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Abstract

The mirror detection problem is important as mirrors

can affect the performances of many vision tasks. It is a dif-

ficult problem since it requires an understanding of global

scene semantics. Recently, a method was proposed to de-

tect mirrors by learning multi-level contextual contrasts be-

tween inside and outside of mirrors, which helps locate mir-

ror edges implicitly. We observe that the content of a mirror

reflects the content of its surrounding, separated by the edge

of the mirror. Hence, we propose a model in this paper to

progressively learn the content similarity between the inside

and outside of the mirror while explicitly detecting the mir-

ror edges. Our work has two main contributions. First,

we propose a new relational contextual contrasted local

(RCCL) module to extract and compare the mirror features

with its corresponding context features, and an edge detec-

tion and fusion (EDF) module to learn the features of mir-

ror edges in complex scenes via explicit supervision. Sec-

ond, we construct a challenging benchmark dataset of 6,461

mirror images. Unlike the existing MSD dataset, which has

limited diversity, our dataset covers a variety of scenes and

is much larger in scale. Experimental results show that our

model outperforms relevant state-of-the-art methods.

1. Introduction

Mirrors are ubiquitous in our daily lives. As they can af-

fect the performances of a lot of vision tasks, such as depth

prediction and object detection, they are beginning to re-

ceive some discussions [5, 2]. For example, Anderson et al.

[2] note that mirrors are potential obstacles in vision-and-

language navigation (VLN) tasks and existing methods for

VLN tend to ignore mirrors. Braun et al. [5] find that the

error caused by the reflections from mirror-like surfaces is

one of the six major types of error in the person detection

problem. Zendel et al. [30] conduct a safety analysis of ex-

isting datasets for computer vision tasks, and find that the

existence of mirrors is a hazardous factor to these tasks.

Recently, Yang et al. [29] make the first attempt to auto-

matically detect mirrors. They propose a model, called Mir-
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Figure 1: Two popular scenarios where existing meth-

ods [32, 29] fail. While PSPNet [32] is a segmentation

model, MirrorNet [29] is designed for mirror detection.

As MirrorNet is based on extracting contrasted features, it

wrongly segments the mirror region in the top image, and

wrongly detects the window and fireplace in the bottom im-

age as mirrors. In contrast, our model extracts correspoding

context features between inside and outside of the mirror to

accurately identify mirror regions.

rorNet, to segment mirrors from a single image based on ex-

tracting multi-level contextual contrasted features. Through

extracting the contextual contrast information, their method

implicitly learns to detect mirror edges for segmenting the

mirrors. However, this method may fail when the contex-

tual contrasts between the inside and outside of a mirror are

not obvious. The first row of Figure 1 shows a very com-

mon scenario, where a person is looking at a mirror in (a).

Since he and his mirrored image have almost identical ap-

pearances and overlap with each other (i.e., the arm of the

person and his cloth in the reflection), the visual contrast

between them is small. If we detect the mirror using Mir-

rorNet, it gets confused by the mixture and fails to separate

the two correctly, as shown in (c). In addition, since Mir-

rorNet only considers contextual contrast, it is more prone

to overpredict the mirror regions. In the second row of Fig-

ure 1, the mirror, window and fireplace all exhibit contex-

tual contrasts with their surroundings. Hence, MirrorNet

fails to distinguish them, and detects all of them as mirrors.

To tackle the above problem, we propose in this paper a

novel approach to detect mirrors. We note that the content

of a mirror reflects its surrounding context. This means that

there is often a corresponding relationship between objects

inside a mirror and those outside of the mirror. In this work,

we explore this corresponding relationship in a progressive

manner. Figure 2 explains our idea. We can see from (b)
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that it is difficult even for human to recognize the mirror

simply by its content. However, we can infer the potential

mirror region once we can establish a relation between some

objects inside the mirror with those of the outside, as in (c).

Finally, we can filter and refine our inferred mirror region

through explicitly detecting mirror edges, as in (d).

Our method for mirror detection is based on two novel

modules. First, we propose a Relational Contextual Con-

trasted Local (RCCL) module to extract all contextual con-

trasted and relational features to find out all potential mir-

ror regions. Second, we propose an edge detection and

fusion (EDF) module to explicitly detect mirror edges in

multi-scale. Using a refinement network, mirror regions are

extracted based on the relational contextual contrasted fea-

tures from RCCL and edge information from EDF.

To train our model, we also propose a dataset of mirror

images. Although Yang et al. [29] propose the MSD mir-

ror dataset of 4,018 images with ground truth annotations,

as shown in Figure 3, a lot of their images are very similar

to each other, and therefore have similar contexts. In addi-

tion, majority of them are zoom-in images of indoor scenes.

This can significantly reduce the robustness of the trained

model. Hence, we construct a more challenging benchmark

dataset that includes a variety of mirrors and contexts. It is

derived from six public image datasets developed for dif-

ferent problems. Our dataset contains a total of 6,461 mir-

ror images and corresponding annotated masks. We have

conducted extensive experiments to evaluate our model, in

comparison with the state-of-the-art methods, and show that

the proposed model outperforms existing methods on both

the MSD dataset and our dataset.

Our main contributions can be summarized as:

• We propose a novel progressive method for mirror de-

tection. It is based on two new modules, a RCCL mod-

ule for extracting and comparing mirror features and

contextual features for correspondences and a EDF

module to extract multi-scale mirror edge features.

• We propose a more challenging benchmark dataset,

which consists of 6,461 mirror images and correspond-

ing masks from diverse scenes.

• We have conducted extensive experiments to evaluate

the performance of our method on both MSD and our

own dataset, to demonstrate its effectiveness.

2. Related Work

In this section, we briefly summarize recent works that

are relevant to the mirror detection problem.

Mirror Detection. In [29], Yang et al. propose the first

model for automatic mirror detection. It focuses on extract-

ing multi-scale contextual contrasted features between re-

gions inside and outside of the mirror, which help implicitly

locate the mirror edges. However, the assumption of having

contrasted features between the content inside a mirror and

that of the outside may fail when the two contents are very

similar. To address this limitation, we propose in this work

to explicitly consider the relationship between the features

inside and outside of the mirrors as well as explicitly detect

mirror edges in a multi-scale manner. Results show that our

approach can detect mirrors more accurately.

Salient Object Detection. This is a popular research

problem, and has attracted much attention. Earlier meth-

ods are mostly based on low-level features, such as priors

[28] and region contrast [21, 9]. Recent methods are mostly

CNN-based. Deng et al. [11] propose a residual learning

method to improve feature refinement. Wu et al. [26] adopt

a cascaded partial decoder framework to refine the saliency

map. Some recent works also address the importance of

salient edges in saliency object detection. Qin et al. [22]

propose a boundary-aware method and a new hybrid loss to

learn salient features in pixel, patch and map levels. Unlike

salient object detection, which assumes the objects to be de-

tected as salient, mirrors are not always distinctive. Hence,

this kind of methods cannot address our problem.

Semantic Segmentation. This is a very popular research

problem in recent years. It aims to assign pixel-level cat-

egory labels to an input image. Current state-of-the-arts

semantic segmentation approaches, e.g., [31, 13, 17], have

extensively exploited the popular deep CNNs to extract dis-

criminative features for pixel-level classification. Due to the

limited receptive fields of a single convolutional layer, se-

mantic segmentation methods also leverage multi-scale fea-

tures to encode contextual information across different lay-

ers for accurate and dense prediction. For example, PSP-

Net [35] and DeepLab [8] propose Pyramid Pooling Mod-

ule (PPM) and ASPP (atrous spatial pyramid pooling), re-

spectively, to extract pyramid contextual representations in

an efficient and effective way. Ding et al. [12] propose to

aggregate context contrasted local features and gated multi-

scale features to improve performance. Zhang et al. [31]

explore the fine-grained representation using co-occurrent

features for semantic segmentation.

Semantic segmentation methods rely on object appear-

ances for predictions. However, the appearance of a mir-

ror primarily reflects the appearances of its surrounding ob-

jects. Thus, using a segmentation method for mirror de-

tection may end up detecting the objects inside the mirror,

instead of the mirror itself. Hence, we focus in this work to

develop a more powerful detector specifically for mirrors.

3. Our Method

In this paper, we propose a novel progressive mirror de-

tection method. Figure 4 illustrates the pipeline. We first

feed the input image to the backbone feature extraction net-

work [27] to extract multi-scale image features. For each
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(a) Image (b) Mirror content only (c) Relation (d) Relation edges

Figure 2: Visualization of our progressive approach to recognizing mirrors from a single image. By finding correspondences

between objects inside and outside of the mirror and then explicitly locating the miror edges, we can detect the mirror region

more reliably.

Figure 3: Some example images from the MSD dataset in-

dicating the high similarity of the dataset.

level of image features, we then extract the relational con-

textual contrasted (RCC) features using the proposed Re-

lational Contextual Contrasted Local (RCCL) module. A

decoder is then used to decode the extracted RCC features

into a mirror map. In addition, we also propose an edge de-

tection and fusion (EDF) module to explicitly detect mirror

edge features, given both low-level image features and high-

level RCC features as input, to output a boundary map. Fi-

nally, we feed the predicted mirror maps of different scales

from the decoders and the boundary map from the EDF

module to a refinement module to produce the final output

mirror map.

3.1. RCCL Module

Our relational contextual contrasted local (RCCL) mod-

ule is designed to extract relational contextual contrasted

features. Unlike the original context contrasted local (CCL)

block in [12] and the contextual contrasted feature extrac-

tion (CCFE) module in [29], which focus only on contextual

contrasted information, our module also tries to consider

the relation between the contextual contrast and contextual

similarity. The reason for us to take contextual similarity

into account is that we notice the content of a mirror can

sometimes be similar to the content around the outside of

the mirror, e.g., a mirror in front of a white wall while re-

flecting another white wall opposite to it.

Our RCCL module consists of two blocks: a global re-

lation (GR) block and a contextual contrasted local (CCL)

block. Given the input image features fin, we first extract

global features fG using the global feature extractor (GFE),

local features fL using the local feature extractor (LFE),

and context features fC using the context feature extrac-

tor (CFE). The relational feature extractor (RFE) in the GR

block takes the global features fG as input to extract global

relational features fGR. Specifically, for each pixel xi in

fG, the RFE computes the relation score R as:

R (xi,xk) = θ(xT
i xk), (1)

where xk represents the corresponding pixels of xi, and θ is

a linear transformation. Unlike the non-local method [24],

which considers all the other pixels of the image (except xi)

as the corresponding pixels of xi, we select the correspond-

ing pixels xk based on the characteristic of mirror-reflection

invariant [14], which points out that the real object and its

mirror reflection may have a spatial similarity relation. To

fully cover all possible corresponding pixels for pixel xi in

our searching phase as well as to reduce redundant compu-

tations, our method considers all pixels along the eight di-

rections from xi, i.e., all pixels to the right, to the left, to the

top, to the bottom, to the upper left, to the upper right, to the

bottom left and to the bottom right, as corresponding pixels.

Compared with the original non-local method, which suf-

fers from a huge computational burden in the segmentation

process, our RFE has a much smaller set of corresponding

pixels to enable efficient mirror detection.

In summary, each pixel zi in fGR is computed from pixel

xi in fG by:

zi = S(

8
∑

j

γj(
∑

k∈Dj

θ(xT
i xk))), (2)

where Dj is the set of indices of pixels along direction j,

and xk refers to the corresponding pixels of xi along a given

direction. θ is a linear transformation. γj is a learnable fac-

tor. S is a sigmoid function. We enumerate the eight direc-

tions around xi to obtain its spatial corresponding relation.

For fL and fC in the CCL block, we extract the con-

textual contrasted map by subtracting fC from fL, so that

potential mirror regions can be extracted. We then multiply

the subtracted features with fGR to form the final relational

context features fRC .

The global feature extractor is a 1×1 convolution layer

with batch normalization. The local feature extractor is a

3×3 convolution layer with 1 stride, dilation rate of 1 and

1 padding. The context feature extractor is similar to the
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Figure 4: Overview of our network. The backbone network [27] first extracts multi-scale image features, which are used

by the RCCL modules to extract relation contextual features. Each decoder then takes the relational contextual features as

input and outputs a mirror map. The EDF module extracts mirror edge features to produce a boundary map, given the input

low-level image features and high-level relational contextual features. Finally, the refinement module takes all mirror maps

and the boundary map to output a final mirror map.

Figure 5: Architecture of the Relational Contextual Con-

trasted Local (RCCL) module. GFE is a global feature ex-

tractor. RFE is a relational feature extractor. LFE is a local

feature extractor. CFE is a context feature extractor. All

these extractors together help extract relational contextual

contrasted features.

local feature extractor but with different dilation rates and

padding. In our implementation, we set the dilation rates to

2, 4, 8 and 8 for the highest-level RCCL to the lowest-level

RCCL, respectively. The decoders used after the RCCL

modules consist of a 1×1 convolution layer followed by an

upsampling layer to output intermediate mirror maps.

3.2. EDF Module

Our edge detection and fusion (EDF) module is de-

signed to extract multi-scale mirror edge features to pro-

duce a boundary map. Unlike a recent edge extraction mod-

ule [34], which only uses low-level features to help a CNN

detect edge information, our EDF module considers both

low-level and high-level image features in extracting mirror

edges. The reason for us to take high-level image features

to extract edge features is that a mirror may sometimes have

an ambiguous region boundary caused by real objects over-

lapping in front of their reflections, e.g., the top image in

Figure 1, which would require high-level semantics to help

detect the boundary of the mirror region more accurately.

Figure 6 shows the architecture of the EDF module. We

first take the lowest and the second-lowest levels of back-

bone features, fL1

in and fL2

in , together with the highest-level

relational contextual features, fL4

RC , as inputs to the EDF

module and resize them to the same size as the input im-

age. We then use a low-level edge extractor to extract low-

level edge features EL from fL1

in and fL2

in , and a high-level

edge extractor to extract high-level edge features EH from

fL4

RC . Finally, we use an edge fusion and prediction network

to fuse the low-level edge features EL and the high-level

edge features EH to output a predicted boundary map. The

reason for us to extract the low-level and high-level edge

features separately and then fuse them together, instead of

using a single edge extractor, is that from our experiments,

we find that using only a single edge extractor tends to pro-

duce sparse edges. By using separate edge extractors, one

can focus on the low-level edge features and the other can

focus on the high-level edge features. A much finer bound-

ary map can be obtained after fusing the two results.

To supervise our EDF module, we need to have ground

truth edges. We use the Canny edge detector [7] to extract

the mirror edges from the ground truth masks in our dataset

to produce the ground truth edge maps.

The low-level edge extractor consists of three convolu-

tion layers, including 256, 128 and 64 filters with a kernel

size of 3×3 and 1 padding. The high-level edge extractor

consists of a convolution layer, including 512 filters with

a kernel size of 1×1. The fusion layer and the prediction

layer are each of a convolution layer with a kernel size of

1×1.
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Figure 6: Architecture of the Edge Detection and Fusion

(EDF) module. It contains two edge extractors for low-level

and high-level feature extraction, and one edge fusion layer

together with a prediction layer for fusing the two sets of

features to produce the final boundary map.

3.3. Refinement Module

To combine the predicted boundary map with the multi-

scale mirror maps to form the output mirror map, we add a

refinement module to learn to fuse all these maps with ref-

erence to the input image. Our refinement module is com-

posed of two convolution layers, with a kernel size of 3×3,

and 1 padding with batch normalization. We first concate-

nate the multi-scale mirror maps together with the input im-

age as input features to the refinement module to obtain re-

fine mirror features. We then feed the refine mirror features

to a convolution layer with a kernel size of 1×1 to obtain

the final mirror map.

3.4. Loss Function

We use the Lovász-Softmax loss [4] to supervise the

training of the multi-scale mirror maps. For the EDF mod-

ule, we use the binary cross-entropy (BCE) loss to supervise

the extraction of the boundary map.

The final loss function is:

Loss =

S
∑

s=1

wsLs + wbLb + wfLf , (3)

where Ls is the lovasz-hinge loss between the s-th mir-

ror map and the ground truth mirror map, while Lf is the

lovasz-hinge loss between the final output mirror map and

the ground truth mirror. Lb is the binary cross-entropy

(BCE) loss. We empirically set the weight balanced factors

ws, wb, wf to 1, 5, 2, respectively.

4. Experiments

4.1. Datasets

Datasets. Currently, there is only one mirror dataset

available, i.e., MSD [29], which has 4,018 mirror images

with corresponding masks. However, we note that MSD in-

cludes mostly indoor scenes, with small mirrors. In partic-

ular, a lot of images in MSD are very similar to each other,

(a) (b) (c) (d) (e) (f)

Figure 7: Two wrongly annotated examples (a) and (d) from

the original datasets that form our benchmark. While the

mirror masks provided by the original dataset (b) and (e) are

very coarse, the regions representing the reflected persons

are not considered as part of the mirror. Our corresponding

ground truth masks are shown in (c) and (f), respectively.

Dataset MSD Ours

Similarity 34.73% 21.85%

Table 1: The similarity scores of MSD and of our bench-

mark.

which can significantly reduce the robustness of mirror de-

tection methods. Figure 3 shows eight images that are very

similar to each other. We also use SSIM [25] to study the

similarity of the images in MSD. We first resize all of them

to the same size, and compute the sum of the image similar-

ity of every pair of images in MSD. We then divide the sum

by the number of image pairs to obtain the average similar-

ity score of the whole dataset as:

SSIM(x, y) =
(2μxμy + C1) + (2σxy + C2)

(μ2
x + μ2

y + C1)(σ2
x + σ2

y + C2)
, (4)

Similarity =

∑N

k=1
SSIM(xk, yk)

N
, (5)

where μx, μy and σx, σy are the means and standard devi-

ations of images x and y. σxy is the covariance of images

x and y. C1 and C2 are to avoid division by zero, and are

set to 0.012 and 0.032, respectively. N is the total number

of image pairs. k is the index of the kth image pair, con-

taining two different images (xk, yk). The similarity score

ranges from 0 to 1. The second column of Table. 1 shows

that MSD has a rather high similarity score.

To address the limitations of MSD as discussed above,

we propose a large-scale benchmark here, which contains a

total of 6,461 mirror images with ground truth annotations.

All these images are obtained from six public datasets:

ADE20K [35, 36], NYUD-V2 [19], MINC [3], Pascal-

Context [18], SUNRGBD [23], and COCO-Stuff [6]. We

select all images from these six datasets that contain mirrors

in them. As such, our benchmark contains very diverse im-

ages, covering a variety of scenes. To evaluate the diversity

of the images, we have also computed the average similar-

ity score of our benchmark, as shown in the third column of

Table. 1. We can see that our benchmark has a much lower

similarity score than MSD.

43253701



Figure 8: Images in our benchmark show high diversity and low similarity. They cover a varieity of daily scenes containing

planar mirrors or concave mirrors.

Dataset
Total number of

Error rate
images selected

ADE20K [35, 36] 1352 3.03%

COCO-Stuff [6] 3766 91.72%

MINC [3] 387 16.02%

NYUD-V2 [19] 159 18.87%

SUNRGBD [23] 716 31.15%

Pascal-Context [18] 81 6.17%

Total 6461 59.04%

Table 2: Composition of our benchmark for mirror detec-

tion. We collect mirror images from six existing datasets.

The second column shows the total number of mirror im-

ages obtained from each of the six datasets, while the third

column shows the error rate of the their mirror annotations

in each of the datasets.

In addition, we have noted that although all six datasets

include the mirror label, there are a lot of labelling problems

in their mirror annotations. For example, as demonstrated

in Figure 7, a lot of them have very coarse or even incor-

rect mirror masks (left example), and some consider the re-

gions of the reflected objects as non-mirror regions (right

example). Table 2 summarizes the error rates of the mirror

annotations of individual datasets. Each error rate indicates

the percentage of wrongly labeled images in the original

dataset. We have corrected all incorrect annotations in our

benchmark. Figure 8 shows some example images/masks

from our benchmark. We can see that they have much finer

annotations.

To evaluate on our benchmark, we adopt the leave-one-

out cross-validation strategy. Therefore, we test a model on

all mirror images from one of the six datasets, but train it

on all mirror images from the remaining five datasets. We

perform this test six times on the six datasets in a similar

way, to obtain six sets of results.

4.2. Evaluation Metrics

We employ two popular metrics to quantitatively evalu-

ate the performance of our model. As the mirror detection

problem is similar to the salient object detection problem,

we use maximum F-measure (Fβ) and mean absolute error

(MAE) to evaluate the performance. Fβ is computed as:

Fβ =

(

1 + β2
)

× Precision×Recall

β2 × Precision+Recall
, (6)

where β2 = 0.3 as suggested in [1].

Mean absolute error (MAE) is computed as:

MAE =
1

W ×H

W
∑

x=1

H
∑

y=1

|P (x, y)− Y (x, y)|, (7)

where Y is the ground truth. W and H are width and height

of the test image. P is the predicted output.

4.3. Implementation Details

We use ResNeXt101 [27] pretrained on ImageNet [10]

as the backbone feature extraction network. We have imple-

mented the proposed model on PyTorch [20] and train it on

a PC with a GeForce RTX2080Ti card. We use stochastic

gradient descent as the optimizer with a momentum value

of 0.9 and a weight decay of 5e − 4. The learning rate in

the training phase is initialized as 1e−3. We use the “poly”

learning rate policy with a power of 0.9, which is the same

as PSPNet [32]. We set the batch size to 10 and the num-

ber of training epochs to 150. We apply CRF [16] to our

predicted map for final output. The parameters in all the

layers, except the backend network, are randomly initial-

ized. Training our model takes 16 hours and testing takes

0.13s per image, on a single GTX 2080Ti.

4.4. Comparison with the State-of-the-arts Methods

In this experiment, we compare our method with state-

of-the-art methods from relevant fields.

Table 3 shows the mirror detection performance on the

MSD dataset and our proposed benchmark. Our method

achieves the best performances on both metrics, Fβ and

MAE, compared with all the other methods. Figure 9 pro-

vide visual comparisons. The first three rows of images

contain some ambiguous regions that look similar to mir-

rors. While MirrorNet tends to detect these regions as mir-

rors, our method can differentiate them well and accurately

identify the mirror regions. In the third row, MirrorNet even
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Method
MSD ADE20K COCO-Stuff MINC NYUD-V2 Pascal-Context SUNRGBD

Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓ Fβ ↑ MAE↓

DSC [15] 0.812 0.087 0.169 0.176 0.528 0.158 0.341 0.145 0.094 0.161 0.074 0.225 0.141 0.149

BDRAR [37] 0.792 0.093 0.683 0.137 0.624 0.219 0.354 0.134 0.686 0.132 0.465 0.219 0.624 0.204

PSPNet [32] 0.746 0.117 0.351 0.106 0.344 0.126 0.289 0.185 0.237 0.070 0.336 0.048 0.371 0.100

R3Net [11] 0.846 0.068 0.722 0.034 0.651 0.076 0.560 0.089 0.631 0.035 0.557 0.034 0.630 0.039

CPDNet [29] 0.769 0.111 0.695 0.030 0.602 0.081 0.531 0.072 0.655 0.038 0.550 0.039 0.606 0.042

BASNet [22] 0.791 0.082 0.614 0.047 0.525 0.103 0.585 0.079 0.439 0.076 0.354 0.056 0.483 0.064

EGNet [33] 0.802 0.086 0.632 0.044 0.578 0.099 0.555 0.070 0.440 0.054 0.549 0.041 0.641 0.038

MirrorNet [29] 0.857 0.065 0.704 0.126 0.624 0.136 0.608 0.069 0.706 0.127 0.432 0.151 0.620 0.105

Ours 0.898 0.045 0.743 0.029 0.659 0.074 0.621 0.063 0.726 0.034 0.560 0.030 0.657 0.032

Table 3: Quantitative results on the MSD dataset (second column) and on our benchmark (third to eighth columns). We

compare our model with relevant state-of-the-art methods: shadow detection methods DSC [15] and BDRAR [37]; semantic

segmentation method PSPNet [32]; salient object detection methods R3Net, CPDNet [26], BASNet [22] and EGNet [33];

and mirror detection method MirrorNet [29]. The best results are shown in bold.

Image GT PSPNet[32] DSC [15] BDRAR [37] R3Net [11] CPDNet [26] BASNet [22] EGNet [33] MirrorNet [29] Ours

Figure 9: Qualitative results of our model, compared with relevant state-of-the-art methods.

considers the whole image as potentially covered by a mir-

ror. The fourth and fifth rows of images contain mirrors that

can easily be missed. While MirrorNet fails to detect them,

our method can detect them accurately. The sixth and seven

rows of images contain mirrors that are partially overlapped

by the real objects. As a result, the real objects can be eas-

ily mixed up with their reflections. While MirrorNet fails to

differentiate them correctly, our method can separate them

accuractly and outperform all baseline methods.

We have also observed that although BASNet [22] and

EGNet [33] are boundary-aware networks for salient ob-

ject detection and have shown to perform well among the

SOD methods, our method can still significantly outper-

forms these two methods on mirror detection.
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Ablation Fβ ↑ MAE↓
Basic 0.859 0.061

Basic + s-ED 0.858 0.068

Basic + EDF 0.864 0.062

Basic + RCCL 0.866 0.059

Basic + EDF + GR 0.874 0.052

Basic + EDF + CCL 0.876 0.049

Basic + EDF + RCCL 0.889 0.047

Ours 0.898 0.045

Table 4: Ablation study results, trained and tested on the

MSD dataset. “Basic” denotes our network without the

RCCL, EDF and refinement modules. “s-ED” is the EDF

module with only a single low-level edge extractor, in-

stead of both low-level and high-level edge extractors in our

“EDF”. “Basic+EDF+RCCL” is the full model but without

the refinement module. “Our” is the proposed full model.

The best results are shown in bold.

4.5. Ablation Study

Table 4 demonstrates the effectiveness of each compo-

nent in our model. As shown in the last row, our final pro-

posed network with the RCCL module, EDF module and re-

finement module outperforms other baselines on all metrics.

We can see that the EDF module with only a single edge

extractor (s-ED) does not help improve the performance.

However, when the basic network containing both EDF and

RCCL modules (using the top-level mirror map as output),

it can greatly outperform the other ablated models, espe-

cially on Fβ . We attribute it to the effect of our contextual

relation extraction process carried out by the RCCL modul,

which significantly benefits the mirror detection task from a

global view. Figure 10 shows a visual example of the com-

ponent analysis. We can see that the refinement module

can help improve the performance by removing the over-

predicted region.

To investigate the effectiveness of our EDF module, we

visualize the edge maps extracted, as shown in Figure 11.

We can find that our edge map extracted from high-level

features (d) can differentiate between the red arrow and its

reflection well, while the edge map extracted from low-level

features (c) fails.

5. Conclusion

In this paper, we have proposed a progressive method

for detecting mirrors in a single image. The method in-

cludes two novel modules, the relational contextual con-

trasted local module (RCCL) for extracting and compar-

ing mirror and contextual features for correspondence, and

the edge detection and fusion (EDF) module for extracting

multi-scale mirror edge features. In addition, we have con-

structed a challenging large-scale benchmark with diverse

(a) (b) (c) (d) (e) (f) (g)

Figure 10: A visual example of the ablation study. (a) is the

input image and (b) is the ground truth. (c) to (g) correspond

to the predictions from the five ablated models: “Basic”,

“Basic + s-ED”, “Basic + EDF”, “Basic + EDF + RCCL”,

and ours, respectively.

(a) Input (b) GT (c) LL map (d) HL map

Figure 11: Visual comparison of edge maps extracted by

low-level and high-level features.

Figure 12: Failure cases. Our model may fail on some im-

ages with very little relational and contextual contrasted in-

formation.

scenes from six public datasets. It includes 6,461 images

covering daily scenes with mirrors. Our experimental re-

sults demonstrate that the proposed model achieves state-

of-the-art performances on both our benchmark and the ex-

isting dataset.

Our method does have limitations. Since our method re-

lies on detecting and correlating features inside and outside

of the mirrors, it may fail if a region appears like a mir-

ror even from a human point of view. In Figure 12, the

wall behind the man in the left image appears like some

of the mirrors in our benchmark and is detected as a mir-

ror region. On the right image, the wooden frame causes

the background of the two persons to appear like a mirror.

Hence, the background is also detected as a mirror region.

As a future work, we are currently considering additional

information, such as depth and light-field images, to help

detect mirrors beyond human-like visual perception.
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Alexander Hornung. Saliency filters: Contrast based filtering

for salient region detection. In CVPR, 2012.

[22] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,

Masood Dehghan, and Martin Jagersand. Basnet: Boundary-

aware salient object detection. In CVPR, June 2019.

[23] Shuran Song, Samuel P. Lichtenberg, and Jianxiong Xiao.

Sun rgb-d: A rgb-d scene understanding benchmark suite. In

CVPR, June 2015.

[24] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. CVPR, 2018.

[25] Zhou Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image

quality assessment: From error visibility to structural simi-

larity. IEEE TIP, 13(4):600–612, Apr. 2004.

[26] Zhe Wu, Li Su, and Qingming Huang. Cascaded partial de-

coder for fast and accurate salient object detection. In CVPR,

June 2019.

[27] Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In CVPR, July 2017.

[28] Chuan Yang, Lihe Zhang, and Huchuan Lu. Graph-

regularized saliency detection with convex-hull-based center

prior. IEEE Signal Processing Letters, 20(7):637–640, 2013.

[29] Xin Yang, Haiyang Mei, Ke Xu, Xiaopeng Wei, Baocai Yin,

and Rynson W.H. Lau. Where is my mirror? In ICCV, 2019.

[30] Oliver Zendel, Katrin Honauer, Markus Murschitz, Martin

Humenberger, and Gustavo Fernandez Dominguez. Analyz-

ing computer vision data - the good, the bad and the ugly. In

CVPR, July 2017.

[31] Hang Zhang, Han Zhang, Chenguang Wang, and Junyuan

Xie. Co-occurrent features in semantic segmentation. In

CVPR, June 2019.

[32] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

CVPR, 2017.

[33] Jia-Xing Zhao, Jiang-Jiang Liu, Deng-Ping Fan, Yang Cao,

Jufeng Yang, and Ming-Ming Cheng. Egnet:edge guidance

network for salient object detection. In ICCV, Oct 2019.

[34] Yifan Zhao, Jia Li, Yu Zhang, and Yonghong Tian. Multi-

class part parsing with joint boundary-semantic awareness.

In ICCV, October 2019.

[35] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ade20k dataset. In CVPR, 2017.

[36] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic un-

derstanding of scenes through the ade20k dataset. IJCV,

127(3):302–321, Mar 2019.

[37] Lei Zhu, Zijun Deng, Xiaowei Hu, Chi-Wing Fu, Xuemiao

Xu, Jing Qin, and Pheng-Ann Heng. Bidirectional feature

pyramid network with recurrent attention residual modules

for shadow detection. In ECCV, 2018.

43293705


