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Figure 1: Our model classifies, localizes, segments, and tracks all instances of predefined object classes with consistent assigned identities.

Abstract

We propose a modified variational autoencoder (VAE)

architecture built on top of Mask R-CNN for instance-level

video segmentation and tracking. The method builds a

shared encoder and three parallel decoders, yielding three

disjoint branches for predictions of future frames, object de-

tection boxes, and instance segmentation masks. To effec-

tively solve multiple learning tasks, we introduce a Gaus-

sian Process model to enhance the statistical representation

of VAE by relaxing the prior strong independent and identi-

cally distributed (iid) assumption of conventional VAEs and

allowing potential correlations among extracted latent vari-

ables. The network learns embedded spatial interdepen-

dence and motion continuity in video data and creates a

representation that is effective to produce high-quality seg-

mentation masks and track multiple instances in diverse and

unstructured videos. Evaluation on a variety of recently in-

troduced datasets shows that our model outperforms pre-

vious methods and achieves the new best in class perfor-

mance.

1. Introduction

In recent years, there has been great progress in the area

of automatic video understanding. Classic video tasks are

centered around understanding what objects are doing and

their actions. This paper considers an emerging video un-

derstanding task: Video Instance Segmentation Tracking

(VIST), which aims to classify, localize, segment, and track

all instances of object classes throughout a video and yield

pixel-wise object labels [59, 66]. This task provides a more

natural understanding of the video scenes and is more desir-

able for applications that require detailed pixel-level infor-

mation, such as autonomous driving and video editing.

The VIST task is different from traditional video object

tracking and video object segmentation. Video object track-

ing [1, 4, 35, 54, 63, 65, 68] uses bounding boxes to iden-

tify the target objects and to estimate their positions in the

subsequent frames. Yet, in many scenarios with heavy oc-

clusions, simple rectangular bounding boxes fail to properly

represent objects. The VIST task produces binary segmen-

tation masks and pixel-level tracking results. Furthermore,

if objects are occluded, or out of the scene for a couple of

frames before reappearing, the instance identities are main-

tained. Traditional video object segmentation can coarsely
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be separated into two groups: semi-supervised and unsuper-

vised. VIST differs from both of them. In semi-supervised

mode [9, 60, 46, 12, 21], the initial masks for objects of in-

terest are provided in the first frame. In unsupervised mode

[22, 70, 40, 39], only salient objects are to be tracked. In

the proposed VIST task, initial masks are not available and

objects to be tracked are set by predefined classes.

Despite the remarkable progress achieved with CNNs,

VIST is still challenging when applied to real world envi-

ronments. To address the VIST task, Voigtlaender et al.

[59] propose TrackR-CNN, which extends Mask R-CNN

[18] with 3D convolutions to incorporate temporal informa-

tion and adds an association head to link object identities

over time. Similarly, Yang et al. [66] propose MaskTrack

R-CNN, which introduces a new tracking branch to Mask

R-CNN to jointly perform the detection, segmentation and

tracking tasks. TrackR-CNN and MaskTrack R-CNN are

both nicely designed models and demonstrate promising di-

rections of adapting Mask R-CNN with an association head

for tracking. However, both methods assume that Mask

R-CNN is effective in producing well-localized bounding

boxes and accurate segmentation results. In highly diverse

and unstructured videos, visual objects are often subject to

partial or even full occlusion, deformation, pose variation,

and, in many cases, objects have similar appearance and are

hard to be isolated from a cluttered background. Thus, there

is a great possibility that object detections are ill-initialized,

which, in turn, degrade the precision of object masks pre-

dicted within bounding boxes and tracking results produced

by linking masks. In other words, the mechanism of directly

linking Mask R-CNN segmentation masks across frames

via an association head faces an inherent limitation: the

model has difficulties in handling false negative proposals,

leading to inferior performance.

In this paper, we propose a variational autoencoder

(VAE) modification that builds on top of Mask R-CNN, to

tackle the VIST problem. We note that the spatial inter-

dependence and motion continuity across frames provide a

supportive context that allows a video model to better in-

fer what is happening next. We adapt a VAE architecture

to capture spatial and motion information shared by all in-

stances, and generate attentive cues to reduce false negative

mask predictions. By forcing the network to solve multi-

ple learning tasks, we induce a representation within the

network which guides well the video instance segmenta-

tion tracking task and produce high quality segmentation

masks. Figure 1 illustrates sample experimental results of

our method on MOTS [59] and YouTube-VIS [66] datasets.

Our contributions are summarized as follows. (1) Our

multi-task network architecture and training scheme have

been carefully designed to take advantage of both spatial

and motion cues. It achieves the new best in class per-

formance with the same network on the recently released

KITTI MOTS, MOTS Challenge [59] and YouTube-VIS

[66] datasets. (2) We introduce a Gaussian Process model

to enhance the statistical representation of VAE by relax-

ing the prior strong independent and identically distributed

(iid) assumption of conventional VAEs and allowing corre-

lations among extracted latent variables. The spatial inter-

dependence is encoded by the modified VAE, which plays

a crucial role in generating valid and errorless instance seg-

mentation.

2. Related Work

Image Instance Segmentation. The instance segmentation

task [43, 18, 45, 10] is closely related to object detection and

semantic segmentation. A mainstream framework to solve

this task is to augment a detector network with a branch

to predict object masks within bounding boxes or region

proposals. He et al. propose Mask R-CNN [18] that ex-

tends the Faster R-CNN framework with a mask head and

achieves state-of-the-art performance. The idea is further

developed by PANet [45] and Mask Scoring R-CNN [24]

which outperform competing methods on COCO dataset.

These methods have achieved impressive performance on

localizing objects of interest at pixel level in images, but

they are not directly applicable to the VIST task. In the

VIST task, object instances not only are segmented and rep-

resented by masks in each video frame, but also are tracked

with the same corresponding identities throughout a video.

Visual Object Tracking. The typical visual object tracking

(VOT) [1, 4, 35, 54, 63, 65, 68] is based on bounding boxes

and usually does not provide accurate object contours. VOT

[30], MOT Challenge [34], PETS [14] and KITTI [16] are

popular datasets used to evaluate VOT performance. Exist-

ing methods for this task roughly fall into two categories,

namely detection-free and detection-based. Detection-free

tracking methods [5, 58, 37, 62, 36, 69] track objects given

a manual initialization of a fixed number of objects in the

first frame. They cannot deal with new objects appearing in

the middle of a video sequence. Detection-based tracking

[27, 67, 63, 20, 49, 13, 4, 61, 32, 42], on the other hand, gen-

erally requires objects being detected followed by a tracker

that links the detection regions to form trajectories of the

targets. In order to resolve ambiguities in linking object de-

tections, many efforts have explored this problem with data

association approaches [27, 67], such as Markov decision

process [63], event aggregation [20], greedy algorithm [49],

and attentional correlation filters [13].

Video Object Segmentation. Video object segmentation

(VOS) aims at segmenting and tracking objects in videos,

but does not require recognition of object categories. Pop-

ular datasets for the VOS task include DAVIS [50], Seg-

TrackV2 [38] and YouTube-VOS [64]. In general, VOS has

two major categories: semi-supervised and unsupervised.
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Figure 2: Illustration of proposed framework for video instance segmentation tracking.

In semi-supervised scenario, ground-truth masks are given

in the first mask and tracked through the rest of frames of

the sequence. Typically, spatial-temporal graph and CNN

based methods are investigated. Spatial-temporal graph

methods rely on two important cues: (1) object represen-

tation of graph structure, e.g., pixels [57, 47], superpixels

[51, 25], object patches [3] and (2) spatial-temporal connec-

tions, e.g., spatial-temporal lattices [47], nearest neighbor

fields [2, 15], and mixture of trees [8]. Some of the CNN-

based methods [21, 41] employ Recurrent Neural Networks

with optical flow to capture the temporal coherence of ob-

ject motion and propagate information between frames. An-

other line of methods [11, 23, 53] formulates VOS as a

pixel-wise matching problem. Other approaches [9, 60]

learn an appearance model to perform pixel-level detection

and segmentation of objects at each frame.

In the unsupervised scenario [22, 70, 40, 39, 55, 33], the

task is to segment salient foreground moving objects in a

fully automatic way. Motion patterns, (e.g. optical flow

[56] and long-term trajectory [7]) are usually used as main

sources of information. Due to the lack of guidance from

object masks, most of the unsupervised methods cannot seg-

ment a specific object if there exists motion ambiguity be-

tween different instances and dynamic background.

In summary, VIST has some common challenges as VOT

and VOS, but differs in several aspects, for example, no first

mask is given as guidance, all object instances belonging

to a set of predefined classes are needed to be classified,

segmented and tracked with the consistent assigned iden-

tities throughout a video, and the final outputs are precise

pixel-level masks without any overlapping pixels between

masks. To evaluate VIST performance, the masks of all

instances of a predefined category set and the instance iden-

tities across frames should be labeled. Thanks to the KITTI

MOTS, MOTS Challenge, and YouTube-VIS datasets re-

cently introduced by [59] [66], the effectiveness of the pro-

posed method could be evaluated.

3. Method

3.1. Overview

We adopt a VAE architecture which consists of a prob-

abilistic variable to describe an observation in latent space.

Our method is illustrated in Figure 2. Specifically, our VAE

architecture includes one encoder and three decoders, which

yields three parallel branches, namely auxiliary branch, pro-

posal branch and augment branch. The skip connection

scheme is applied between the down-sampling encoder and

up-sampling decoders in the proposal branch and augment

branch for information preservation. These three branches

share the same hidden feature layers but perform different

tasks. The auxiliary branch takes frame-level video inputs

and learns to predict future frames. The goal of this branch

is to guide the network to learn finer representations and in-

crease the amount of meaningful semantic information en-

coded in the latent space. The proposal branch summarizes

and outputs object-level information for connecting objects

over time. It also provides attentive cues to reduce false neg-

atives in the augment branch. The augment branch aggre-

gates pixel-level features extracted from different layers in

the VAE encoder and the Mask R-CNN network. The low-

level features are rich in spatial details, and the high-level

features contain more semantic information. By combin-

ing these extracted features with outputs from the proposal
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branch and the Mask R-CNN network, this branch produces

final instance classifications, identities, detection boxes and

segmentation masks.

3.2. Unified Variational Autoencoder

We consider a video sequence F which consists of T

frames Ft, t ∈ {1, ..., T}, with N instances belonging to

a predefined category label set C. Our variational inference

network follows an encoding-decoding scheme, consisting

of four components: an encoder Eφ and three conditional

decoders Daux
θ (Auxiliary branch), D

pro
θ (Proposal branch),

D
aug
θ (Augment branch). The variational network takes the

current observation ξt = [Ft, Ft−1,Λt−1] as an input to

perform multi-task learning: predict the future frame F̂t+1

in Daux
θ , generate a set of detection box predictions Γ̂t in

D
pro
θ , and estimate a set of instance segmentation masks Λ̂t

in D
aug
θ . We denote Γ̂t = {bi,t}

nb

i=1 and Λ̂t = {mi,t}
nm

i=1,

where bi,t and mi,t are the detection box prediction and the

segmentation mask for instance i at frame t respectively. nb

and nm are the number of detected object instances at frame

t in D
pro
θ and D

aug
θ . More specifically, the encoder Eφ first

maps the current observation ξt to a latent variable z and a

spatial prior ϕ. The conditional decoders Dθ computes z

and ϕ to estimate the output χ̂t = [F̂t+1, Γ̂t, Λ̂t].

We formulate our encoder to describe a probability dis-

tribution for each latent attribute. In conventional VAE

models, latent encoding variables are assumed to be iden-

tically and independently distributed (iid) across both la-

tent dimensions and samples, which is not realistic in many

problems with high dimensional inter and intra-data corre-

lation. For example, in a video sequence, it is reasonable to

expect that the frames that were taken adjacently would ex-

hibit similar latent representations. With this rationale, we

propose to relax the strong prior iid assumption of standard

VAE, and allow correlation among latent variables to model

the spatial interdependence observed in video data. This en-

courages the encoder to capture better representations of the

underlying data distribution across videos frames.

3.2.1 Conditional Variational Bound

Given that z is a latent variable and ϕ is a conditional prior,

one way of learning the decoder pθ(χt|z, ϕ) is to use a vari-

ational autoencoder [29]. But, instead of using the same

data for input and target output, we take the current obser-

vations ξ as input and targeted estimation χ as output. Ad-

ditionally, we add another constraint on the network, using

a conditional prior ϕ extracted from ξ to preserve spatial

information.

The decoder network Dθ estimates the parameters of the
distribution pθ(χt|z, ϕ). To learn the decoder, we need
to maximize the log-likelihood of observed data ξ and
marginalize out the latent variables z and ϕ. To avoid the in-

tractable integral, an approximate posterior qφ(z|ξ, ϕ) is in-
troduced to obtain the ELBO from Jensen’s inequality [29],

log pθ(χt|ξ) ≥ Eq log
pθ(χt|z, ϕ)pφ(z|ϕ)

qφ(z|ξ, ϕ)
. (1)

The loss function for training these models follows di-

rectly from Equation 1 and has the form: L(χt, θ, φ) =
−DKL(qφ(z|ξ, ϕ)||pθ(z|ϕ)) + Eqφ(z|ξ,ϕ)[log pθ(χt|z, ϕ)].

The loss function is made up of two parts: a DKL di-

vergence and a log likelihood part. DKL divergence part

is latent loss, which can be understood as a distance be-

tween the distribution qφ(z|ξ, ϕ) and a prior distribution for

z. By minimizing this distance, we are really avoiding that

qφ(z|ξ, ϕ) departs too much from its prior, acting as a reg-

ularization term. The second part is decoding loss, which

measures how accurately the network constructed the se-

mantic output χt by using the distribution pθ(χt|z, ϕ), that

is, it is a distance between χ̂t and χt.

3.2.2 Variational Inference with Gaussian Process La-

tent Variables

Video data has very strong spatial correlation within and

among frames; however, the conventional VAEs impose

a strong assumption that the latent variables are all inde-

pendent and identically distributed. To relax this assump-

tion, we propose a new scheme assuming the prior pθ(z|ϕ)
following N(0, I) and the latent variables to be realiza-

tion from a constant mean Gaussian process denoted by

GP (u,Σ), where u denotes the variational mean and Σ is

the covariance function accommodating the potential spatial

correlation. In Lemma 1, the spatial correlation structure is

defined and the determinant of the corresponding covari-

ance matrix is derived.

Lemma 1 (Covariance under spatial correlation as-
sumptions). Assume that the latent variables z =
(z1, . . . , zJ) can be divided into k independent groups,
within which the latent variables are correlated. Denote
(zm1

, . . . , zmdm
) as the mth group with dm components,

where m = 1, . . . , k and
∑k

m=1 dm = J . Defining the
correlation structure by Corr(zmi

, zmj
) = ρm < 1 when

i 6= j and Corr(zmi
, znj

) = 0 when m 6= n, the determi-
nant of the covariance matrix can be written as:

|Σ| =
J∏

i=1

σ
2

i

k∏

m=1

(1− ρm)dm−1(ρmdm + 1− ρm). (2)

Given the spatial correlation structure in Lemma 1, the

corresponding DKL divergence is derived in Theorem 2.

Theorem 2 (DKL divergence under spatial correlation

assumption). Under the spatial correlation assumptions in

Lemma 1 and the results in equation (2), the DKL diver-

gence can be derived:
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−DKL(qφ(z|ξ, ϕ)||pθ(z|ϕ))

=
1

2

k∑

m=1

(dm − 1) log(1− ρm) + log(ρmdm + 1− ρm)

+
1

2

J∑

j=1

(1 + log(σ2

j )− µ
2

j − σ
2

j ). (3)

To optimize the KL divergence derived in Theorem 2,

we apply a reparameterization trick [29]: instead of the en-

coder generating a vector of real values, it generates a vec-

tor of means, a vector of standard deviations and a vector of

correlations. When decoding from latent state, we sample

from the Gaussian Process with their mean and covariance

matrix, and use that as our latent vector z. This constraint

forces the encoder to be very efficient, creating information-

rich latent variables, and improves the generalization of our

network to tolerate noise from various type of video con-

tents.

Here, we extract and preserve spatial information ϕ from

current observation ξ to enhance estimation of instance seg-

mentation. In practical cases, a VAE network tends to pro-

duce more blurry images. We thus employ skip connections

where the pooling operations in the contracting path (encod-

ing) are mirrored by upsampling operations in the symme-

try expanding (decoding) path. The skip connections from

earlier layers in the network could provide the necessary

spatial details in order to reconstruct accurate shapes for in-

stance segmentation. Also, the symmetric expanding path

enables precise localization. In our case, ϕ is the features

from different layers in the encoder network and is fed into

the corresponded layers with the same scale in the decoder

network.

3.3. Decoder Branches

3.3.1 Auxiliary Branch

In VAEs, there might exist bypassing connection between

the encoder and the decoder if the network is not designed

properly. Specifically, if the decoder has a direct and deter-

ministic access to the source, the latent variables z might

not capture much information so that the VAE does not

play an effective role in the process. To avoid this, we in-

clude an auxiliary branch, which plays as a supportive role

to guide the model towards increasing the amount of se-

mantic information encoded in the latent space and creating

information-rich latent variables.

The training objective of this branch is to reconstruct the

future frame Ft+1 given the current observation ξt. The re-

construction loss is measured by mean square error (MSE)

between the predicted and ground truth images. The auxil-

iary branch is implemented with n residual blocks, follow-

ing the architecture proposed in [19] without batch normal-

ization. We use strided convolution with stride of 2 after

each residual block to down-sample the inputs until a bot-

tleneck layer, and we utilize subpixel convolution [52] to

perform the up-sampling between two consecutive residual

blocks. All convolutional layers consist of 3x3 filters. The

following two branches have similar architecture.

3.3.2 Proposal Branch

The goal of this branch is to summarize and output object-

level information, which provides attentive cues to reduce

false negatives in the augment branch. Let I denote the set

of instances detected and identified at frame Ft−1. Each in-

stance i ∈ I consists a detection box bi,t−1, a segmentation

map mi,t−1, a classification ci,t−1 and an identity idi,t−1.

For each object instance i, its localization at frame t are es-

timated by the Decoder D
pro
θ in this branch. Following the

spirit of Mask R-CNN [21], we use the detection box bi,t−1

as a region of interest (RoI), and apply RoIAlign to extract

multi-scale feature maps and locate the relevant areas. The

extracted features are passed through two fully connected

layers for bounding box regression. We thus obtain the de-

tection box prediction b̂
pro
i,t . The detection box keeps the

same identity as the corresponding instance. The bounding

box loss is measured by a weighted smooth L1 loss [17] for

backward propagation.

3.3.3 Augment Branch

We aim to produce high-quality instance segmentation

masks and reliable object tracks in this branch. We first

concatenate features from difference sources, match detec-

tion outputs from the proposal branch and the Mask R-CNN

network, and then produce the final classification, identity,

detection box and segmentation mask for each instance.

Considering the features from multiple sources are

strong complements to existing box and mask features, we

incorporate the features at different levels of our VAE en-

coder and Mask R-CNN network for better feature presen-

tations. With our network design, the combined features

contain more spatial details and motion information, and

thus are more discriminative on cluttered background. The

new feature map xAug can be generated as

x
Aug
i = xE

i ⊕ xMask
i , (4)

where ⊕ denotes concatenation, xE
i and xMask

i are the i-

th scale feature maps from Encoder Eφ and Mask R-CNN

backbone respectively. The concatenated multiple-scale

features are fed into the Decoder D
aug
θ .

The Decoder D
aug
θ takes instance detection box outputs

from the Proposal branch and the Mask R-CNN network.

Let b̂
pro
i,t denotes the detection box prediction for instance

i at frame t from proposal branch, and b̂mask
j,t denotes the
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detection box output for instance j at frame t from Mask R-

CNN network. We first match b̂
pro
i,t and b̂mask

j,t . The match-

ing cost between bounding boxes is defined as:

cij = 1− Ω(b̂proi,t , b̂mask
j,t ), (5)

where Ω(·, ·) is the intersection over union (IoU) ratio

of bounding boxes. We match the bounding boxes only

if their IoU ratio is greater than ǫ. After computing all

matching costs between b̂
pro
i,t and b̂mask

j,t , we find the opti-

mal set of matching pairs using the Hungarian algorithm

[31]. Then we create a new rectangle detection box by the

union of the matched box pair. The new bounding box takes

the same identity as corresponding b̂
pro
i,t . The unmatched

bounding box prediction b̂
pro
i,t keeps its original identify.

The unmatched detection box b̂mask
j,t is considered a newly-

appearing object instance and is assigned a new identity.

For each detection box with positive RoI, we apply

RoIAlign to extract feature map, perform object class and

bounding box regression, and use a fully convolutional

network (FCN) to generate a pixel-level mask. The new

instance segmentation mask is denoted by mi,t and is

linked to the ith instance track to form the track Ti,t =
{...,mi,t−1,mi,t}. We use average binary cross-entropy to

measure mask loss [18].

4. Experiments and Analysis

4.1. Experimental Setup.

Dataset. We evaluate the proposed method on the

newly introduced KITTI MOTS, MOTSChallenge [59] and

YouTube-VIS [66] datasets for video instance segmenta-

tion tracking. The objects in these datasets have consis-

tent instance identity labels across frames. KITTI MOTS

dataset focuses on videos from vehicle-mounted cameras. It

contains 8,008 frames in 21 scenes, with 26,899 annotated

cars and 11,420 annotated pedestrians. MOTS Challenge

dataset presents pedestrians in crowded scenes. It contains

2,862 frames with 26,894 annotated pedestrians. YouTube-

VIS dataset [66] contains Internet videos, covering 40 cate-

gories, such as animals, cars accessories and human. How-

ever, the annotations in the released testing and validation

sets do not include object instance identities, making it un-

suitable to train and test VIST methods. Thus, we randomly

split the YouTube-VIS training set into 2038 training videos

and 200 test videos. There are some differences in these

datasets. KITTI MOTS and MOTSChallenge dataset con-

tain less classes, but have much longer videos with more

objects that frequently disappear and reappear in the scenes.

Evaluation Metrics. Following TrackR-CNN [59], we re-

port evaluation metrics: soft multi-object tracking and seg-

mentation accuracy (sMOTSA), multi-object tracking and

segmentation accuracy (MOTSA), and multi-object track-

ing and segmentation precision (MOTSP). We also report

true positive (TP), false positive (FP) and false negative

(FN). Among these metrics, sMOTSA is the recommended

primary metric to measure performance, as it considers seg-

mentation as well as detection and tracking quality [59].

Implementation Details. We use a ResNet-101 [19] back-

bone for Mask R-CNN, and pre-train it on COCO [44]

and Mapillary [48] for experiments on KITTI MOTS and

MOTSChallenge datasets, and pre-train it on COCO for

experiments on YouTube-VIS dataset. We implement our

model in PyTorch [26] and train it with 4 GeForce RTX

2080 Ti GPUs. Each batch has 8 images (each GPU holds

2 images). We train the model on the target datasets for

20 epochs with a learning rate of 1.5 × 10−4 using Adam

optimizer [28].

We generate image-level combined segmentation mask

Λl
t−1 using weighted instance masks in different categories.

Λl
t−1 is concatenated with images F l

t and F l
t−1 as an input

to the encoder. The long edge and short edge of images are

resized to 1333 and 800 pixels respectively without chang-

ing the aspect ratio.

4.2. Quantitative Results

We perform a thorough comparison of the proposed

method to the state of the arts, MaskTrack R-CNN [66]

and TrackR-CNN [59], and report the video instance seg-

mentation and tracking performance on Table 1. Mask R-

CNN+IT denotes a basic baseline of linking MaskR-CNN

output masks by IoU matching with IoUTracker [6]. For

a fair comparison, we re-train MaskTrack R-CNN [66]

and TrackR-CNN [59] on our hardware platform, using

the same ResNet-101 backbone and following their train-

ing and evaluation protocol. An important difference be-

tween MaskTrack R-CNN [66] and TrackR-CNN [59] is

that MaskTrack R-CNN allows segmentation masks to over-

lap, while TrackR-CNN requires no overlapping masks. In

reality, each pixel should only belong to one object. Thus,

in VIST task, we define that there must not have any over-

lapping pixels between masks; each pixel is only assigned

to one object instance.

KITTI MOTS. Table 1 (a)(b) show the experimental re-

sults on KITTI MOTS dataset [59]. In this dataset, there

are two categories: cars and pedestrians. The results show

that our method achieves promising improvement against

the state-of-the-art methods for most metrics, demonstrat-

ing the superiority of our method. Overall, we achieve bet-

ter performance in terms of sMOTSA, MOTSA, MOTSP,

TP, FP and FN. Specifically, our method noticeably reduces

the number of false negative (FN) and increases sMOTSA,

which is used to evaluate overall detection, segmentation

and tracking quality.

MOTSChallenge. We report the results on MOTS Chal-

lenge in Table 1 (c). MOTS Challenge includes videos with
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(a) Sample results on the KITTI MOTS dataset. This example shows multiple cars partially occluded by other cars.

(b) Sample results on the MOTS Challenge dataset. This example shows a group of pedestrians in the crowded scene.

Figure 3: Qualitative comparisons between TrackR-CNN[59] and the proposed method on challenging cases. In both cases, each row

shows the same output frames for TrackR-CNN[59] (top row) and ours (bottom row). Red arrows indicate false negatives. Both cases

show the proposed method is able to reduce false negatives, produce instance masks and correctly maintain their identities in the cluttered

scenes. Best viewed on screen.

Table 1: Quantitative comparisons on KITTI MOTS,

MOTSChallenge and YouTube-VIS dataset.

Method sMOTSA MOTSA MOTSP TP ↑ FP ↓ FN ↓

(a) KITTI MOTS Dataset [59] - Cars

Mask R-CNN [18]+IT[6] 74.9 85.8 85.1 7,109 148 920

MaskTrack R-CNN [66] 75.5 86.1 86.5 7,135 140 894

TrackR-CNN [59] 76.2 87.8 87.2 7,276 134 753

Ours 77.6 88.8 87.7 7,355 130 674

(b) KITTI MOTS Dataset [59] - Pedestrians

Mask R-CNN [18]+IT[6] 44.6 63.8 74.1 2,479 295 868

MaskTrack R-CNN [66] 45.9 64.6 74.9 2,497 280 850

TrackR-CNN [59] 46.8 65.1 75.7 2525 267 822

Ours 49.7 67.6 77.0 2,607 251 740

(c) MOTSChallenge Dataset [59]

Mask R-CNN [18]+IT[6] 48.6 65.5 77.6 19,676 1,939 7,218

MaskTrack R-CNN [66] 50.5 66.7 78.3 19,882 1,882 7,012

TrackR-CNN [59] 52.1 67.5 79.5 20,255 1,702 6,639

Ours 59.5 71.5 84.7 21,253 1,537 5,641

(d) YouTube-VIS Dataset [66]

Mask R-CNN [18]+IT[6] 33.7 46.4 78.8 2,751 790 596

MaskTrack R-CNN [66] 34.1 47.2 78.7 2,767 789 580

TrackR-CNN [59] 34.6 48.3 79.8 2,801 778 546

Ours 35.1 50.4 80.8 2,866 785 481

pedestrians in highly occluded scenes. In general, pedestri-

ans are one of the most challenging categories for instance

segmentation and tracking. Table 1 (c) shows our method

outperforms other methods with noticeable margin. For ex-

ample, our method achieves sMOTSA of 59.5%. TrackR-

CNN achieves the second-best sMOTSA of 52.1%. This

implies the proposed method can overcome the difficulty

and handle highly challenging videos better. We believe

the significant performance difference lies in our modified

variational autoencoder architecture is designed to capture

the information of spatial interdependency and motion con-

tinuity in video data, and to compensate the insufficiency

of adapting Mask R-CNN with an association method for

VIST task.

YouTube-VIS. The results on YouTube-VIS is reported in

Table 1(d). This is a challenging dataset which contains 40

categories, with many similar categories, such as ape and

monkey. Also, most of the videos in this dataset are short

videos (e.g. 100 frames) and are only labeled with interval

of 5 frames. Thus, all methods yield more false positives

and lower sMOTSA. Our method still shows its strength in

most metrics. This indicates our proposed method could

provide valuable complementary information for the local-

ization of object instances and correct ill-initialized mask

generation.

Qualitative Evaluation. Overall, TrackR-CNN demon-

strates the second-best performance in the quantitative

evaluation. We further present the qualitative outputs of

TrackR-CNN and our proposed method in Figure 3. Each
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Table 2: Ablation study of proposed method on KITTI MOTS dataset.

Component-wise1 Branch-wise2 Cars Pedestrians

Method Skipping

Connection

VAE ρ
Correlation

Variational

Inference

Auxiliary

Branch

Proposal

Branch

Augment

Branch

sMOTSA MOTSA MOTSP sMOTSA MOTSA MOTSP

(a) Disable Skipping Connections X X 75.4 87.1 86.3 48.1 65.5 75.7

(b) Disable VAE γ correlation X X 75.8 86.8 85.1 48.5 65.9 75.0

(c) Disable Variational Inference X 75.1 85.1 84.0 48.0 64.9 74.7

(d) Enable Proposal X 75.2 86.8 86.9 46.3 65.8 74.0

(e) Enable Auxiliary and Proposal X X 75.8 87.2 87.1 47.0 66.6 74.3

(f) Enable Proposal and Augment X X 77.1 87.9 87.1 49.1 67.0 76.2

(g) Proposed Method X X X X X X 77.6 88.8 87.7 49.7 67.6 77.0

1 In Component-wise section, we maintain all three branches, but disable major components of the proposed method one at a time to examine the individual contribution of

each method component to the overall performance.
2 In Branch-wise section, we enable all the method components, and then evaluate the major combinations of the proposed three branches.

sub-figure presents one challenge case. TrackR-CNN is a

top-performing method, but still exhibits some systematic

defects on highly overlapping instances, suggesting that the

existing methods are challenged by the fundamental diffi-

culty of instance segmentation tracking. Our visualization

depicts comparably superior instance segmentation masks

and correctly-maintained instance identities in the cluttered

scenes (e.g., among multiple occluded vehicles in Figure 3

(a) and with partial occlusions caused by accessories and

body parts of other pedestrians in Figure 3 (b)).

4.3. Ablation Study

We run a number of ablation experiments and report the

results in Table 2.

Component-wise. Firstly, we investigate the effectiveness

of main method components. Table 2 (a) shows the result

of removing skip connections. We employ the skip con-

nection scheme to supplement VAE such that the network

could propagate context information to higher resolution

layers in a contracting path and enables precise localiza-

tion in a symmetric expanding path. After removing this

scheme, the overall sMOTSA drops more than 2% in cars

category and 1.6% in pedestrians. It shows that the skip

connections actually help for information preservation. Ta-

ble 2 (b) reports the result of removing correlation mod-

eling for VAE latent variables. In this setting, the frame-

work becomes a conventional VAE, in which every latent

variable is assumed to be independent and identically dis-

tributed (iid). It is observed that conforming strong but

unrealistic iid assumption in standard VAE results in 1.8%

sMOTSA loss in cars category. Table 2 (c) shows the re-

sult of removing VAE architecture. Thus, the model be-

comes an encoder-decoder framework without variational

inference and correlation modeling. We can observe a no-

table loss in sMOTSA. This suggests that VAE architecture

actually learns crucial information for VIST task.

Branch-wise. We evaluate the importance of different

branches and report results in Table 2 (d)(e)(f). We use the

bounding box predictions generated in the proposal branch

to form object tracklets. To be able to evaluate VIST per-

formance, we ablate the other two branches step by step

for a controlled evaluation within our framework. We draw

several conclusions from the results: (1) We add the aux-

iliary branch, which is served as a regularization to pre-

vent the network learning to ignore latent space, and also

to give significant control over the VAE to preserve mean-

ingful semantic information. The branch is not directly in-

volved in VIST task; however, we find this branch is effec-

tive and influences the ability of the proposed network. (2)

Compared with the proposal-only model, the model with

proposal and augment branch benefits from better local-

ized bounding boxes and more discriminative features fused

from difference sources, thus yields considerable improve-

ment in sMOTSA. However, without additional supervision

by the auxiliary branch, the performance is not on-par with

the integrated framework. (3) With the integration of all

three branches, the framework is capable of learning the

embedding spatial interdependence and motion continuity

in video data and brings the full potential of the proposed

method.

5. Conclusion

We have introduced a unified variational autoencoder

modification for reliably segmenting and tracking multi-

ple instances in diverse and unstructured videos, where ex-

tensive object occlusions and deformations exist and affect

the way by which many heretofore existing methods per-

form. Experiments on several distinct datasets demonstrate

the superiority of the proposed method when compared to

the state-of-the-art methods that adapt Mask R-CNN[18] by

adding an association module to track objects over time.
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