

worse than the 93.17% of Fig. 5(a). The effect of a larger

percentage of untrained filters is displayed in Fig. 5(c), con-

sisting of around 20% - 25% of the overall weights. The

pruned model obtains a top-1 accuracy of 93.01%. Though

with a 0.11% drop in performance, it still outperforms the

methods compared in Fig. 3. Fig. 5 well supports our claim

that feature maps with high ranks contain more information.

5. Conclusions

In this paper, we present a novel filter pruning method

called HRank, which determines the relative importance of

filters by observing the rank of feature maps. To that ef-

fect, we empirically demonstrate that the average rank of

feature maps generated by a single filter are always the

same. Then, we mathematically prove that filters that gen-

(a) 0% of the filters are frozen, resulting in a top-1 precision of

93.17%.

(b) 15% - 20% of the filters are frozen, resulting in a top-1

precision of 93.13%.

(c) 20% - 25% of the filters are frozen, resulting in a top-1 pre-

cision of 93.01%.

Figure 5. How freezing filter weights during fine-tuning affects the

top-1 precision. The x-axes denote the indices of convolutional

layers. The blue, green and red denote the percentage of pruned,

trained and untrained filters, respectively.

erate lower-rank feature maps are less important and should

be removed first, and vice versa, which is also verified by

the experiments. In addition, we propose to freeze a portion

of the filters producing high-rank feature maps to further

reduce the fine-tuning cost, showing little compromise to

the model performance. Extensive experiments on various

modern CNNs demonstrate the effectiveness of HRank in

reducing the computational complexity and model size. In

the future work, we will do more on the theoretical analy-

sis on why the average rank of feature maps generated by a

single filter are always the same.
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