
3D Part Guided Image Editing for Fine-grained Object Understanding

Zongdai Liu† 1, Feixiang Lu† 2,6, Peng Wang§ 2,5, Hui Miao1, Liangjun Zhang2,6,

Ruigang Yang2,3,6 and Bin Zhou∗ 1,4

1State Key Laboratory of Virtual Reality Technology and Systems, Beihang University
2Robotics and Autonomous Driving Laboratory, Baidu Research 3University of Kentucky

4Peng Cheng Laboratory, Shenzhen, China 5ByteDance Research
6National Engineering Laboratory of Deep Learning Technology and Application, China

Abstract

Holistically understanding an object with its 3D movable

parts is essential for visual models of a robot to interact

with the world. For example, only by understanding many

possible part dynamics of other vehicles (e.g., door or trunk

opening, taillight blinking for changing lane), a self-driving

vehicle can be success in dealing with emergency cases.

However, existing visual models tackle rarely on these situ-

ations, but focus on bounding box detection. In this paper,

we fill this important missing piece in autonomous driving

by solving two critical issues. First, for dealing with data

scarcity, we propose an effective training data generation

process by fitting a 3D car model with dynamic parts to

cars in real images. This allows us to directly edit the real

images using the aligned 3D parts, yielding effective train-

ing data for learning robust deep neural networks (DNNs).

Secondly, to benchmark the quality of 3D part understand-

ing, we collected a large dataset in real driving scenario

with cars in uncommon states (CUS), i.e. with door or trunk

opened etc., which demonstrates that our trained network

with edited images largely outperforms other baselines in

terms of 2D detection and instance segmentation accuracy.

1. Introduction

An object, e.g. a car or a person, is commonly com-

posed with articulated and movable 3D parts [47, 24].

Understanding an object with its 3D parts and their fu-

ture states within images or videos is essential for the vi-

sion/perception system of a robot to decide its actions to

interact with the world. For example, in the popular au-

†Joint first author
§Partial work is done at Baidu Research
∗Corresponding author: zhoubin@buaa.edu.cn

Figure 1: Fine-grained parsing of cars in uncommon states

on various datasets. The results include 2D detection (red

bounding box), instance segmentation (orange mask), dy-

namic part segmentation (blue mask), and state description.

Note that the common-state cars are with green color.

tonomous driving (AD) scenario, when a car parking on the

road has its door opened, it will be very likely that some-

one would get off. As a response, the autonomous vehicle

should immediately slow down, turn the steering wheel, and

change line. Though, this case is not common, it is deadly

if there is no such understanding behind, and in real driving

scenario, there are many such cases as illustrated in Fig. 1.

However, the dominant visual perception systems with

deep neural networks, though achieved great success in

2D/3D detection [34, 12], instance segmentation [17] and

pose estimation [4, 22, 39], are based on coarse understand-

ing of objects with bounding boxes or masks. In our opin-

11336



ion, this is not sufficient for performing actions respect to

3D part dynamics of vehicles on the street.

This paper is a step forward to fill this missing piece, es-

pecially in AD scenario, by providing a model that enables

detailed 3D part parsing of an object. To perform such a

task, we first look through many popular AD datasets, such

as KITTI [14], CityScapes [6] and ApolloScape [20, 46].

As shown in Fig. 1, we found firstly, cases where a car has

its part moved as we discussed are existing in real driving

scenarios. Secondly, the amount of cases is too scarce, e.g.

only tens of cars, to train an effective model to dealing with

3D part understanding when these cases happened.

To generate enough amount of data for training a model

understanding 3D parts, the common strategy is manually

crowd sourcing large amount of real images [15], which

will be labor expensive, while other solutions such as ob-

taining dataset with simulated environment and computer

graphics [1, 45, 31] will have strong domain gap of car and

scene appearance to realistic scenarios. To balance the two

and automatically generate training data for current deep

learning models [17], here we propose a 3D part guided

image editing strategy, as illustrated in Fig. 2, by first fit-

ting a 3D car model with dynamic parts in images, then

re-rendering the car inside with re-configured parts and the

realistic texture. Specifically, we adopt models from the

ApolloCar3D [39] dataset where each car instance is fitted

with a 3D model, and we define ten commonly happened

dynamic parts, i.e., bonnet, trunk, four doors, two head-

lights and two taillights, for each type of 3D car model.

More specifically, for each part, we labelled its motion axis

which constraints the range of possible movement. By sam-

pling all the possible motion of a 3D car instance, our strat-

egy automatically edit the 2D car instance inside images,

yielding a large number of training samples.

Based on the generated data, we design and train a multi-

task network performing object understanding with fine

granularity, including 2D detection, instance segmentation,

dynamic part segmentation, and 3D car state description.

Our deep model is significantly more robust in understand-

ing cars in AD than models without our generated dataset.

Finally, to benchmark our model and strategies, to our

best knowledge, we construct the first dataset with large

amount of described uncommon states of cars in AD, i.e.

with door or trunk open etc., which contains 1441 labelled

street-view images, 1850 car instances, and 12 defined

states. We evaluate the part understanding quality exten-

sively with the dataset, and show our network and training

strategies yields large improvements (over 8% relatively) in

discovering and understanding these uncommon cases.

In summary, our contributions are in three aspects:

• We present a 3D part guided image editing pipeline

for automatic training data generation, which helps to

learn fine-grained object understanding models in AD.

• We design a multi-task network architecture which

produces output of both instance level and part level

object understanding.

• To benchmark our data generation strategies, and net-

work architectures, we build a large dataset which con-

tains 1441 real images with fine-grained annotation of

objects in many uncommon states. It demonstrates the

effectiveness of our approaches.

2. Related Work

Fine-grained object understanding is one of the center

problem for autonomous driving. Our work is mostly re-

lated to two areas: datasets and vehicle for fine-grained

parsing. We review the related works in the following.

Datasets for Autonomous Driving. Focusing on per-

ception in autonomous driving, several datasets have been

constructed and released. The first dataset is CamVid [2],

which annotates 701 images with 32 semantic classes. The

later released KITTI benchmark [14] contains multiple vi-

sion tasks (e.g., optical flow, 2D/3D detection). However,

it mainly annotates 2D/3D bounding boxes for each car, re-

sulting in 7481 training and 7518 test images. Recently,

CityScapes dataset [6] labelled vehicles with instance-level

segmentation, which released 2975 training, 500 validation,

and 1525 test images. ApolloScape [20] is a large-scale AD

dataset for various 2D and 3D tasks. It performs pixels-level

annotations for 2D scene parsing, providing about 140K

images. ApolloCar3D [39] is a 3D instance car dataset

built from real images in driving scenes. For each car in-

stance in 2D image, 3D model and corresponding 6-DoF

pose are manually labelled. Moreover, there exist other real

street-view self-driving datasets (e.g., Toronto [48], Mapil-

lary [30], and BDD100K [51]) and synthetic datasets (e.g.,

SYNTHIA [37], P.F.B. [35], and Virtual KITTI [11]). How-

ever, all of these datasets only annotate common cars with

2D bounding box or semantic/instance segmentation, while

cars in uncommon states are ignored (e.g., opened door

or trunk, and flashed headlights or taillights). In an AD

scenario, this information can predict further action of the

vehicle, which becomes very important for safety.

Data Generation for Deep Network. Learning ef-

fective deep networks (e.g., AlexNet [21], VGG [38],

ResNet [18], and FPN [25]), depends on large amount of

training data for each individual task. However, real data

collection and annotation [8, 26, 20] are laborious. To avoid

the difficulties of data labelling, synthetic data is widely

used for training deep networks. Current image synthe-

sis techniques can be roughly divided into two classes: 3D

model rendering and 2D image ‘cut-paste’ [10]. Recently,

several large-scale 3D model datasets have been released,

such as ShapeNet [5], ModelNet [49] and ScanNet [7].

Researchers directly render 3D models to obtain 2D im-

11337



Figure 2: Overview of our data augmentation pipeline.

ages for training. However, rendering is a time-consuming

work which requires pre-building the complex realistic 3D

scenes. Therefore, some works cut objects from images,

and then paste to other background to synthesize photo-

realistic training data. However, the diversity of ‘cut-paste’

results is limited. Furthermore, it cannot handle the prob-

lem of occlusion.

Nevertheless, many computer vision tasks are benefi-

cial from synthetic data, such as optical flow [3, 9], scene

flow [28], stereo [32, 52], semantic segmentation [36,

37], 3D keypoint extraction [42], viewpoint [40], object

pose [29], 3D reconstruction [16], and object detection [1,

13, 31, 45]. The key problem for these works is to fix ap-

pearance domain gap to realistic images. Domain random-

ization [43] is widely used for vehicle detection [31, 45],

which gets the optimal performance. Alhaija et al. [1] take

advantage of AR approach to overlay vehicle rendering re-

sults to the real street-view images, yielding augmented

photo-realistic training data. Hinterstoisser et al. [19] show

that by freezing a pre-trained feature extractor can train a

good object detector with synthetic data only.

Fine-grained Parsing and Understanding. For AD, as

discussed in Sec. 1, it is important to detect, segment, and

parse the moving objects into part-level semantics. Here,

state-of-the-art (SOTA) methods often rely on detecting

and understanding pipelines. Specifically, an object is first

separated using detectors such as one-stage methods (e.g.,

SSD513 [12], YOLOv3 [33]) or two-stage methods (e.g.,

Faster-RCNN [34], Mask-RCNN [17]); and then performed

fine-grained recognition with object parts, such as part key-

points regression [39] and part segmentation [47, 50]. Most

recently, Lu et al. [27] extend the part-level pixel-wise an-

notation to the part state inference problem, such that vi-

sual models can be more instructive. Our work follows this

trend, while extends previous works with object part under-

standing in 3D to handle uncommon cases in AD scenario.

3. 3D Part Guided Image Editing

In this section, we introduce how to leverage the 3D parts

to automatically edit the source 2D images. To achieve this

goal, four essential components are required: 1) 3D part

segmentation and motion axis annotation; 2) 3D transfor-

mation and 2D projection; 3) hole filling and image filter-

ing; 4) invisible region generation.

Recently, Song et al. [39] published a 2D-3D alignment

dataset: ApolloCar3D, which annotates the 3D model and

6-DoF pose for each 2D car instance. Based on the re-

leased 3D CAD models of cars, we manually segment out

the movable parts (i.e., bonnet, trunk and four doors) and

the semantic parts (i.e., two headlights and two taillights),

respectively. For semantic parts, we directly project them

to obtain the corresponding 2D regions, which are further

edited to yellow or red flashed effects (the third row in

Fig. 3). For movable parts, we firstly annotate their motion

axis, then transform the 3D parts to guide 2D image edit-

ing. Note that the 3D models provided by ApolloCar3D are

low-quality. It is difficult to obtain appropriate texture map

from source image to perform photo-realistic rendering.

Instead, we render the 3D geometry parts to obtain corre-

sponding depth map D, according to the global rotation Rg,

translation tg, and the camera intrinsic matrix K. For each

2D pixel u = (u, v)⊤ with depth value D(u), we convert it

to acquire 3D point P = (x, y, z)⊤ through

P = R
−1
g ·

(

D(u) ·K−1 · u̇− tg

)

. (1)

Here, u̇ is a homogeneous vector: u̇ = (u⊤|1)⊤.

Assuming the part locally transformed with a 3D rotation

Ro along with the motion axis, and the axis translate to in

the global coordinate. We compute the pixel’s new position

u
′ in the image domain, which is defined as:

u
′ =

⌊

π
(

K ·
(

Rg(Ro(P− to) + to

)

+ tg

)

)

⌋

. (2)

11338



Figure 3: The generated cars in uncommon states by our

approach. The editing results of movable parts (i.e., trunk,

bonnet, and four doors) are shown in the 1st row and the

2nd row. And the editing results of semantic parts (i.e., two

headlights and two taillights) are shown in the 3rd row.

Here, the function u = π(P) performs perspective projec-

tion of P ∈ R
3 = (x, y, z)⊤ including dehomogenisation

to obtain u ∈ R
2 = (x/z, y/z)⊤.

Note that the transformed pixels are always sparse and

noisy in the part region (Fig. 2 (e)). Here, we call the non-

valued pixel as ‘hole’. In order to fill these holes, we per-

form the linear blending algorithm [41] to obtain the RGB

values. After interpolating the non-valued pixels, we apply

a bilateral filter [44] on the edited images. The smoothed

results are shown in Fig. 2 (f) and Fig. 3.

Invisible region generation. For the case of opening

door, we can generate visual compelling results if the car

towards the camera. Once the car in the opposite direction,

opening door will introduce some invisible regions in the

original image. These invisible regions can be roughly di-

vided into two classes: one is the reverse side of the part,

another is the vehicle interior (e.g., seat, steering wheel and

engine). Empirically, the interior regions are always dark

due to the inadequate illumination. Therefore, we directly

fill interior regions with the gray color. Also, we have tried

the random color and the patches from real images. How-

ever, according to the experimental results, we don’t find

obvious differences among them.

Compared with the interior regions, coloring the reverse

side of part seems rather complex. As shown in Fig. 2, it

is not appropriate to directly filling in pure color. Thus,

we adopt the photo-realistic rendering pipeline to generate

high-fidelity results of reverse side. Considering the low-

quality models provided by ApolloCar3D, we firstly con-

struct a small expert designed 3D model database for mov-

able parts. Each part is designed by a professional artist

with the commercial software, 3dsMax. The part materi-

als are manually labelled and BRDF parameters are pre-

defined. As shown in Fig. 2 (h), we use the environment

map calculated [23] from ApolloCar3D to perform photo-

realistic rendering. Our editing results are shown in Fig. 3.

Figure 4: The architecture of our two-backbone network,

which can output 2D detection, instance-level segmenta-

tion, dynamic part segmentation, and state description.

4. Network Architectures

We propose a novel multi-task deep neural network ar-

chitecture shown in Fig. 4, which is used for fine-grained

object understanding. In this section, we discuss the mod-

ules of our network and training settings in details.

4.1. Two Backbones

We aim to detect cars in uncommon states from real

street-view images through only training on the editing im-

ages. To achieve the transfer ability from synthetic data

to real data, there are two ResNet50-FPN [25] backbones

in our network. We pre-train the main backbone both on

ApolloCar3D [39] benchmark and CityScapes [6] bench-

mark using Mask-RCNN to extract the car body features

guided by a car detection task. Simultaneously, we pre-train

the auxiliary backbone on COCO dataset to learn the gen-

eral features of the edited region (e.g., the rendered parts)

guided by a general detection task. Finally, we fix the pa-

rameters of these two backbones to train the network on

the editing data. Indeed, experimental results in Sec. 6.4

demonstrate that we can get the optimal performance by

freezing two backbones.

4.2. Dynamic Part Segmentation

We adopt the Mask-RCNN [17] to implement the task

of dynamic part segmentation. In Mask-RCNN, the mask

branch outputs a Km2 dimensional binary mask for each

RoI aligned feature map, where K is the number of class

and m is the resolution. Besides, we take the dynamic part

segmentation as a new channel, resulting in output con-

taining a (K + 1 )m2 binary mask. Specifically, we feed

14×14 RoI aligned feature map to four sequential 256-d

3×3 convolution layers. A 2×2 deconvolution layer is used

to up-sample the output to 28×28. Finally, we define the

Lpart as the average of per-pixel sigmoid cross entropy loss.

11339



Datasets
Bonnet Trunk Doors Headlights Taillights

Total
lifted lifted fl-o. fr-o. bl-o. br-o. l-tu. r-tu. l-tu. r-tu. stop alarm

KITTI 1 9 1 0 0 5 1 0 2 1 8 0 28

CityScapes 0 0 14 5 8 4 3 2 4 0 15 0 55

ApolloScape 0 23 29 0 59 157 15 18 23 27 33 16 400

ApolloCar3D 0 13 19 1 0 11 3 5 12 9 21 0 94

Capt. Images 15 405 232 66 79 346 19 17 25 18 44 7 1273

CUS Dataset 16 450 295 72 146 523 41 42 66 55 121 23 1850

Table 1: The constructed CUS dataset, which annotates 1850 car instances in uncommon states from 1441 street-view images.

‘fl-o. (br-o.)’ indicates the opened front-left (back-right) part, and ‘l-tu. (r-tu.)’ indicates turning left (right).

4.3. State Description

We use a binary variable to represent the existence of

the particular part state (i.e., 1 for existed and 0 for others).

Then, we define the ‘part state vector’ as a concatenation

of all binary variables. Our method regresses the part state

vector through the sequential convolution layers and a fully

connected layer in mask branch. Similarly, we define the

Lstate as the average sigmoid cross entropy loss.

4.4. Training Details

At first, we pre-train a Mask-RCNN with ResNet50-

FPN backbone both on ApolloCar3D [39] benchmark and

CityScapes [6] benchmark through a car instance segmenta-

tion task. Then, we initialize the main backbone by copying

the parameters of the pre-trained network. Simultaneously,

we pre-train the auxiliary backbone on COCO dataset using

the same network architecture. Finally, we fix the param-

eters of these two backbones to train the network on the

editing data. The multi-task loss is defined as:

L = Lp
class + Lp

reg + Lr
class + Lr

box

+Lr
mask + Lr

state + Lr
part,

(3)

where (.)p and (.)r indicate RPN and RCNN, respectively.

The subscript state and part denote the loss of state vector

and part mask, respectively. We minimize our loss function

using the SGD with a weight decay of 0.0001 and a mo-

mentum of 0.9. The learning rate is initially set to 0.002,

and reduced by 0.1 for every 5 epochs.

5. CUS Dataset

To our best knowledge, none of existing datasets pro-

vides the detailed annotation of cars in uncommon states

(CUS). To evaluate the quality of edited data and bench-

mark network performance, we construct a CUS dataset

with real street-view images annotated. Specifically, we

firstly look up the existing AD-oriented datasets, including

KITTI [14], CityScapes [6], ApolloScape [20], and Apol-

loCar3D [39]. These four datasets have a total of 80,000

images, which labelled over 1 million car instances. How-

ever, very few of them are in uncommon states (Tab. 1).

To add more CUS data, we drive a car to capture im-

ages in various sites (i.e., hospital, park, school, and urban

road) and in different time (i.e., morning, noon, and after-

noon). Consequently, we capture about 150,000 images in

total. After removed the blurred and overexposed images,

we finally collect 1273 car instances to label.

As shown in Tab. 1, our dataset covers 10 dynamic parts

(i.e., bonnet, trunk, four doors, two headlights, and two

taillights) and 12 uncommon states, which annotates 1850

car instances from 1441 images. For each car instance, we

manually labelled the 2D bounding box, instance segmenta-

tion, dynamic part segmentation, and state description. No-

tice that our trained deep model is used directly for testing

on CUS dataset without any ‘domain adaptation’ or ‘fine-

turning’ strategies. We believe the built benchmark can

effectively verify the quality of editing data, and quantita-

tively evaluate the network performance.

6. Results

6.1. Experimental Settings

Our network is trained on a 64-bit work station with a

8-core 3.4 GHz CPU, 4 Nvidia TITAN XP graphics cards,

and Ubuntu 16.04 OS. The generated training data mostly

comes from ApolloCar3D dataset which labelled the 3D

model and 6-DoF pose for each car instance. Consider-

ing the obvious domain gap among different datasets, we

further annotate 100 common car instances with 2D-3D

aligned in KITTI, CityScapes, ApolloScape, and captured

images, respectively. Then we perform the proposed edit-

ing approach to generate CUS data for training. The editing

time for each car is about 3 seconds. Specifically, 0.5s for

3D points transformation and projection, 0.5s for hole fill-

ing and filtering, and 2s for invisible region generation.

The training time of our network depends on the data

number. In general, training 25K images costs 24 hours. On

the testing phase, we directly use the trained model to per-

form fine-grained understanding on CUS dataset. As shown

11340



Figure 5: The training data of different approaches: (a) raw

images; (b) rendering data; (c) editing data by our approach.

in Fig. 1, Fig. 7 (c) and Fig. 10, our network outputs holistic

parsing results, including 2D detection, instance-level seg-

mentation, dynamic part segmentation, and state descrip-

tion. Source code, data and more results can be found on the

project page (https://github.com/zongdai/EditingForDNN).

6.2. Evaluation Metric

In Sec. 6.3, our network is compared with Mask-RCNN.

Note that the proposed benchmark is only focused on CUS.

While Mask-RCNN cannot distinguish the cars in com-

mon/uncommon states, which are both existed in the testing

data. If we use the AP metric to evaluate this experiment,

the detected common-state cars will decrease the precision,

resulting in inaccurate AP value. Therefore, we compute

the maximum of IoU values between the ground truth and

the predictions to evaluate the network performance.

Different with Mask-RCNN, our two-backbone network

can correctly detect the cars in uncommon states. For the

ablation study in Sec. 6.4, we choose the mAP metric to

evaluate the performance of 2D detection, instance segmen-

tation, and part segmentation. For state description, we

compute the match rate at each binary item between pre-

diction state vectors and ground truth.

Methods 2D Detection (IoU) Ins. Seg. (IoU)

Baseline 1 0.751 0.704

Baseline 2 0.758 0.712

Baseline 3 0.775 0.721

Baseline 4 0.766 0.713

Baseline 5 0.772 0.719

Ours 0.862 0.815

Table 2: 2D detection and instance segmentation evaluation

results with different approaches on CUS dataset.

Figure 6: Visualization results on 2D detection and instance

segmentation (five baseline methods vs. ours).

6.3. Comparison with Baseline Methods

To demonstrate our method can effectively improve the

performance on 2D detection and instance-level segmenta-

tion, following baseline methods are compared (Tab. 2):

Baseline 1: Mask-RCNN + Existing Datasets. We

train the Mask-RCNN network on the existing datasets

(i.e., KITTI, CityScapes, ApolloScape, and ApolloCar3D),

which only annotate the common-state cars (Fig. 5 (a)). In

the testing phase, we directly output the results of 2D detec-

tion and instance-level segmentation on CUS dataset.

Baseline 2: Mask-RCNN + Rendering Data. We im-

plement the rendering-based data generation pipeline which

is adopted in most image synthesis works [40, 31, 45].

Following [1], we construct 50 high-quality textured CAD

models of cars, which are labelled the dynamic parts and

motion axis. We transform the car models according to the

6-DoF pose and operate the dynamic parts to generate un-

common states. Here, we use Blender software to obtain

rendering result which is further overlaid to background

(Fig. 5 (b)). Consequently, we build a rendering dataset

which consists of 25K images. We train the Mask-RCNN

network on rendering data and test on CUS dataset.

Baseline 3: Mask-RCNN + Editing Data. We then train

the Mask-RCNN network using our editing data (Fig. 5 (c))

which has the same number with the rendering data. We

evaluate the trained Mask-RCNN network on CUS dataset.

Baseline 4: Our Network + Existing Datasets. We

train our two-backbone network using the existing datasets

which are introduced in Baseline 1.

Baseline 5: Our Network + Rendering Data. We train

the proposed two-backbone network using the rendering

data which is illustrated in Baseline 2.

Our method: Our Network + Editing Data. At last, we

train our two-backbone network using the editing data. The

quantitative results of these approaches are listed in Tab. 2.

11341



Methods 2D Detection (mAP) Instance Seg. (mAP) Part Seg. (mAP) State Description

Single Backbone Re-trained 0.136 0.114 0.144 0.149

Single Backbone Frozen 0.672 0.516 0.273 0.837

Two Backbones Frozen 0.701 0.563 0.314 0.874

Table 3: Ablation study of our network on 2D detection, instance segmentation, part segmentation, and state description.

Figure 7: Visual results on ablation study of our network:

(a) single backbone re-trained; (b) single backbone frozen;

(c) two backbones frozen. The words with red/green color

indicate the wrong/correct state descriptions.

The results of Baseline 1 indicate that the model of

Mask-RCNN trained by common-state cars can detect and

segment the car body. However, the dynamic parts are al-

ways ignored (Fig. 6 (a)). The results of Baseline 2 show

that rendering data improves the network performance com-

pared with Baseline 1. While the rendering data (Fig. 5 (b))

has the natural domain gap with the real captured images

(Fig. 5 (a)). In addition, 3D rendering costs much 10x

time than editing-based approach. The results of Baseline

3 prove that Mask-RCNN trained by editing data outper-

forms existing datasets and rendering data. However, when

we visualize the results of detection and segmentation in

Fig. 6 (c), it is clearly shown that the visible parts are good

while the reverse side of dynamic part suffers from errors.

Baseline 4 and Baseline 5 are using our two-backbone

network to train on the existing datasets and rendering data,

respectively. However, the performance of both baseline

methods are not improved significantly. Here, we empha-

size that our two-backbone network is carefully designed

to learn the editing data, especially the dynamic parts. Di-

rectly using our network cannot effectively learn other data,

because they are in the different domain. Consequently, our

two-backbone network trained by editing data gets the best

performance, which advances other methods by over 8 per-

cent on both tasks (Tab. 2). The main improvement comes

from the invisible regions (Fig. 6 (f)).

Figure 8: The performance of our two-backbone network

with different number of training data.

6.4. Performance Analysis

The impact of our network structure. Besides 2D de-

tection and instance segmentation, our network can detect

cars in uncommon states, segment dynamic parts, and de-

scribe states. To illustrate the impact of our network struc-

ture, we conduct an ablation study as shown in Tab. 3 using

constant number of training data (i.e., 25K). We firstly re-

train the single backbone, which is a common strategy in

most deep networks (e.g., [17]). The results show that it

can hardly predict correct class of CUS, leading bad perfor-

mance on these tasks (Fig. 7 (a)). We then freeze the sin-

gle backbone pre-trained on COCO during the editing data

training. The performance is improved due to relieving the

over-fitting problem. However, the frozen backbone can not

extract adequate features (Fig. 7 (b)). On the contrast, our

two backbones which pre-trained on car detection task and

general task can not only extract adequate features but also

avoid over-fitting problem. It achieves the best performance

on these tasks (Fig. 7 (c)).

The impact of the number of training data. Empiri-

cally, the performance of deep network largely relies on the

number of training data. Here, we conduct an experiment to

study the relationship between the number of data and net-

work performance. Thanks to the fully automatic editing-

based approach, we set the number of data from 5K to 40K

with an interval of 5K to train our network. Fig. 8 shows

the network performance on multiple tasks with respect to

11342



Figure 9: The rendering results with (a) and without (b)

environment map.

Tasks w/o Env. Map with Env. Map

2D Detection (mAP) 0.688 0.701

Ins. Seg. (mAP) 0.538 0.563

Part Seg. (mAP) 0.221 0.314

State Description 0.844 0.874

Table 4: The impact of environment map.

different number of training data. We find that from 5K

to 25K, the network performance is significantly improved.

While from 25K to 40K, it is not sensitive to the number. In

practice, we set the number of training data to 25K, which

is a good compromise of efficiency and accuracy.

The impact of environment map. In the proposed data

generation pipeline, we render the reverse side of dynamic

parts to generate the invisible region data. While in the wild,

illumination (or environment map) plays an important role

which determines the rendered region whether is compati-

ble with the surroundings. Here, we conduct an experiment

to study the effectiveness of environment map. We utilize

the same number of reverse side data with/without environ-

ment map (shown in Fig. 9) to train our network, and eval-

uate on the proposed CUS dataset. As shown is Tab. 4, the

data rendered by environment map significantly improves

the network performance. In particular, the dynamic part

segmentation gets a 9.3 percent improvement.

6.5. Application

Our results can effectively support a number of high-

level vision tasks. As shown in Fig. 10, we integrate hu-

man detection task to our network. Intuitively, there exists

rich semantics between the human and the dynamic parts.

For example, if someone stands near by the lifted trunk, it

is very likely that he/she is taking the luggage. If someone

bends to push the door of car, it implies he/she would get

off. Besides action reasoning and interaction understanding,

we can even infer the people’s identity from the uncommon

cases. For instance, if the front left door is opened, people

near the door usually is a driver.

Figure 10: The applications on action reasoning and people

identity inference by understanding CUS.

7. Conclusion and Limitation

In this paper, we make the first attempt to analyse the

cars in uncommon states (CUS). Instead of annotating large

amount of images, we present an editing-based data gen-

eration approach which takes advantage of 3D parts. Our

method is light-weight but high-efficiency, which advances

the rendering-based methods by a large margin. To perform

a holistic understanding for CUS, we propose a multi-task

deep network which can simultaneously output 2D detec-

tion, instance-level segmentation, dynamic part segmenta-

tion, and state description. To benchmark the performance,

we construct a CUS dataset which contains 1441 real im-

ages (1850 car instances) with fine-grained annotation. The

experimental results show that our editing data and deep

network perform well on CUS.

Nevertheless, there are a number of limitations, which

point out our direction in the future work. First, AD is a

huge and complex project, the uncommon states analysed

in this paper are closed to cars. Some other objects, such as

human and road, we will pay more attention to them. Sec-

ond, the output of our network are mostly 2D results. We

will extend this work to 3D space, such as 3D detection, 3D

localization, and 3D reconstruction. Third, we will research

CUS on the video sequences. Lastly, we will fuse multi-

ple sensors (e.g., RGB camera, stereo camera, Lidar, and

Radar) to research the CUS problem.

Acknowledgement

We thank the anonymous reviewers for their valuable

comments. This work was supported in part by Na-

tional Natural Science Foundation of China (U1736217

and 61932003), National Key R&D Program of China

(2019YFF0302902), and Pre-research Project of the

Manned Space Flight (060601).

11343



References

[1] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars

Mescheder, Andreas Geiger, and Carsten Rother. Aug-

mented reality meets computer vision.

[2] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla.

Semantic object classes in video: A high-definition ground

truth database. Pattern Recognition Letters, 30(2):88–97,

2009.

[3] Daniel J Butler, Jonas Wulff, Garrett B Stanley, and

Michael J Black. A naturalistic open source movie for optical

flow evaluation. In Proceedings of ECCV, pages 611–625.

Springer, 2012.

[4] F. Chabot, M. Chaouch, J. Rabarisoa, C. Teulière, and T.

Chateau. Deep manta: A coarse-to-fine many-task network

for joint 2d and 3d vehicle analysis from monocular image.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017.

[5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-

lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,

and Fisher Yu. ShapeNet: An Information-Rich 3D Model

Repository. Technical Report arXiv:1512.03012 [cs.GR],

2015.

[6] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 3213–3223, 2016.

[7] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017.

[8] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 248–255. IEEE,

2009.

[9] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip

Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van

Der Smagt, Daniel Cremers, and Thomas Brox. Flownet:

Learning optical flow with convolutional networks. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 2758–2766, 2015.

[10] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut,

paste and learn: Surprisingly easy synthesis for instance de-

tection. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 1301–1310, 2017.

[11] Francis Engelmann, Theodora Kontogianni, Alexander Her-

mans, and Bastian Leibe. Exploring spatial context for 3d se-

mantic segmentation of point clouds. In Proceedings of the

IEEE International Conference on Computer Vision, pages

716–724, 2017.

[12] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi,

and Alexander C Berg. Dssd: Deconvolutional single shot

detector. arXiv preprint arXiv:1701.06659, 2017.

[13] Adrien Gaidon, Qiao Wang, Yohann Cabon, and Eleonora

Vig. Virtual worlds as proxy for multi-object tracking anal-

ysis. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 4340–4349, 2016.

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231–1237,

2013.

[15] Robert Geirhos, Patricia Rubisch, Claudio Michaelis,

Matthias Bethge, Felix A Wichmann, and Wieland Brendel.

Imagenet-trained cnns are biased towards texture; increasing

shape bias improves accuracy and robustness. arXiv preprint

arXiv:1811.12231, 2018.

[16] Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Si-

mon Stent, and Roberto Cipolla. Understanding real world

indoor scenes with synthetic data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 4077–4085, 2016.

[17] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2961–2969, 2017.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 770–778, 2016.

[19] Stefan Hinterstoisser, Vincent Lepetit, Paul Wohlhart, and

Kurt Konolige. On pre-trained image features and synthetic

images for deep learning. In The European Conference on

Computer Vision (ECCV) Workshops, September 2018.

[20] Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,

Dingfu Zhou, Peng Wang, Yuanqing Lin, and Ruigang Yang.

The apolloscape dataset for autonomous driving. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 954–960, 2018.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012.

[22] Abhijit Kundu, Yin Li, and James M. Rehg. 3d-rcnn:

Instance-level 3d object reconstruction via render-and-

compare. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2018.

[23] Jean-François Lalonde and Alexei A Efros. Synthesizing

environment maps from a single image. Technical Report

CMU-R I-TR-10–24, 2010.

[24] Huan Lei, Naveed Akhtar, and Ajmal Mian. Spherical kernel

for efficient graph convolution on 3d point clouds. arXiv

preprint arXiv:1909.09287, 2019.

[25] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 2117–2125, 2017.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Proceedings of ECCV, pages 740–755. Springer, 2014.

11344



[27] Cewu Lu, Hao Su, Yonglu Li, Yongyi Lu, Li Yi, Chi-Keung

Tang, and Leonidas J Guibas. Beyond holistic object recog-

nition: Enriching image understanding with part states. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6955–6963, 2018.

[28] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,

Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A

large dataset to train convolutional networks for disparity,

optical flow, and scene flow estimation. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4040–4048, 2016.

[29] Matthias Müller, Vincent Casser, Jean Lahoud, Neil Smith,

and Bernard Ghanem. Sim4cv: A photo-realistic simulator

for computer vision applications. International Journal of

Computer Vision, 126(9):902–919, 2018.

[30] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and

Peter Kontschieder. The mapillary vistas dataset for semantic

understanding of street scenes. In Proceedings of the IEEE

International Conference on Computer Vision, pages 4990–

4999, 2017.

[31] Aayush Prakash, Shaad Boochoon, Mark Brophy, David

Acuna, Eric Cameracci, Gavriel State, Omer Shapira, and

Stan Birchfield. Structured domain randomization: Bridg-

ing the reality gap by context-aware synthetic data. arXiv

preprint arXiv:1810.10093, 2018.

[32] Weichao Qiu and Alan Yuille. Unrealcv: Connecting com-

puter vision to unreal engine. In Proceedings of ECCV, pages

909–916. Springer, 2016.

[33] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018.

[34] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in Neural Information Pro-

cessing Systems, pages 91–99, 2015.

[35] Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun.

Playing for benchmarks. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2213–2222,

2017.

[36] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In Proceedings of ECCV, pages 102–118. Springer,

2016.

[37] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A

large collection of synthetic images for semantic segmenta-

tion of urban scenes. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3234–

3243, 2016.

[38] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[39] Xibin Song, Peng Wang, Dingfu Zhou, Rui Zhu, Chenye

Guan, Yuchao Dai, Hao Su, Hongdong Li, and Ruigang

Yang. Apollocar3d: A large 3d car instance understanding

benchmark for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 5452–5462, 2019.

[40] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas.

Render for cnn: Viewpoint estimation in images using cnns

trained with rendered 3d model views. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2686–2694, 2015.

[41] Robert W Sumner, Johannes Schmid, and Mark Pauly. Em-

bedded deformation for shape manipulation. ACM Transac-

tions on Graphics (TOG), 26(3):80, 2007.

[42] Supasorn Suwajanakorn, Noah Snavely, Jonathan J Tomp-

son, and Mohammad Norouzi. Discovery of latent 3d key-

points via end-to-end geometric reasoning. In Advances in

Neural Information Processing Systems, pages 2059–2070,

2018.

[43] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Woj-

ciech Zaremba, and Pieter Abbeel. Domain randomization

for transferring deep neural networks from simulation to the

real world. In International Conference on Intelligent Robots

and Systems (IROS), pages 23–30. IEEE, 2017.

[44] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for

gray and color images. In Proceedings of ICCV, volume 98,

page 2, 1998.

[45] Jonathan Tremblay, Aayush Prakash, David Acuna, Mark

Brophy, Varun Jampani, Cem Anil, Thang To, Eric Camer-

acci, Shaad Boochoon, and Stan Birchfield. Training deep

networks with synthetic data: Bridging the reality gap by

domain randomization. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, pages 969–977, 2018.

[46] Peng Wang, Xinyu Huang, Xinjing Cheng, Dingfu Zhou,

Qichuan Geng, and Ruigang Yang. The apolloscape open

dataset for autonomous driving and its application. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

2019.

[47] Peng Wang, Xiaohui Shen, Zhe Lin, Scott Cohen, Brian

Price, and Alan L Yuille. Joint object and part segmentation

using deep learned potentials. In Proceedings of the IEEE

International Conference on Computer Vision, pages 1573–

1581, 2015.

[48] Shenlong Wang, Min Bai, Gellert Mattyus, Hang Chu, Wen-

jie Luo, Bin Yang, Justin Liang, Joel Cheverie, Sanja Fidler,

and Raquel Urtasun. Torontocity: Seeing the world with a

million eyes. arXiv preprint arXiv:1612.00423, 2016.

[49] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1912–1920, 2015.

[50] Fangting Xia, Peng Wang, Liang-Chieh Chen, and Alan L

Yuille. Zoom better to see clearer: Human and object parsing

with hierarchical auto-zoom net. In Proceedings of ECCV,

pages 648–663. Springer, 2016.

[51] Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike

Liao, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A

diverse driving video database with scalable annotation tool-

ing. arXiv preprint arXiv:1805.04687, 2018.

[52] Yi Zhang, Weichao Qiu, Qi Chen, Xiaolin Hu, and Alan

Yuille. Unrealstereo: A synthetic dataset for analyzing stereo

vision. arXiv preprint arXiv:1612.04647, 1(2), 2016.

11345


