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Abstract

Pill image recognition is vital for many personal/public

health-care applications and should be robust to diverse un-

constrained real-world conditions. Most existing pill recog-

nition models are limited in tackling this challenging few-

shot learning problem due to the insufficient instances per

category. With limited training data, neural network based

models have limitations in discovering most discriminating

features, or going deeper. Especially, existing models fail to

handle the hard samples taken under less controlled imag-

ing conditions. In this study, a new pill image database,

namely CURE, is first developed with more varied imag-

ing conditions and instances for each pill category. Sec-

ondly, a light-weight W 2-net is proposed for better pill seg-

mentation. Thirdly, a Multi-Stream (MS) deep network that

captures task-related features along with a novel two-stage

training methodology are proposed. Within the proposed

framework, a Batch All strategy that considers all the sam-

ples is first employed for the sub-streams, and then a Batch

Hard strategy that considers only the hard samples mined in

the first stage is utilized for the fusion network. By doing so,

complex samples that could not be represented by one type

of feature could be focused and the model could be forced to

exploit other domain-related information more effectively.

Experiment results show that the proposed model outper-

forms state-of-the-art models on both the National Institute

of Health (NIH) and our CURE database.

1. Introduction

Accurately recognizing prescription pill images accord-

ing to their visual appearance helps to ensure patients’

safety and facilitate contemporary healthcare system for pa-

tients/old people. Furthermore, it can be useful in avoid-

ing errors across the pharmacological chain; it can also im-

prove the care provided by experts on poison control [28],

∗Equal contribution.

Figure 1. The framework of the proposed pill recognition model

that 1) takes color, texture, contour, and imprinted text information

as input; 2) uses first the Batch ALL (BA) and then the Batch Hard

(BH) strategy. ⊖ denotes the subtraction operation.

increase medication persistence [4], minimize the loss of

medications and prescriptions in evacuation scenarios [22],

and promote the development of remote/self-diagnosis tech-

nology and smart health-care applications [34].

However, accurate pill recognition in daily life is usually

hindered by the few-shot learning problem, where the num-

ber of samples per category is small; for instance, the NIH

dataset [35] contains only 7 samples per category. More-

over, although there are various commercial products and

web-based services for pill image identification, no com-

plete solution has been found to make the system suffi-

ciently robust to different noisy imaging conditions in both

professional and general public healthcare services. In aca-

demic literature, most existing pill recognition models fail

in the few-shot regime. This failure is more likely under

less-controlled noisy imaging conditions, especially regard-

ing the hard samples. There are mainly two types of hard

samples: 1) hard negatives: different pill categories with

similar visual appearance; 2) hard positives: pills under the

same category but with significantly different visual charac-

teristics due to the noisy imaging conditions. For instance,
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(a) (b) (c)

Figure 2. Examples of hard samples in pill recognition: (a) hard positive pill samples from CURE dataset; (b) hard negative pill samples

from NIH dataset; (c) texture maps obtained using low-pass filtering of the hard negative samples in (b).

in Figure 2 (a), the same pill under different lighting con-

ditions has different colors, while in Figure 2 (b), the three

different pills tend to be classified under the same pill cate-

gory by existing pill recognizers because of the similarity in

shape and color. The main characteristic that distinguishes

the three different pills in Figure 2 (b) is the imprinted texts,

which are however difficult to identify even for human eyes.

As noted in [17], imprinted text plays a key role in facilitat-

ing accurate pill recognition; thus approaches make better

use of the domain-related information, such as text infor-

mation, could hold the key to more effective pill recognition

with limited data. According to our observations, more im-

printed information can be gleaned from the pill’s texture.

For example, Figure 2 (c) shows the texture map of (b). A

comparison of the texture maps and the original RGB im-

ages shows that the imprinted texts on the pills are more

visible in the texture maps.

Therefore, we propose a Multi-Stream (MS) deep learn-

ing model based on a novel two-stage training strategy,

where individual streams are first trained using the Batch

All (BA) strategy that considers all the samples, in addition

to a late fusion process using the Batch Hard (BH) strategy

that solely focuses on the hard samples that could not be

processed by the individual streams in the preceding train-

ing stage. It is worthy to note that the BH proposed in this

study is different from the one in [11], which selects only

the hardest positive/negative samples from each batch us-

ing min/max function. The overall framework is depicted

in Figure 1. More specifically, a W 2-net is first proposed

to extract the pills regions from the background. Using the

segmented pill regions, we trained three streams that pro-

cess the RGB image, contour, and texture maps separately

using the triplet loss with the BA strategy. Furthermore, we

retrained the Deep TextSpotter (DTS) [1] that detects and

recognizes imprinted texts on the texture maps of pill image

as the fourth stream. Finally, we trained a fusion network to

combine the four streams using triplet loss considering only

the hard samples that violate the triplet constraint in the first

stage, along with the imprinted text information provided

by the retrained DTS. Specifically, this scheme facilitates

the compensation of different features with the auxiliary in-

formation of the high-level imprinted text.

2. Related Work
Pill dataset: Recently, the U.S. National Library of

Medicine (NLM) of the NIH released a pill image dataset

and called for submission of prescription pill images recog-

nition models [35]. However, the images in the NIH

dataset have limitations on lighting, background conditions,

and equipment, among others. The summary of the NIH

database is shown in Table 1.

Pill recognition model: In addition to designing invari-

ant descriptors for identifying pills, Caban et al. [2] pro-

posed a modified shape distribution technique for examin-

ing the shape, color, and imprinted text of pills. However,

the imprint descriptors within the model are limited, and

the images considered are not representative of the vari-

ability of practical situations. In [13], the structure-related

features of pills were exploited by first localizing the pills

within query images according to non-zero gradient magni-

tude. Nevertheless, this model may not be applicable under

a less-controlled imaging condition. Similar features were

considered in [3, 5] to estimate the size of pills, and rec-

ognize them. Unfortunately, these methods disregard the

fact that the sizes of pills can easily change under differ-

ent zooming effects. Yu et al. [36] suggested exploiting the

shape and other features of pills to represent the imprinted

symbols on pills; however, this method fails in cases, where

the imprints of the captured pill images are obscure or in-

visible to humans.

Table 1. Comparison of the CURE and the NIH dataset.

NIH NLM CURE

Number of pill images 7000 8973

Number of pill categories 1000 196

Instance per category 7 40-50

Illumination conditions 1 3

Backgrounds 1 6

Imprinted text labels No yes

Segmentation labels No partially labeled

Apart from the approaches that exploit the traditional

handcrafted features of pills, recently, with the break-

through of deep learning in computer vision and image pro-

cessing, four deep-features-based methods [35] have been

proposed, and have yielded reasonable results on the NLM

NIH pill image recognition challenge. Among them, Mo-

bileDeepPill (MDP) [37], one of the state-of-the-art propos-

als, won the first prize in the challenge. First, three convolu-

tional neural networks (CNN) that take RGB image, gray-

level image, and edge maps as input correspondingly are

trained; then, the dissimilarity values calculated using each

single CNN model for pill recognition are linearly summed.

Although some of the aforementioned models consider

the imprinted text on pills, they solely use structural de-

9790



scriptors and do not attempt to recognize the symbols on

the pills. Furthermore, most of them fail to cater for the hard

samples described in the previous section under noisy con-

ditions as they simply extract different features, and proceed

straightaway to train the classifiers without considering the

complementary relations between different features using a

well-designed learning strategy.

Few-shot learning algorithms have been developed and

proven to be a promising tool in small data scenarios. They

could be categorized as 1) the metric learning based ap-

proach [31, 27, 30, 33] whereby a similarity metric/space

is learned; 2) the memory network approach [19, 25, 23, 9]

whereby the model is trained to store ‘experience’; 3)

The gradient-descent-based approach [7, 9], where a meta-

learner is trained to adapt a base-learner through differ-

ent tasks. Since most of these models use shallow net-

works to avoid the over-fitting problem with limited sam-

ples, their performances are limited. To tackle this limita-

tion, MTL [29] was proposed to utilize a deep network for

few-shot cases based on the hard task meta-batch strategy.

In [14], CTM was proposed to handle few-shot problem by

select the most relevant feature dimensions after traversing

both across and within categories. Nevertheless, none of

these models are designed for pill recognition. Therefore,

they do not sufficiently exploit the domain-related informa-

tion in small data scenarios to deal with the hard samples.

3. Proposed CURE Pill database 1

In this section, the novel CURE pill dataset is intro-

duced. This dataset summarized in Table 1, contains 8973

images of 196 categories, and approximately 45 samples

were obtained for each pill category.

(a) (b) (c)

Figure 3. (a) MPI device; (b) embedded camera in the device; (c)

smartphone software connected to the device.

Equipment: The pill images within this database were

taken using three phones (i.e., Samsung SM-J320FN, SM-

N920S and LG F500L ) and one Multi-Pill Identifier (MPI)

device. The MPI device provides healthcare personnel and

the general public with descriptions for unknown pills. In-

formation obtained using this device could be used for pur-

poses such as checking the compatibility between different

pills and detecting expired medicines. The device is shown

1Our CURE dataset is available at https://github.com/

suiyiling/Few-shot-pill-recognition.

in Fig 3 (a), where a camera was mounted on a Raspberry Pi

3, as shown in Fig 3 (b), and was set above the pill holder.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Examples of images in CURE. Row: each row corre-

sponds to one category of the pill. Column: (1) 1st column: refer-

ence images; (2) other columns: consumer images.

Consumer Images: are pictures not taken under profes-

sionally controlled conditions [35]. In real cases, consumer

images are likely to be taken with varying backgrounds, il-

lumination, focus, and orientations. To make the database

more diverse, when collecting the consumer images, back-

grounds of different levels of texture granularity, illumina-

tion, and dynamic zooming in/out conditions are consid-

ered. The illumination conditions include 1) indoor light,

2) weak outdoor light, and 3) strong outdoor light.

Reference Images: For each pill category, the reference

image was generated using the best-quality consumer im-

ages. More specifically, the pixel-level pill regions in the

selected pill images with the better-controlled conditions

are first manually labeled. Then, the backgrounds of the

selected images are replaced with clean gray backgrounds.

Examples of the reference images in the dataset are shown

in the first column of Figure 4. We believe that generat-

ing reference images using consumer images is more prac-

tical, because of the following reasons: 1) In cases where

reference images are uploaded by the pill manufacturers,

high-quality cameras could be too expensive and collecting

professional images under professionally controlled con-

ditions is more time consuming; 2) In cases where ref-

erence images are uploaded by consumers, the developed

pill recognition models should achieve acceptable perfor-

mances even with lower quality reference images. The ref-

erence images are labeled with pixel-wise pill location and

imprinted text/symbols.

As summarized in Table 1, this dataset considers more

challenging real-world conditions (i.e., with more di-

verse backgrounds, light, and zooming conditions); thus,

it reflects practical cases better, compared to the NIH

dataset [35]. Examples of images in the dataset are shown in

Figure 4. as observed, 1) images in the last row were taken

under different light condition, which could result in sig-
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nificant changes to the pill color (especially for (h), where

the color of the images taken under different lighting con-

ditions with the MPI equipment vary significantly); 2) (c)

and (d) are taken under different zooming conditions; 3) the

backgrounds considered in this dataset are diverse.

4. The Proposed Model

4.1. Pill Segmentation and Localization

Backgrounds of pill images provide few useful infor-

mation and could even deteriorate the training process of

pill recognizer as a source of noises. Dealing with different

noisy backgrounds, challenging lighting, and zoom in/out

conditions necessitates a model that yields more precise

segmentation results. Thus, we propose a W 2-net to delin-

eate the pill regions from the backgrounds so that pill rec-

ognizer can be trained on localized pill images, and ignore

the perturbations from noisy and superfluous backgrounds.

It has been demonstrated in [21] that repeated bottom-up,

top-down processing used in conjunction with intermediate

supervision is critical for improving the performance of a

network. Inspired by this idea and the concept of Knowl-

edge Distilling [12], the proposed W 2-net was constructed

using four simplified U -Net [24]. It is worth noting that, W 2

is 17.5 times smaller than U -Net, i.e., 2M vs. 35M. This

was achieved through 1) Using 1.4% of the parameters of

the original U -net for each simplified U -net; 2) Feeding the

intermediate output from the previous simplified U -Net into

the next one. The detailed network architecture is shown in

the supplemental material. As there are only two categories

in our study, i.e., background and pill regions, we employ

the pixel-wise binary cross-entropy loss for the ith simpli-

fied U -net:

LUi =
∑

p∈PI

−l(p) · log(s(p)) + (1− l(p)) · log(1− s(p)),

(1)

where l(·) is the true label of each pixel p ∈ PI and s(·) is

the score predicted by the ith U -net with sigmoid function

as activation function. The loss function of the proposed

W 2-net is then defined as:

LW 2 =

4∑

i=1

λUi
LUi

, (2)

where λUi
are the parameters balancing the losses of the

corresponding simplified U -nets and are set equally to

1/4 in this study. In the following sections, only the seg-

mented/located pill images are considered.

4.2. MultiStream CNN for Pill Recognition

4.2.1 Metric Embedding Learning using Triplet Loss

Pill recognition is a typical few-shot learning problem,

where insufficient data is available for each pill class. Re-

cently, effective few-shot methodologies adapted a metric-

learning scheme to learn an similarity metric to compare the

difference between a test/query example and the few ones

used in training [14, 31]. In this study, to better handle the

positive/negative hard samples described in Section 1, the

triplet loss was employed to optimize the similarity metric

(embedding space) such that images of the same pill are

closer to each other and inversely for the different ones.

Theoretically speaking, given a set of triplets (Ia, Ip, In)
(Ia is considered as an anchor image, Ip is the positive sam-

ple that is of the same category with Ia, while In is the

negative sample that is of different category), the goal of

metric embedding learning is to learn a function fθ(I) :
R

F → R
E parametrized by θ to map similar or different

pill images, i.e., (Ia, Ip) for same pills or (Ia, In) for dif-

ferent pills, from the feature manifold R
F onto metrically

close/far points in an embedding space R
E with the objec-

tive function defined as [26]:

Ltri(θ) =
∑

a,p,n
ya=yp 6=yn

[m+D(fθ(Ia), fθ(Ip))

−D(fθ(Ia), fθ(In))]+,

(3)

where m is a margin that is enforced between positive and

negative pairs [26], [x]+ = max{0, x}, yi is the pill cat-

egory label for the ith sample, D(fθ(Ii), fθ(Ij)) : RE ×
R

E → R denotes the metric function that measures the dis-

tances between two images Ii, Ij in the embedding space.

Throughout this study, Euclidean distance was used as the

distance measure, i.e.,D(·), as in [11]. Nevertheless, pill

recognition model that processes different features sepa-

rately, e.g., MDP [37], cannot effectively handle the hard

samples. Thus, it is important to devise a proper strategy

for training considering the fact that 1) If using all the pos-

sible triplets, the number of triplets will increase cubically

with the growth of data numbers, rendering the training in-

efficient; 2) If only the hardest triplets are considered, the

model would select the outliers in the dataset, resulting in

the failure of fθ in learning the ‘normal’ associations [11];

3) Training separate networks using different features as

done in [37] neglects the complementary relationships be-

tween different features.

To this end, we propose a MS CNN that is composed

of four individual streams (stream RGB, Texture, Contour

and Imprinted Text) that are consecutively combined with

a late fusion network. The proposed MS CNN was trained

in a stage-wise manner, similarly to [6]. In the first training

stage, we used the BA strategy to train the stream RGB, Tex-

ture, and Contour individually, where all the samples are

considered. In this stage, the hard samples that could not

be tackled using each stream alone were selected for the

second stage. For example, for stream RGB, the hard sam-

ples could be the same pill but under different illumination

conditions as shown in Figure 2 (a); for stream Texture,

hard samples could be different pills with the same texture,
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shape, imprinted text but different color; for stream Cou-

tour, hard samples could be different pills with the same

shape but different texture or imprinted text (when im-

printed texts are visually unclear). In the second training

stage, we propose a new BH strategy to train the fusion

net to combine the three individual streams along with a re-

trained imprinted text stream (based on text-regions detec-

tion and recognition). During the second training stage, the

four streams were fixed and the fusion network was trained

using only the hard samples mined in the first stage. The

rationale behind this two-stage training strategy is to build

a bridge between different feature spaces so that they could

compensate each other by concentrating on the hard sam-

ples excavated in the first training stage. Details are given in

the following subsections aligned with the two-stage learn-

ing procedure, which is summarized in Algorithm 1.

4.2.2 RGB, Texture, and Contour Streams

Among the hand-crafted features based pill recognition

models [2, 13, 3, 5, 36], color, contour and texture related

descriptors were commonly considered and proven to be ef-

fective in the task. Therefore, we selected color, contour

and texture channel (task-related channels) as the input of

the sub-streams frgb(·), ftexture(·), and fcontour(·) empiri-

cally. The first training stage is summarized in Algorithm 1

(line: 3-16). Details are described below.

Firstly, a low-pass-based model [15] is adapted in this

paper to obtain clearer contour and texture maps. More

specifically, as depicted in Figure 1, given the gray-level

image Igray of a segmented pill image IRGB , the contour

map Ic is obtained by employing Canny edge detector on

the response Ires of using Gaussian filter on Igray . Then,

the residual that maintains the high-frequency components,

where texture information is emphasized, is obtained by

subtracting the Ires from Igray . Here, it is named as the tex-

ture map and denoted as It. Afterwards, the three individual

streams taking RGB image IRGB , contour map Ic and tex-

ture map It as input separately using the BA strategy [11]:

LBA(θ,Xb) =

all anchors
︷ ︸︸ ︷

P∑

i=1

K∑

a=1

all pos.
︷︸︸︷

K∑

i=1
p 6=a

all neg.
︷ ︸︸ ︷

P∑

j=1
j 6=i

K∑

n=1

[

m+ di,a,pj,a,n

]

+
,

di,a,pj,a,n = D(fθ(I
i
a), fθ(I

i
p))−D(fθ(I

i
a), fθ(I

j
n)),

(4)

where Iij denotes the data points of the jth instance for the

ith pill category in the current mini-batch Xb. P and K are

the numbers of randomly sampled pills categories and the

corresponding pill images in each batch. For each batch, all

possible PK(PK−K)(K−1) combination of triplets were

considered. During the first training stage, the hard samples

that violated the constraint di,a,pj,a,n < m were forwarded to

the second training stage.

The usage of a pretrained network could lead to a design

lock-in [11]. Therefore, in this study, we designed the three

individual streams from scratch (details of the network ar-

chitectures are summarized in the supplementary material).

Algorithm 1 Two stage BA-BH learning strategy.

1: Input: Data set X . Triplet generator τg(·).
2: Output: Multi-Stream pill recognizer fMS(·).
3: Stage 1 Task-related streams training (Section 4.2.2):

4: Randomly initialize three individual streams frgb(·),
ftexture(·), and fcontour(·).

5: Initialize Hard triplet set: Hstr ← ∅, where str =
{rgb, contour, texture}

6: for batch Xb in X do

7: Ta = τg(Xb), Ta is the set contains all the possible

triplets from batch Xb.

8: Evaluate LBA(frgb(·), Ta), LBA(ftexture(·), Ta),
and LBA(fcontour(·), Ta) by Eq.(4).

9: Optimize frgb(·), ftexture(·), and fcontour(·) by

Adam optimizer.

10: end for

11: Freeze frgb(·), ftexture(·), and fcontour(·).
12: for any triplet (Iia, I

i
p, I

j
n) ∈ Tg(X) do

13: if D(fstr(I
i
a), fstr(I

i
p)) − D(fstr(I

i
a)fstr(I

j
n)) <

m, where str = {rgb, contour, texture} then

14: Hstr ← (Iia, I
i
p, I

j
n)

15: end if

16: end for

17: Retrain DTS, and obtain favg
text(·) (Section 4.2.3).

18: Stage 2 Fusion Network training, focuses on hard

triplets (Section 4.2.4):

19: Randomly initialize fusion network ffusion(·).
20: for batch Xb in {Hrgb ∪Hcontour ∪Htexture} do

21: Th = τg(Xb), Th is the triplet set contains hard

triplets within batch Xb minded in the first stage.

22: Obtain fMS(·) by plugging favg
text(·), frgb(·),

ftexture(·), and fcontour(·) with ffusion(·) as shown

in Fig. 1.

23: Evaluate LBH(fMS(·), Th) by Eq.(8).

24: Optimize ffusion(·) by Adam optimizer.

25: end for

4.2.3 Imprinted Text Stream

In the proposed model, imprinted text information on pills

was captured by first detecting possible text regions and

then recognizing the texts/symbols within them by retrain-

ing the DTS model [1] as depicted in the lower part of Fig-

ure 1. To reshape detected text regions into canonical tensor

with consistent dimension, adapted bilinear sampling pro-

posed in [1] was first employed. For a detected text region

r ∈ R
w×h×C , it is normalized into a tensor with a fixed-

height rn ∈ R
wH′

h ×H′×C using:
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rn =

w∑

x=1

h∑

y=1

max(0, 1− |x− τx(x
′)|)

·max(0, 1− |y − τy(y
′)|)),

(5)

where τ is a point-wise coordinate transformation and H ′ is

the fixed-height that was set as 32 in [1].

We adapted the text recognizer proposed in [1] using the

texture image It obtained after low-pass filtering as input.

For each normalized rn, it was converted into a conditional

probability distribution using Connectionist Temporal Clas-

sification [10], so that the most probable series of symbols

could be chosen for the text regions. More specifically, the

text recognizer in DTS was trained with an alphabet A to

return a matrix Mt of size W
4 × |A| for an input rn of size

W ×H ′, where W = wH′

h and |A| is the length of the al-

phabet. Here, each column at a position i of the matrix is a

vector vi = (vi1, . . . , v
i
j , . . . , v

i
|A|), where each vij indicates

the likelihood of the jth label within the alphabet, e.g. let-

ter ‘a’, exists at the ith position, and
∑A

j=1 v
i
j = 1. Then,

the probability of a sequence of labels s within a detected

region rn is defined as

p(s|v) =

W/4
∏

i=1

vij , s ∈ A
W/4. (6)

To remove the blanks or repeated labels, the many-to-one

mappingMA : AW/4 7→ A≤W/4, was employed to get the

conditional probability of the final sequence sf . The objec-

tive function used for training the text recognition network

could be then defined as in [1, 10]:

sf∈A≤W/4

∑

s:MA(v)=sf

p(s|v). (7)

After retraining the network ftext(·), for an input IRGB ,

the texture map It was first generated. Then It was fed to

the text detection network to generate all the possible text

regions, the two highest ranked text proposals were normal-

ized, tailed as one rn and then fed to the text recognition

network to obtain the matrix Mt = ftext(rn) in size of
W
4 × |A|. Afterwards, it was averaged over the position di-

mension, i.e., the width of the tailed text region, to obtain a

final text probability vector vt with a size of (1, |A|), where

each dimension of the vector vtj
=

∑W/4
i=1

vi
j

W/4
corresponds

to one item in the alphabet A showing the average proba-

bility value of the likelihood of this corresponding symbol

appears in the pill image over the entire tailed text regions.

The procedure of taking one It as input to obtain the average

text vector vt is denoted as favg
text(Mt) = vt. The retrained

DTS is fixed and will be then combined by the later fusion

net with other streams in the fusion stage. Intuitively, vt

provides information of the existence of imprinted symbols

on the pills, and was subsequently utilized to compensate

the other three streams.

4.2.4 Multi-Stream Fusion Network

The second training stage is summarized in Algorithm 1

(line: 11-24). After training the RGB, Texture, and Contour

streams separately using the BA strategy in the first training

stage, where the hard samples were selected, they were then

fixed. Afterwards, in the second training stage, they were

combined with the Imprinted Text stream (it was fixed af-

ter retraining with texture maps, and was used as extra in-

formation) to train the fusion network ffusion(·) using BH

strategy that focuses only on the hard samples. More specif-

ically, they were concatenated with two fully connected lay-

ers (white color layers in Figure 1). The remaining fusion

network was trained with emphasis on the hard samples col-

lected during the first training stage (i.e., pretraining of in-

dividual streams) with the following objective function:

LBH(θ,Xb) =
3∑

str=1

Nstr∑

(Ii
a,I

i
p,I

j
n)∈Hstr

(Ii
a,I

i
p,I

j
n)∈Xb

[m+

strth hard pos.
︷ ︸︸ ︷

D(fθ(I
i
a), fθ(I

i
p))

−D(fθ(I
i
a), fθ(I

j
n))

︸ ︷︷ ︸

strth hard neg.

]+,

(8)

where Hstr is the set of hard samples obtained during the

first training stage, str = {rgb, texture, contour} cor-

responds to the RGB, Texture and Contour streams re-

spectively. Nstr is the number of hard samples from the

stream of str in the batch. It must be emphasized that only

the RGB, Texture and Contour streams were trained firstly

using the triplet loss with the BA strategy to mine the hard

samples that could not be settled by the corresponding fea-

ture. The Imprinted Text stream was combined directly with

the other streams as auxiliary information, where the fusion

net was trained using the BH strategy in the second stage for

the following reasons: 1) the bottom-side of a great number

of pills do not contain any imprinted text; 2) imprinted texts

could be occluded; 3) pills with different characteristics but

from the same manufacturer could have the same imprinted

text. Thus, most of the samples that could be easily rep-

resented by other information, e.g., shape, would become

hard samples for stream Imprinted Text, and hence weaken

the advantage of using the proposed two-stage strategy.

4.2.5 Pill Retrieval/Recognition

With the embedded metric learned using the proposed

multi-stream model fMS , the category of any query con-

sumer image Icon could then be predicted by measur-

ing the similarity between Icon and all the reference

images Iref in the learned embedded space. In this

study, the similarity score was computed directly using

D(fMS(Icon), fMS(Iref )) instead of firstly summing the
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similarity scores computed by different networks based on

different features as done in [37].

5. Experimental Results

5.1. Pill Segmentation

The W 2-net was trained using our CURE dataset. Ref-

erence images were utilized via data augmentation (details

in supplementary material) to train the network and the per-

formance was tested on 20 % of the consumer images with

pixel-wise labels. The W 2-net was trained for 5 epochs us-

ing Adam optimizer with a learning rate started from 10−4

( divided by 10 every 2 epochs).

Table 2. Performances of pill segmentation.

U-net (35M) Espnetv2 (0.3M) W
2-net (2M)

IOU 0.90 0.78 0.94

Intersection Over Union (IOU) [24] was applied for per-

formance evaluations. To check the superiority of W 2-net,

it was compared to the original U -net proposed in [24], and

the state-of-the-art light-weight Espnetv2 [18]. The perfor-

mances are summarized in Table 2. As observed, the pro-

posed network achieves superior performance even com-

pared with U -net (35M). Examples of segmentation results

on both the CURE dataset are shown in Figure 5. As shown,

1) the first row that W 2-net is more robust to complicated

background; 2) the second row that W 2-net is better in deal-

ing with the regions of pills’ shadows.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Columns: from left to right are the pill image, the seg-

mented results using (1) U -net; (2) ESPNetv2 ; (3) W 2-net.

5.2. Imprinted Text Detection & Recognition

The DTS [1] that detects and recognizes imprinted text in

pill images was retrained on our novel CURE dataset (de-

tails of data augmentations are summarized in the supple-

mentary material). We directly retrained both the text de-

tection and recognition network of the DTS simultaneously

for 6 epochs using mini-batch Stochastic Gradient Descent

(SGD) with a momentum of 0.9 and a learning rate of 10−3,

divided by 10 every two epochs.

Table 3. Performances of imprinted text recognition.

MTS-RGB [16] DTS-RGB [1] DTS-Texture

f-measure 0.446 0.47 0.56

The performance of the imprinted text recognition model

was evaluated by the f-measure [1]. To confirm our hypoth-

esis that imprinted texts on pills could be more easily rec-

ognized using the texture map compared to the RGB im-

age, we conducted our experiment using the DTS model

on both texture maps and RGB images. Results shown in

Table 3 demonstrate that the model trained with texture

maps yields superior performance. Except for DTS, we have

also tested the state-of-the-art end-to-end Mask TextSpotter

(MTS) [16] using RGB images. However, its performance

is lower compared to using DTS on RGB images.

5.3. Pill Recognition

Our MS model was tested on both the NIH and CURE

datasets. In the first training stage, for the three individ-

ual streams, dropout (with pd = 0.9, 0.8, 0.8 for the RGB,

Texture, and Contour streams respectively, where pd is the

probability of retaining the hidden unit) and l2 norm reg-

ularization ( λl2 was set as 0.1, 0.06, 0.06 for the three

streams respectively, where λl2 is the regularization param-

eter) were used on each of the fully connected (dense) lay-

ers before the output. The mini-batch Adam was selected

as the optimizer, with learning rate lr equal to 3 × 10−4

and divided by 3 after every 5 iterations until 20 iterations

are complete. During the second training stage, pd = 0.5,

λl2 = 10−3, and the mini-batch Adam is employed with

lr = 10−4, which is divided by 3 for every 2 epochs. For

both training stages, margin m was set to 0.5 and the mini-

batch size was 64.

Table 4. Performance of pill recognition models (one-side).

Database NIH CURE

MAP TOP-1 MAP TOP-1

MDP [37] 0.582 53.1 0.704 63.7

MS (ours) 0.722 65.9 0.749 68.3

The performances of the pill recognition models were

evaluated based on the Mean Average Precision (MAP), and

Top-K accuracy [37, 35]. The evaluation scheme of one-

side pill recognition with 5-fold cross validation [37] was

used. The performances of the proposed model compared

to MDP [37], the state-of-the-art pill recognition model, on

the NIH and CURE datasets are listed in Table 4. As shown,

the proposed MS model outperforms MDP on both of the

datasets in terms of Top-1 and MAP values. It is noteworthy

that, our network (including segmentation and recognition)

is much lighter than the one of MDP ( 15.6 M vs. 39 M ),

and the inference time is shorter ( 57ms vs. 89.8ms).

Solved hard samples: To showcase the advantage of us-

ing our proposed two-stage learning strategies, examples of

hard triplets from the NIH/Cure dataset, which are mined in
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the first stage (i.e., violate the triplet constraint di,a,pj,a,n < m)

and solved (accurately recognized) in the second stage,

are shown in Figure 6. Images on the right, middle, and

right of each triple are the positive samples, the anchor im-

ages, and the negative samples respectively. Samples (neg-

ative/positive) within the hard triplets are hard samples.

(a) (b)

(c) (d)

Figure 6. Examples of hard triplets that are minded in the first stage

but are solved (accurately recognized) in the second stage.

Table 5. Performance comparison with few-shot learning models

(5-way 1-shot Accuracy (%)).

Database NIH CURE

CTM [14] 61.2 50.4

MTL [29] 58.7 47.7

MS (ours) 64.2 53.7

Few-shot/meta learning regime: We also compared our

model with state-of-the-art meta/few-shot learning mod-

els, i.e., MTL [29] and CTM [14]. Similar to the ex-

perimental setup on MiniImagenet dataset in [7, 32], we

followed the protocol proposed in [32] and divided the

NIH and our CURE dataset into 16% , 64% and 20% as

meta-validation (NIH:160, CURE:31 classes), meta-train

(NIH:640, CURE:125 classes), and meta-test (NIH:200,

CURE:40 classes) sets according to the pills’ categories.

Categories in test set are unseen during training/validation

process. During the meta-training phase, as done in [14],

the entire meta-train set was employed to train the simi-

larity metric/embedder with the proposed multi-stream net-

work boosted by the two-stage learning strategy. During the

meta-testing phase, to set up an N−way K−shots recog-

nition evaluation scheme, N unseen classes were selected,

provide the model with K different instances of each of the

N classes, and evaluate the model’s ability to classify new

instances within the N classes [31, 7]. For fair comparison,

only the segmented images obtained using W 2-net are con-

sidered for the compared few-shot models. For MTL model,

the ResNet-12 architecture was adopted as in their paper

and in [8, 20]. For CTM, as their model achieved better per-

formance by employing deeper backbone for the feature ex-

tractors [14], we tested CTM with ResNet-18 in the exper-

iment. Please refer to the supplementary material for more

details on the experimental set up. The results are presented

in Table 5. As shown, our model achieves the best few-shot

classification performance.

Ablation Study: Extensive comparisons with ablative

models were performed, and the results are presented in Ta-

ble 6. By comparing the performances of the ablative mod-

els to the one of the MS model shown in Table 4, it could be

seen that: 1) Impact of each stream (row 3-8): the proposed

MS model outperforms the individual models. By removing

a certain stream, the performance drops. Domain-related in-

formation, e.g., imprinted text, helps to improve the recog-

nition performance; 2) Impact of segmentation models (row

9-10): by removing/replacing the proposed W 2-net, the per-

formances drop; 3) Impact of learning batch strategy (row

10-12): the proposed two-stage BA-BH learning strategy is

superior to the traditional BH and BA strategy.

Table 6. Recognition results for ablative models (one-side).

Database NIH CURE

Ablative models MAP TOP-1 MAP TOP-1

Individual
Stream RGB 0.612 54.6 0.562 50.9

stream
Stream Texture 0.259 20.6 0.507 49.2

Stream Contour 0.179 12.6 0.348 25.98

Impact of Without Text 0.612 54.4 0.594 52.2

domain-related Without Contour 0.653 60.9 0.677 66.9

features Without Texture 0.633 56.9 0.604 54.5

Impact of No segmentation 0.406 45.6 0.447 48.7

segmentation With U-net (35M) 0.577 54.1 0.641 60.4

Impact of With BA 0.664 60.2 0.682 65.1

strategy With BH 0.651 58.7 0.677 64.5

6. Conclusion

In this study, we present a new pill images

dataset CURE, which provides more instances per

class. For better tackling the few-shot pill recognition

problem, a W 2-net is first proposed for pill segmentation.

Then, a multi-stream deep architecture along with a

two-stage learning strategy is proposed to better exploit

the domain-related information in small data scenarios.

It deploys first the BA strategy for the RGB, Texture,

Contour streams to mine the hard samples, and second a

novel BH strategy to train a fusion-net that combines the

three individual streams with a stream of imprinted text

as auxiliary information. Experimental results show that

1) W 2-net is superior to both U -net and ESPNetv2 ; 2)

using high-frequency components with emphasized texture

helps to solve the formidable problem of recognizing

imprinted text on pills; 3) The proposed model achieves top

performance by its more accurate recognition of the hard

samples that cannot be handled by individual features.
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