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Abstract

Scene text detection and recognition has received in-

creasing research attention. Existing methods can be

roughly categorized into two groups: character-based

and segmentation-based. These methods either are cost-

ly for character annotation or need to maintain a complex

pipeline, which is often not suitable for real-time applica-

tions. Here we address the problem by proposing the Adap-

tive Bezier-Curve Network (ABCNet). Our contributions

are three-fold: 1) For the first time, we adaptively fit ori-

ented or curved text by a parameterized Bezier curve. 2)

We design a novel BezierAlign layer for extracting accu-

rate convolution features of a text instance with arbitrary

shapes, significantly improving the precision compared with

previous methods. 3) Compared with standard bounding

box detection, our Bezier curve detection introduces negli-

gible computation overhead, resulting in superiority of our

method in both efficiency and accuracy.

Experiments on oriented or curved benchmark datasets,

namely Total-Text and CTW1500, demonstrate that ABCNet

achieves state-of-the-art accuracy, meanwhile significantly

improving the speed. In particular, on Total-Text, our real-

time version is over 10 times faster than recent state-of-the-

art methods with a competitive recognition accuracy.

Code is available at https://git.io/AdelaiDet.

1. Introduction

Scene text detection and recognition has received in-

creasing attention due to its numerous applications in com-

puter vision. Despite tremendous progress has been made

recently [10, 42, 28, 36, 27, 43, 45, 41, 46, 14], detect-

ing and recognizing text in the wild remains largely un-

solved due to its diversity patterns in sizes, aspect ratios,

font styles, perspective distortion, and shapes. Although

the emergence of deep learning has significantly improved

the performance of the task of scene text spotting, a con-

siderable gap still exists in current methods for real-world
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(a) Segmentation-based method. (b) Our proposed ABCNet.

Figure 1. Segmentation-based results are easily affected by near-

by text. The nonparametric non-structured segmentation result-

s make them very difficult to align features for the subsequen-

t recognition branch. Segmentation-based results usually need

complex post-processing, hampering efficiency. Benefiting from

the parameterized Bezier curve representation, our ABCNet can

produce structured detection regions and thus the BezierAlign

sampling process can be used for naturally connecting the recog-

nition branch.

applications, especially in terms of efficiency.

Recently, many end-to-end methods [31, 37, 34, 24, 44,

21] have significantly improved the performance of orient-

ed or curved scene text spotting. However, these methods

either use segmentation-based approaches that maintain a

complex pipeline or require a large amount of expensive

character-level annotations. In addition, almost all of these

methods are slow in inference, hampering the deployment

to real-time applications. Thus, our motivation is to design

a simple yet effective end-to-end framework for spotting ori-

ented or curved scene text in images [4, 27], which ensures

fast inference time while achieving an on par or even better

performance compared with state-of-the-art methods.
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Figure 2. Overview of some end-to-end scene text spotting methods that are most relevant to ours. Inside the GT (ground-truth) box, ‘W’,

‘R’, and ‘C’ represent word-level annotation, text content, and character-level annotation, respectively. ‘H’, ‘Q’, and ‘P’ represent that

the method is able to detect horizontal, quadrilateral, and oriented or curved text, respectively. ‘RP’ means that the method can recognize

the curved text inside a quadrilateral box. ‘R’: recognition; ‘BBox’: bounding box. Dashed box represents the shape of the text which

the method is unable to detect.

To achieve this goal, we propose the Adaptive Bezier

Curve Network (ABCNet), an end-to-end trainable frame-

work, for oriented or curved scene text spotting. ABCNet

enables oriented or curved scene text detection with Bezier

curve adaptation, which introduces negligible computation

overhead compared with standard rectangle bounding box

detection. In addition, we design a novel feature alignmen-

t layer—BezierAlign—to precisely calculate convolutional

features of text instances in curved shapes, and thus high

recognition accuracy can be achieved without introducing

much computation cost. For the first time, we represent the

oriented or curved text with parameterized Bezier curves,

and the results show the effectiveness of our method. Ex-

amples of our spotting results are shown in Figure 1.

Note that previous methods such as TextAlign [11] and

FOTS [25] can be viewed as a special case of ABCNet

because a quadrilateral bounding box can be seen as the

simplest oriented or curved bounding box with 4 straight

boundaries. In addition, ABCNet can avoid complicated

transformation such as 2D attention [20], making the design

of the recognition branch considerably simpler.

We summarize our main contributions as follows.

• In order to accurately localize oriented and curved

scene text in images, for the first time, we introduce a

new concise parametric representation of curved scene

text using Bezier curves. It introduces negligible com-

putation overhead compared with the standard bound-

ing box representation.

• We propose a sampling method, a.k.a. BezierAlign, for

accurate feature alignment, and thus the recognition

branch can be naturally connected to the overall struc-

ture. By sharing backbone features, the recognition

branch can be designed with a light-weight structure.

• The simplicity of our method allows it to perform in-

ference in real time. ABCNet achieves state-of-the-art

performance on two challenging datasets, Total-Text

and CTW1500, demonstrating advantages in both ef-

fectiveness and efficiency.

1.1. Related Work

Scene text spotting requires detecting and recognizing

text simultaneously instead of concerning only one task.

Recently, the emergence of deep-learning-based methods

have significantly advanced the performance of text spot-

ting. Both the detection and recognition have been dra-

matically improved in performance. We summarized sev-

eral representative deep-learning-based scene text spotting

methods into the following two categories. Figure 2 shows

an overview of typical works.

Regular End-to-end Scene Text Spotting Li et al. [19]

propose the first deep-learning based end-to-end trainable

scene text spotting method. The method successfully uses a

RoI Pooling [35] to joint detection and recognition features

via a two-stage framework, but it can only spot horizontal

and focused text. Its improved version [20] significantly

improves the performance, but the speed is limited. He et

al. [11] and Liu et al. [25] adopt an anchor-free mechanism

to improve both the training and inference speed. They use

a similar sampling strategy, i.e., Text-Align-Sampling and

RoI-Rotate, respectively, to enable extracting feature from

quadrilateral detection results. Note that both of these t-

wo methods are not capable of spotting oriented or curved

scene text.
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Figure 3. The framework of the proposed ABCNet. We use cubic Bezier curves and BezierAlign to extract curved sequence features

using the Bezier curve detection results. The overall framework is end-to-end trainable with high efficiency. Purple dots represent the

control points of the cubic Bezier curve.

Oriented or curved End-to-end Scene Text Spotting

To detect oriented or curved scene text, Liao et al. [31]

propose a Mask TextSpotter which subtly refines Mask R-

CNN and uses character-level supervision to simultaneous-

ly detect and recognize characters and instance masks. The

method significantly improves the performance of spotting

oriented or curved scene text. However, the character-level

ground truths are expensive, and using free synthesized data

is hard to produce character-level ground truth for real data

in practice. Its improved version [21] significantly allevi-

ated the reliance for the character-level ground truth. The

method relies on a region proposal network, which restrict-

s the speed to some extent. Sun et al. [37] propose the

TextNet which produces quadrilateral detection bounding

boxes in advance, and then use a region proposal network

to feed the detection features for recognition. Although the

method can directly recognize the oriented or curved text

from a quadrilateral detection, the performance is still lim-

ited.

Recently, Qin et al. [34] propose to use a RoI Masking

to focus on the oriented or curved text region. However, the

results may easily be affected by outlier pixels. In addition,

the segmentation branch increases the computation burden;

the fitting polygon process also introduces extra time con-

sumption; and the grouping result is usually jagged and not

smooth. The work in [24] is the first one-stage oriented

or curved scene text spotting method, requiring character-

level ground truth data for training. Authors of [44] propose

a novel sampling method, RoISlide, which uses fused fea-

tures from the predicting segments of the text instances, and

thus it is robust to long oriented or curved text.

2. Adaptive Bezier Curve Network (ABCNet)

ABCNet is an end-to-end trainable framework for spot-

ting oriented or curved scene text. An intuitive pipeline can

be seen in Figure 3. Inspired by [49, 38, 12], we adopt a

single-shot, anchor-free convolutional neural network as the

detection framework. Removal of anchor boxes significant-

ly simplifies the detection for our task. Here the detection

is densely predicted on the output feature maps of the de-

tection head, which is constructed by 4 stacked convolution

layers with stride of 1, padding of 1, and 3×3 kernels. Nex-

t, we present the key components of the proposed ABCNet

in two parts: 1) Bezier curve detection; and 2) BezierAlign

and recognition branch.

2.1. Bezier Curve Detection

Compared to segmentation-based methods [41, 46, 1, 39,

47, 29], regression-based methods are more direct solutions

to oriented or curved text detection, e.g., [27, 43]. Howev-

er, previous regression-based methods require complicated

prediction to fit the text boundary, which is not very efficient

and robust for the various text shapes in practice.

To simplify the oriented or curved scene text detection,

following the regression method, we find that Bezier curve,

a most fundamental concept of curve representation, is suit-

able for parameterization of curved text. The Bezier curve

represents a parametric curve c(t) that uses the Bernstein

Polynomials [30] as its basis. The definition is shown in

Equation (1).

c(t) =
n
∑

i=0

biBi,n(t), 0 ≤ t ≤ 1, (1)

where, n represents the degree, bi represents the i-th con-

trol points, and Bi,n(t) represents the Bernstein basis poly-

nomials, as shown in Equation (2):

Bi,n(t) =

(

n

i

)

ti(1− t)n−i, i = 0, ..., n, (2)

where
(

n

i

)

is a binomial coefficient. To fit arbitrary shapes

of the text with Bezier curves, we comprehensively observe

oriented or curved scene text from the existing datasets and

the real world, and we empirically show that a cubic Bezier

curve (i.e., n is 3) is sufficient to fit different kinds of the

oriented or curved scene text in practice. An illustration of

cubic Bezier curve is shown in Figure 4.
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Figure 4. Cubic Bezier curves. bi represents the control points.

The green lines forms a control polygon, and the black curve is

the cubic Bezier curve. Note that with only two end-points b1

and b4 the Bezier curve degenerates to a straight line.

Based on the cubic Bezier curve, we can simplify the

oriented or curved scene text detection to a bounding box

regression with eight control points in total. Note that a s-

traight text that has four control points (four vertexes) is a

typical case of oriented or curved scene text. For consis-

tency, we interpolate additional two control points in the

tripartite points of each long side.

To learn the coordinates of the control points, we first

generate the Bezier curve ground truths described in 2.1.1

and follow a similar regression method as in [26] to regress

the targets. For each text instance, we use

∆x = bix − xmin,∆y = biy − ymin, (3)

where xmin and ymin represent the minimum x and y val-

ues of the 4 vertexes, respectively. The advantage of pre-

dicting the relative distance is that it is irrelevant to whether

the Bezier curve control points are beyond the image bound-

ary. Inside the detection head, we only need one convolu-

tion layer with 16 outputted channels to learn the ∆x and

∆y , which is nearly cost-free while the results can still be

accurate, which will be discussed in Section 3.

2.1.1 Bezier Ground Truth Generation

In this section, we briefly introduce how to generate Bezi-

er curve ground truth based on the original annotations.

The oriented or curved datasets, e.g., Total-text [4] and

CTW1500 [27], use polygonal annotations for the text re-

gions. Given the annotated points {pi}
n
i=1

from the curved

boundary, where pi represents the i-th annotating point,

the main goal is to obtain the optimal parameters for cu-

bic Bezier curves c(t) in Equation (1). To achieve this, we

can simply apply standard least square method, as shown in

Equation (4):











B0,3(t0) · · · B3,3(t0)
B0,3(t1) · · · B3,3(t1)

...
. . .

...

B0,3(tm) · · · B3,3(tm)



















bx0
by0

bx1
by1

bx2
by2

bx3
by3









=











px0
py0

px1
py1

...
...

pxm
pym











(4)

Here m represents the number of annotated points for a

curved boundary. For Total-Text and CTW1500, m is 5 and

(a) Original ground truth. (b) Generated results.

Figure 5. Comparison of Bezier curve generation. In Figure

(b), for each curve boundary, the red dash lines form a control

polygon, and the red dots represent the control points. Warp-

ing results are showed below. In Figure (a), we utilize TPS [2]

and STN [15] to warp the original ground truth into rectangular

shape. In Figure (b), we use generated Bezier curves and our

BezierAlign to warp the results.

7, respectively. t is calculated by using the ratio of the cu-

mulative length to the perimeter of the polyline. According

to Equation (1) and Equation (4), we convert the original

polyline annotation to a parameterized Bezier curve. Note

that we directly use the first and the last annotating points

as the first (b0) and the last (b4) control points, respectively.

A visualization comparison is shown in the Figure 5, which

shows that the generating results can be even visually bet-

ter than the original ground truth. In addition, based on the

structured Bezier curve bounding box, we can easily using

our BezierAlign described in Section 2.2 to warp the curved

text into a horizontal format without dramatic deformation.

More examples of the Bezier curve generation results are

shown in Figure 6. The simplicity of our method allows it

generalize to different kinds of text in practice.

2.1.2 Bezier Curve Synthetic Dataset

For the end-to-end scene text spotting methods, a massive

amount of free synthesized data is always necessary, as

shown in Table 2. However, the existing 800k SynTex-

t dataset [7] only provides quadrilateral bounding box for

a majority of straight text. To diversify and enrich the ori-

ented or curved scene text, we make some effort to syn-

thesize 150k synthesized dataset (94,723 images contain a

majority of straight text, and 54,327 images contain mostly

curved text) with the VGG synthetic method [7]. Specially,

we filter out 40k text-free background images from COCO-

Text [40] and then prepare the segmentation mask and scene

depth of each background image with [33] and [18] for the

following text rendering. To enlarge the shape diversity of

synthetic texts, we modify the VGG synthetic method by

synthesizing scene text with various art fonts and corpus

and generate the polygonal annotation for all the text in-

stances. The annotations are then used for producing Bezi-

er curve ground truth by the generating method described in
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Figure 6. Example results of Bezier curve generation. Green lines are the final Bezier curve results. Red dash lines represent the control

polygon, and the 4 red end points represent the control points. Zoom in for better visualization.

(a) Horizontal sampling. (b) Quadrilateral sampling. (c) BezierAlign.

Figure 7. Comparison between previous sampling methods and BezierAlign. The proposed BezierAlign can accurately sample features

of the text region, which is essential for recognition training. Note that the align procedure is processed in intermediate convolutional

features.

Section 2.1.1. Examples of our synthesized data are shown

in Figure 8.

Figure 8. Examples of cubic Bezier curve synthesized data.

2.2. BezierAlign

To enable end-to-end training, most of the previous

methods adopt various sampling (feature alignment) meth-

ods to connect the recognition branch. Typically a sam-

pling method represents an in-network region cropping pro-

cedure. In other words, given a feature map and Region-

of-Interest (RoI), using the sampling method to select the

features of RoI and efficiently output a feature map of a

fixed size. However, sampling methods of previous non-

segmentation based methods, e.g., RoI Pooling [19], RoI-

Rotate [25], Text-Align-Sampling [11], or RoI Transform

[37] cannot properly align features of oriented or curved

text (RoISlide [44] numerous predicting segments). By ex-

ploiting the parameterization nature of a compact Bezier

curve bounding box, we propose BezierAlign for feature

sampling. BezierAlign is extended from RoIAlign [8]. Un-

like RoIAlign, the shape of sampling grid of BezierAlign

is not rectangular. Instead, each column of the oriented or

curved grid is orthogonal to the Bezier curve boundary of

the text. The sampling points have equidistant interval in

width and height, respectively, which are bilinear interpo-

lated with respect to the coordinates.

Formally given an input feature map and Bezier curve

control points, we concurrently process all the output pixels

of the rectangular output feature map with size hout×wout.

Taking pixel gi with position (giw, gih) (from output feature

map) as an example, we calculate t by Equation (5):

t =
giw

wout

. (5)

We then use t and Equation (1) to calculate the point of

upper Bezier curve boundary tp and lower Bezier curve

boundary bp. Using tp and bp, we can linearly index the

sampling point op by Equation (6):

op = bp ·
gih

hout

+ tp · (1−
gih

hout

). (6)

With the position of op, we can easily apply bilinear inter-

polation to calculate the result. Comparisons among previ-

ous sampling methods and BezierAlign are shown in Figure

7.

Recognition branch. Benefiting from the shared back-

bone feature and BezierAlign, we design a light-weight

recognition branch as shown in Table 1, for faster execu-

tion. It consists of 6 convolutional layers, 1 bidirectional
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Layers

(CNN - RNN)

Parameters

(kernel size, stride)

Output Size

(n, c, h, w)

conv layers ×4 (3, 1) (n, 256, h, w)

conv layers ×2 (3, (2,1)) (n, 256, h, w)

average pool for h - (n, 256, 1, w)

Channels-Permute - (w, n, 256)

BLSTM - (w, n, 512)

FC - (w, n, nclass)

Table 1: Structure of the recognition branch, which is a sim-

plified version of CRNN [36]. For all convolutional layers, the

padding size is restricted to 1. n represents batch size. c repre-

sents the channel size. h and w represent the height and width

of the outputted feature map, and nclass represents the number

of the predicted class, which is set to 97 in this paper, including

upper and lower cases of English characters, digits, symbols, one

category representing all other symbols, and an “EOF” of the last

category.

LSTM [13] layer, and 1 fully connected layer. Based on

the output classification scores, we use a classic CTC Loss

[6] for text string (GT) alignment. Note that during training,

we directly use the generated Bezier curve GT to extract the

RoI features. Therefore the detection branch does not af-

fect the recognition branch. In the inference phase, the RoI

region is replaced by the detecting Bezier curve described

in Section 2.1. Ablation studies in Experimental Section 3

demonstrate that the proposed BezierAlign can significantly

improve the recognition performance.

3. Experiments

We evaluate our method on two recently introduced ori-

ented or curved scene text benchmarks, Total-Text [3] and

CTW1500 [27], which also contain a large amount of s-

traight text. We also conduct ablation studies on Total-Text

to verify the effectiveness of our proposed method.

3.1. Implemented details

The backbone of this paper follows a common setting

as most of the previous papers, i.e., ResNet-50 [9] together

with a Feature Pyramid Network (FPN) [23]. For detec-

tion branch, we utilize RoIAlign on 5 feature maps with

1/8, 1/16, 1/32, 1/64, and 1/128 resolution of the input im-

age while for recognition branch, BezierAlign is conducted

on three feature maps with 1/4, 1/8, and 1/16 sizes. The

pretrained data is collected from publicly available English

word-level-based datasets, including 150k synthesized da-

ta described in Section 2.1.2, 15k images filtered from the

original COCO-Text [40], and 7k ICDAR-MLT data [32].

The pretrained model is then finetuned on the training set of

the target datasets. In addition, we also adopt data augmen-

tation strategies, e.g., random scale training, with the short

size randomly being chosen from 560 to 800 and the long

size being less than 1333; and random crop, which we make

sure that the crop size is larger than half of the original size

and without any text being cut (for some special cases that

hard to meet the condition, we do not apply random crop).

We train our model using 4 Tesla V100 GPUs with the

image batch size of 32. The maximum iteration is 150K;

and the initialized learning rate is 0.01, which reduces to

0.001 at the 70Kth iteration and 0.0001 at 120Kth iteration.

The whole training process takes about 3 days.

3.2. Experimental results on TotalText

Dataset. Total-text dataset [3] is one of the most impor-

tant oriented or curved scene text benchmark proposed in

2017, which was collected form various scenes, including

text-like scene complexity and low-contrast background. It

contains 1,555 images, with 1,255 for training and 300 for

testing. To resemble the real-world scenarios, most of the

images of this dataset contain a large amount of regular tex-

t while guarantee that each image has at least one curved

text. The text instance is annotated with polygon based on

word-level. Its extended version [4] improves its annota-

tion of training set by annotating each text instance with a

fixed ten points following text recognition sequence. The

dataset contains English text only. To evaluate the end-to-

end results, we follow the same metric as previous methods,

which use F-measure to measure the word-accuracy.

Ablation studies: BezierAlign. To evaluate the effec-

tiveness of the proposed components, we conduct ablation

studies on this dataset. We first conduct sensitivity analy-

sis of how the number of the sampling points may affect

the end-to-end results, which is shown in Table 4. From

the results we can see that the number of sampling points

can significantly affect the final performance and efficien-

cy. We find (7,32) achieves the best trade-off between F-

measure and FPS, which is used as the final setting in the

following experiments. We further evaluate BezierAlign by

comparing it with previous sampling method shown in Fig-

ure 7. The results shown in Table 3 demonstrate that the

BezierAlign can dramatically improve the end-to-end re-

sults. Qualitative examples are shown in Figure 9.

Ablation studies: Bezier curve detection. Another im-

portant component is Bezier curve detection, which enables

oriented or curved scene text detection. Therefore, we also

conduct experiments to evaluate the time consumption of

Bezier curve detection. The result in Table 5 shows that the

Bezier curve detection does not introduce extra computation

compared with standard bounding box detection.

Comparison with state-of-the-art. We further compare

our method to previous methods. From the Table 2, we

can see that our single scale result (short size being 800)

can achieve a competitive performance meanwhile achiev-

ing a real time inference speed, resulting in a better trade-off

between speed and word-accuracy. With multi-scale infer-

ence, ABCNet achieves state-of-the-art performance, sig-
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Method Data Backbone
F-measure

FPS
None Full

TextBoxes [22] SynText800k, IC13, IC15, TT ResNet-50-FPN 36.3 48.9 1.4

Mask TextSpotter’18 [31] SynText800k, IC13, IC15, TT ResNet-50-FPN 52.9 71.8 4.8

Two-stage [37] SynText800k, IC13, IC15, TT ResNet-50-SAM 45.0 - -

TextNet [37] SynText800k, IC13, IC15, TT ResNet-50-SAM 54.0 - 2.7

Li et al. [20] SynText840k, IC13, IC15, TT, MLT, AddF2k ResNet-101-FPN 57.80 - 1.4

Mask TextSpotter’19 [21] SynText800k, IC13, IC15, TT, AddF2k ResNet-50-FPN 65.3 77.4 2.0

Qin et al. [34]
SynText200k, IC15, COCO-Text, TT, MLT

Private: 30k (manual label), 1m (partial label)
ResNet-50-MSF 67.8 - 4.8

CharNet [24] SynText800k, IC15, MLT, TT ResNet-50-Hourglass57 66.2 - 1.2

TextDragon [44] SynText800k, IC15, TT VGG16 48.8 74.8 -

ABCNet-F

SynText150k, COCO-Text, TT, MLT ResNet-50-FPN

61.9 74.1 22.8

ABCNet 64.2 75.7 17.9

ABCNet-MS 69.5 78.4 6.9

Table 2: Scene text spotting results on Total-Text. ABCNet-F is faster as the short size of input image is 600. MS: multi-scale testing.

“None” represents recognition without any lexicon. “Full” lexicon contains all words in test set. Datasets: AddF2k [48]; IC13 [17]; IC15

[16]; TT [5]; MLT [32]; COCO-Text [40].

Methods Sampling method F-measure (%)

ABCNet with Horizontal Sampling 38.4

ABCNet with Quadrilateral Sampling 44.7

ABCNet with BezierAlign 61.9

Table 3: Ablation study for BezierAlign. Horizontal sampling

follows [19], and quadrilateral sampling follows [11].

Figure 9. Qualitative recognition results of the quadrilateral sam-

pling method and BezierAlign. Left: original image. Top right:

results by using quadrilateral sampling. Bottom right: results by

using BezierAlign.

nificantly outperforming all previous methods especially in

the running time. It is worth mentioning that our faster ver-

sion can be more than 11 times faster than previous best

method [21] with on par accuracy.

Method
Sampling points

(nh, nw)
F-measure (%) FPS

ABCNet

+ (6, 32) 59.6 23.2

+ (7, 32) 61.9 22.8

+ (14, 64) 58.1 19.9

+ (21, 96) 54.8 18.0

+ (28, 128) 53.4 15.1

+ (30, 30) 59.9 21.4

Table 4: Ablation study of the number of sampling points of

BezierAlign.

Methods Inference time

without Bezier curve detection 22.8 fps

with Bezier curve detection 22.5 fps

Table 5: Ablation study for time consumption of the Bezier curve

detection.

Qualitative Results. Some qualitative results of ABC-

Net are shown in Figure 10. The results show that our

method can accurately detect and recognize most of the

oriented or curved text. In addition, our method can also

well handle straight text, with nearly quadrilateral compact

bounding box and correct recognize results. Some errors

are also visualized in the figure, which are mainly caused

by mistakenly recognizing one of the characters.

3.3. Experimental Results on CTW1500

Dataset. CTW1500 [27] is another important oriented or

curved scene text benchmark proposed in 2017. Compared

to Total-Text, this dataset contains both English and Chi-

nese text. In addition, the annotation is based on text-line

level, and it also includes some document-like text, i.e., nu-

merous small text may stack together. CTW1500 contains

1k training images, and 500 testing images.

Experiments. Because the occupation of Chinese text

in this dataset is very small, we directly regard all the Chi-
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Figure 10. Qualitative results of ABCNet on the Total-text. The

detection results are shown with red bounding boxes. The float

number is the predicted confidence. Zoom in for better visual-

ization.

Methods Data
F-measure

None Strong Full

FOTS [25] SynText800k, CTW1500 21.1 39.7

Two-Stage* [44] SynText800k, CTW1500 37.2 69.9

RoIRotate* [44] SynText800k, CTW1500 38.6 70.9

LSTM* [44] SynText800k, CTW1500 39.2 71.5

TextDragon [44] SynText800k, CTW1500 39.7 72.4

ABCNet SynText150k, CTW1500 45.2 74.1

Table 6: End-to-end scene text spotting results on CTW1500. *

represents the results are from [44]. “None” represents lexicon-

free. “Strong Full” represents that we use all the words appeared

in the test set.

nese text as “unseen” class during training, i.e., the 96-th
class. Note that the last class, i.e., the 97-th class is “EOF”

in our implementation. We follow the same evaluation met-

ric as [44]. The experimental results are reported in Table

6, which demonstrate that in terms of end-to-end scene tex-

t spotting, the ABCNet can significantly surpass previous

state-of-the-art methods. Examples results of this dataset

are showed in Figure 11. From the figure, we can see that

some long text-line instances contain many words, which

make a full-match word-accuracy extremely difficult. In

other words incorrectly recognizing one character will re-

sult in zero scores for the whole text.

Figure 11. Qualitative end-to-end spotting results of CTW1500.

Better viewed on screen.

4. Conclusion

We have proposed ABCNet—a real-time end-to-end

method that uses Bezier curves for oriented or curved scene

text spotting. By reformulating oriented or curved scene

text using parameterized Bezier curves, ABCNet can detec-

t oriented or curved scene text with Bezier curves which

introduces negligible computation cost compared with s-

tandard bounding box detection. With such regular Bezi-

er curve bounding boxes, we can naturally connect a light-

weight recognition branch via a new BezierAlign layer.

In addition, by using our Bezier curve synthesized

dataset and publicly available data, experiments on two

oriented or curved scene text benchmarks (Total-Text and

CTW1500) demonstrate that our ABCNet can achieve state-

of-the-art performance, which is also significantly faster

than previous methods.
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