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Abstract

Popular backbones, designed on the task of image clas-
sification, have demonstrated their considerable compati-
bility on the task of general object detection. However, the
same phenomenon does not appear on the face detection.
This is largely due to the average scale of ground-truth in
the Wider Face dataset is far smaller than that of generic
objects in the COCO one. To resolve this, the success
of Neural Architecture Search (NAS) method inspires us
to search face-appropriate backbone and feature pyramid
network (FPN) architecture. Firstly, we design the search
space for backbone and FPN by comparing performance of
feature maps with different backbones and excellent FPN
architectures on the face detection. Second, we propose
a FPN-attention module to joint search the architecture of
backbone and FPN. Finally, we conduct comprehensive ex-
periments on popular benchmarks, including Wider Face,
FDDB, AFW and PASCAL Face, display the superiority of
our proposed method.

1. Introduction

Face detection is a fundamental task in many facial tasks,
such as face alignment [3], face recognition [6], face ag-
ing [1]. Traditional face detectors, adopting hand-craft fea-
tures , have been replaced by deep convolutional neural net-
works with the ability of extracting discriminative face fea-
tures. Recent state-of-the-art face detectors frequently use
the backbone of Resnet50 [10] which achieves excellent
performance on the image classification dataset [14]. The
remaining network architectures (e.g. head module, pre-
dicting branch) are designed by the inspiration of general
object detection [18].

Extensive experiments have shown that many backbones
[10, 21, 12] have proved their superiority on both popular
image classification (ImageNet) and general object detec-
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tion dataset (COCO) simultaneously. However it is not the
case on the face detection. Figure 1(a) shows the perfor-
mance of various backbones on different datasets (Imagenet
[14], COCO [19] and Wider Face [26]). As for two latter
detection datasets, we adopt retinanet [18] architecture with
diverse backbones. We distinctly discover that the classifier
and the detector on general object detection have a consis-
tent performance when adopting the same backbone. This
represents that the backbones designed on the classification
dataset could be easily apply to the task of general object
detection and embrace an excellent MAP (mean average
precision) score. However, these backbones perform incon-
sistently on the face dataset. Note that to extract the robust
face features, backbones would be designed by the property
of face dataset instead of transferring the backbones from
the task of classification to face detection.

To further analyze the characteristics of different detec-
tion datasets discussed above, we calculate the distribution
of object scales in the COCO and face scales in the Wider
Face (shown in figure 1(b)). Object scales in the general
object detection and face detection have clear gap. Almost
55% faces in the Wider Face dataset are with small scales
(Iess than 20 pixel) and only 18% in the COCO dataset.
Moreover, 90% face scales are smaller than 66 pixels. Most
of these faces are matched with anchors in the shallow lay-
ers (conv2 and conv3).

In fact, the gap (37%) between object scales in the
COCO and Wider Face dataset is much more than this. We
unexpected find a mismatching training setting between the
two detection tasks. The average scales of original images
are 520, 940 pixels on the COCO and Wider Face dataset
respectively. Figure 1(c) displays the relation between the
input image scale and the detector performance. The mean
scale of images in the face is approximately two times larger
than that in the ImageNet. Additionally, to achieve better
performance, general object detectors frequently enlarge the
shorter side of an image to a fixed length (e.g. 800 pixels)
and constrain the length (e.g. 1333 pixels) of a longer one
in the stage of training. However, this process of data aug-
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Figure 1. Reasons for the inconsistent performance of the same backbone in different tasks. (a) The performance of different backbones on
ImageNet, Wider Face, COCO datasets. We evaluate backbones on the two latter datasets by the AP and MAP score separately and adopt
top-5 error rates on the ImageNet validation set. For clearly comparing the difference on ImageNet with others, we replace the top-5 error
rates with top-5 correction rates (100 - top-5 error rates). (b) Cumulative density curve of face or object scale relative to the fixed scale
(640). (c) The relation between the input image scale and the detector performance.

mentation in face detection is completely opposite. Con-
sidering that enlarging the scale of the face image plane
generally brings the distortion because the faces have more
complicated texture information than general objects, face
detectors reduce the mean scale from 940 to 640 and con-
sequently get the best results among all listed scales in the
figure 1(c).

According to the training setting with the highest perfor-
mance in figure 1(c), we consistently calculate the average
scales of input face and general objects during training. The
proportion of small face scales in the Wider Face dataset is
far less than that of small general objects in the coco dataset
(68.3% vs 2.3%). The gap has been enlarged from 37% to
66%. Therefore, the problem of why the same backbone
performs differently on the face and coco dataset has been
found. That is backbones designed by applying on Ima-
geNet dataset with relatively large ground-truth are not ap-
propriate to Wider Face dataset which has too many faces
with small scales. Besides, in section 3.1, we demonstrate
the performance of backbones on each pyramid layers to
further explain their unsuitability.

As discussed above, the motivation of some tricks is also
clear on the face detector. One is the utilization of conv2
layer to enhance the ability of recalling small faces. The
other is that different from standard anchor designation in
retinanet, most face detectors adopt an equal-proportion in-
terval principle proposed by [28] to reduce the redundant
anchors for shallow layers. These tricks are all designed
for the improvement of detecting small faces. In this paper,
considering the different property (distribution of ground-
truth scales) between faces and general objects, we focus
on designing the robust backbone and FPN for face detec-
tors.

Recently, some works [31, 9] about neural architecture
search illuminate us to design the proper backbone for face
detectors. Most of them design network architecture based
on CIFAR-10 or ImageNet dataset from enhancement of
search efficiency, designing the search space and reduc-

ing inference time. As far as we know, no work based on
NAS method focuses on improving shallow network layers,
which directly helps detecting small faces.

In this paper, we first analyze the reason of why state-
of-the-art backbones could not continue their superiority on
the Wider Face dataset. Following this, section 3.1 shows
the performance of different layers on backbones, which
gives us a correct illumination on how to build a face-
appropriate search space of backbone that is important for
the one-shot NAS method. Second, by concatenating the
shallow and deep feature map, FPN both enhances the per-
formance of face and general object detectors significantly,
especially for small scale objects and faces. However, as
pointed out from section 3.2, there exist various connection
modes among all candidate feature maps and FPN proposed
by [17] is not the best choice. Therefore, our method for-
mulates a FPN-attention module and further jointly search
the face-appropriate backbone and FPN architecture.

In summary, we have made following main contribu-
tions:

e We find a meaningful phenomenon that the same back-

bone performs inconsistently between the task of ob-
ject detection and face detection.

e Based on this observation, we design the face-
appropriate search space of backbone and FPN by mul-
tiple exploration in section 3 and 4. We also demon-
strate its superiority in section 5.1.

e We further propose a jointly searching backbone and
FPN method by introducing a FPN-attention module.

e We achieve state-of-the-art results on AFW, PASCAL
Face, FDDB, and Wider Face datasets.

2. Related Work
2.1. Face Detection

In recent years, face detection achieves a great progress
both on the robust feature extractors and the connection of
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feature maps. [23] first introduces the hand-crafted fea-
tures and designs a rigid template for detecting faces. In-
spired by this well-performing features, DPM [7] utilizes
different models to extract all directions of human body.
However, the performance of these feature extractors has
been surpassed since the emergence of deep convolution
networks. A large number of face detectors [5, 16, 29] uti-
lize these backbones and achieve the state-of-the-art per-
formance. However, few works tend to explore how much
positive effectiveness these backbones can bring in. Consid-
ering there exist many small scale faces, ISRN [27] enlarges
the convolution kernel size from 3 to 7 in the shallow resnet
architecture, which generates more discriminative features
in the shallow layers. In this paper, our proposed method
is based on the NAS approach and focuses on searching the
face-appropriate backbone and FPN architecture.

Besides, Retianet [18] combines FPN with base detec-
tors and demonstrates their superiority on the general object
detection. Many computer vision tasks (eg. image segmen-
tation, Face detection) follow it and further demonstrate the
robustness of FPN. Similarly, most of recently state-of-the-
art face detectors [16, 24] adopt FPN architecture from p2
to p6. PyramidBox [22] formulates that deep convolution
layer merely play no role in the process of feature merg-
ing and further addresses this with low feature pyramid net-
work. DSFD [15] designs a feature enhance module which
adds the dilation convolution after the current feature map
cell interactives with neighbors. All these architectures are
designed by artificial experience. Therefore, these methods
would not be the best choices. By extensively analyzing the
role of different FPN architectures in section 3.2, we design
a reasonable search space for FPN.

2.2. Neural Architecture Search

[31] first designs the search space with a stacked cell
level architecture and adopts reinforcement learning to op-
timize the model. However, this directly leads to the ex-
travagant searching time. To reduce this, following methods
introduce the weight sharing and gradient descending meth-
ods, which could extremely save the computational cost and
achieve competitive performance. However, these classi-
fiers are all designed on the ImageNet or CIFAR-10 dataset,
leading the less persuasiveness on the object detection, es-
pecially on the face detection. DetNAS [4] proposes the
backbone search for object detection. The pipeline based on
the weight sharing method can be devided into two steps:
1) Supernet firstly pre-trained on the ImangeNet and fine-
tuned on the COCO. 2) Then adopts the evolution algo-
rithm to search the architecture of backbone. Because of a
large number of backbones (Resnet50, Densenet121, Shuf-
fleNet and so on) have shown consistent performance be-
tween ImageNet and COCO dataset, DetNAS can easily
utilize the search space of previous works. However, this

is not suitable for the face detection as discussed above.
Nas-fpn [8] uses reinforcement learning to search the best
proper FPN for general object detection, which gives us a
progressive inspiration that we simultaneously search the
backbone and FPN on the task of face detection by explor-
ing the property of Wider Face dataset, qualitative analy-
sis on diverse backbone and FPN architectures, proposing
a FPN-attention module for searching bakcbone and FPN
architectures jointly.

3. Effectiveness of Shallow Layers and FPN
Architectures

In this section, we firstly qualitative analyze the reason
of why resnet50 has better performance than resnet101 and
resnet152. Then, we compare the performance of mul-
tiple FPN architectures with different backbones and dis-
cover some meaningful conclusions to help us build a face-
appropriate search space for FPN.

3.1. Backbone

Extensive experiments above have shown that different
from the same backbone performs almost consistently accu-
racy between ImageNet and COCO dataset, it has explicit
difference between ImageNet and Wider Face dataset. This
novel phenomenon needs further qualitative analysis except
for the exploration of face scale distribution in the section 1.
Therefore, we compare the performance of different layers
on the backbones with same block architecture, demonstrat-
ing the reasonability of our proposed view (design a face-
appropriate backbone).

Table 1. Performance of the resnet block with different depths and
FPN architectures on Wider Face validation hard subset.

Architecture | p2 p3 p4 pS p6 p7 | All Layers
Resnet50 + FPN 878 876 868 880 882 879 87.8
Resnetl01 + FPN | 852 852 873 88.6 8382 883 86.2
Resnet152 + FPN | 84.7 844 86.8 884 88.0 883 85.1

Resnet50 + IFPN | 88.1 884 878 878 87.6 877 88.2
Resnet50 + FEM | 87.7 87.8 884 889 884 885 88.0
Resnetl01 +IFPN | 86.0 858 872 881 87.8 883 85.8
Resnet101 + FEM | 852 85.1 872 884 88.6 882 85.4

In figure 1(a), we can see that there exists an unexplain-
able problem on the face detection that why the backbones
consist of the same block architecture perform a downward
trend with the increasing of stacked block. To resolve this,
we show AP scores of each pyramid layers of resnet50,
resnet101 and resnet152 respectively in table 1. For shallow
pyramid layers (p2 — p3), face detector with resnet50 has the
highest AP score. For deeper convolution layers (p4 — p7),
we unexpected discover that instead of resnet152, resnet101
has the highest score on the face detector. Considering few
faces are detected on deep layers, this enhancement can be
ignored comparing with shallow pyramid layers. Moreover,
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experiments also display that enhancing the depth of back-
bones has little influence on extracting deep discriminative
face features and even becomes an obstacle for generating
shallow robust face features. Therefore, different from that
backbones in the general object detection highly empha-
size the depth of deep convolution layers, high quality face-
appropriate backbones should focus on the architecture of
shallow layers.

3.2. Feature Pyramid Network

Besides, understanding roles that FPN architectures play
on the face detector is critical to design face-appropriate
FPN search space. SRN, PyramidBox, DSFD are three
state-of-the-art models on face detection and introduce
FPN, IFPN, FEM architectures respectively. For fairly com-
paring these three architectures, we incorporate them with
ResNet50, ResNet101 and table 1 shows their performance
on each pyramid layers. We can see that in p2 and p3, Ifpn
has the best AP score and in other layers FEM is the best.
Additionally, we find Resnet50 with IFPN and FEM in-
creases the 0.4%, 0.2% AP than baseline and Resnet101 un-
expected decreases 0.4%, 0.8% AP. This interesting experi-
ment result illustrates the performance of feature maps con-
nection is highly related to the architecture of backbones.

To design the efficient search space for FPN, we conduct
a meaningful experiment to explore which kinds of layers
(current layer or others) are important during the process
of feature concatenation. Table 2 shows the performance
between current layer and other layers with the same res-
olution that is generated by up-sampling or down-sampling
strategy. The AP score in the current pyramid layer is higher
than others with considerable gap. All these conclusions en-
lighten us to design a face-appropriate search space for FPN
architecture in section 4.2.2.

Table 2. Performance of the resnet block with different depths and
FPN architectures on Face validation hard subset.

Pyramid Layer |  p2 p3 p4 p5 p6
p2 87.8 78.8 74.2 68.3 64.2
p3 84.4 87.6 72.8 64.3 65.4
p4 83.2 81.7 86.8 76.5 724
pS 714 79.3 82.4 88.0 81.2
po 68.5 74.2 71.8 854 88.2
4. Method

In this section, we first review the SPNAS [9] method
that gives us deep inspiration. Second, we formulate the
face-appropriate search spaces for backbone and FPN ar-
chitecture. Finally, we propose a FPN-attention module to
help search the backbone and FPN on the face detection si-
multaneously.

4.1. Single Path One-Shot NAS Method

Early NAS methods constantly sample the architecture
from pre-defined search space directed by the reinforce
learning. However, each sampling process are trained from
scratch, leading the expensive computation cost. ENAS
[20] resolves this by proposing a weight sharing method.
Actually, there exists a problem in these approaches and
pointed out by SPNAS [9]: a deep coupling between the
supernet weights and architecture parameters. To alleviate
this, SPNAS further proposes a single path supernet and
uniform sampling. The target of SPNAS is that the opti-
mization of supernet weights Wa should be in a way that
all architectures are optimized simultaneously. This is ex-
pressed as:

Wy = argVIVnin ]EENF(A) [ﬁtrain(/\/(aa W(a)))] - (D

As represented in all NAS works, A4 represents architec-
ture search space by a directed acyclic graph(DAG). A sam-
pled architecture (a) is a subgraph and I'(.A) is a uniform
distribution. T (a) denote weights in the a and updated in
each step alone.

4.2. Search Space

Although SPNAS and FPN-NAS methods both demon-
strate their excellence in the image classification and
generic object detection respectively, directly applying
them on the face detectors to search face-appropriate back-
bone and FPN inevitably bring following two problems.

1) Search space of backbone and FPN architecture
should different with that in general object detection (dis-
cussed in section 3 and 1).

2) FPN-NAS focuses on designing the optimal FPN with
a fixed backbone. However, table 1 demonstrates the strong
correlation between the architecture of backbone and FPN.
In other words, to search the excellent face detector, these
two architectures should be searched simultaneously, in-
stead of finding the backbone on the condition that the back-
bone search is completed.

In following sections, we resolve this two problems by
designing the face-appropriate backbone and FPN search
space, proposing a jointly searching backbone and FPN ar-
chitecture method problems.

4.2.1 Backbone

Extensively ablative experiments have shown in section 3.1
and clearly bring two convincing conclusions:

1) For backbones consisting of the same blocks (e.g. bot-
tleneck block, densenet block), as the network deepens, the
performance decreases gradually on the face detectors. This
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Figure 2. The search space for face-appropriate backbone. All these four blocks are deigned for shallow layers. And only first three blocks
are for deep layers. Input channel from conv2 to conv7 are 64, 256, 256, 512, 512, 512 and output channel are 256, 256, 512, 512, 512,
256. a) KernelSize 2 contains [3x3, 5x5, 7x7, 9x9] in shallow layers and [3x3, 5x5, 7x7] in deep layers. b) KernelSize 2 is the same as that
in a). c). [KernelSize 2, KernelSize 3] contains [3x3, 5x5], [5x5, 7x7] in all layers. d). We design two dense blocks: 2 dense layers with

32 growth rate and 3 dense layers with 16 growth rate.

is an inconsistent phenomenon when applying on the gen-
eral object detection and image classification. Therefore,
previous search space on the image classification can not be
appropriate to face detectors.

2) Following this view, another meaningful conclusion
has been mined by further efforts on analyzing the perfor-
mance of each layers on the backbone. That is, the per-
formance in shallow layers has significant difference while
adopting different architectures of backbones. However,
this difference merely disappeared in deeper layers. Note
that face-appropriate backbones should pay more attention
on the designation of shallow layers.

Furthermore, considering that the accuracy of SPNAS
method is highly related to block components in the search
space, we begin to search suitably candidate blocks for shal-
low layers. We first select many state-of-the-art blocks
(such as bottleneck, densenet block, shufflenet block, in-
ceptionv4 block and some heuristic blocks) to validate their
effectiveness on the shallow layers. Table 3 and 4 show their
performance and some candidate architectures with lower
performance are ignored to show. Inspired by this, figure 2
further displays the final search space. Each block consists
of a maximum of 4 different convolution layer. Why adding
this constraint is that incorporating redundant blocks in the
search space decreases the model performance (please refer
to section 5.1).

Table 3. Performance of state-of-the-art blocks on p2/p3 on Wider
Face validation hard subset.
Conv | Dwconv  3x3  5x5  7x7  9x9

lix11 | p2 p3

v v 87.8 87.6
v v 87.7 87.8
v v 88.1 87.4
v v 874 873
v v 87.8 85.4
v v 87.6 872
v v 88.0 874
v v 882 878
v v 87.7 87.6
v v 882  88.0
v v v 87.8 87.6
v v 88.1 87.7

Table 4. Performance of dense block on p2/p3 on Wider Face val-
idation hard subset.
Dense Block|Number of Dense Layers Growth Rate number of Blocks| p2 p3

Dense Block 2 16 4 87.7 86.8
Dense Block 2 32 4 87.9 86.6
Dense Block 3 16 4 87.8 86.4
Dense Block 3 32 4 88.1 87.1

4.2.2 Feature Pyramid Network

Section 3.2 illustrates that different FPN architectures have
their particular advantages on the feature concatenation and
shows the role of each feature map in the process of fea-
ture concatenation. Therefore, in our method, the search
space make two improvements on the basis of Nas-fpn’s
which contains connections between any two layers. One is
adding the receptive field module after feature merging. The
other is that when selecting any layer resolution as output,
the same resolution feature must be selected as a candidate.
This could remarkably enhance the feature representation
both in shallow and deep layers with following proposed
method.

4.3. Joint Searching Backbone and FPN Architec-
ture

Inspired by the great compatibility of FPN architecutre
in many conputer vision tasks, an intuitive method to search
excellent backbone and FPN architecture for face detectors
is that searching the backbone first, then the FPN (intu-
itive search method). However, this is sub-optimal because
incorporating different backbones with the same FPN ar-
chitecture achieve inconsistent performance (please refer to
section 5.1) unexpectedly.

To explore how to solve this, we directly apply SPNAS
to train a supernet for face detectors. The pipeline is easy:
in each iteration, we random sample an architecture from
the search space of backbone and FPN simultaneously and
then optimized by the equation 1 (two-step search method).
Although this sounds reasonable, there are two issues:

1)There are no parameters in FPN, which obey the
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candidates and the output feature resolution is the same as fi’s. Step 2. Randomly select another feature layer fj from candidates.
Combine fi and up-sampling or down-sampling fj by element-wise operation. Step 3. Add the Combination feature map to candidates.

weight sharing method. It is not convincing that parame-
ters in the backbone implicitly represent the role of FPN
and this method achieves lower accuracy (please refer to
section 5.1).

2)The correlation between the backbone and FPN ar-
chitecure is reduced remarkably. The reason is that for each
sampling process, one backbone only can integrate with sin-
gle FPN module while others are neglected.

Our method resolves these two problems by introduc-
ing an FPN-attention module and shown in figure 3. This
module helps layer merge more confidential information.
For the first problem, this new proposed tensor satisfies
the weight sharing method and the performance of differ-
ent FPN modules is highly related to this tensor. For the
second one, this module could entirely resolve the inho-
mogeneous sampling in searching FPN architecture for it
explicitly represents the compatibility between a backbone
and any candidate FPN architectures.

4.4. Search Algorithm

Following [2], our search algorithm adopts random
search method. Evolutionary algorithm can easily satisfy
some hard constraints (e.g., FLOPS or inference speed) and
demonstrate its excellence in SPNAS, so why not use this?
The reason lies in the process of mutation. This procedure
is not suitable for ours. Because the backbone and FPN ar-
chitecture of parents are connected closely, by the mutation
to generate children, it is difficult to generate high quality
children.

5. Experiments

In this section, we first elaborate the implementation de-
tails of the baseline and our method. Then we conduct abla-
tive experiments to demonstrate the superiority of our meth-

ods. Finally, our method achieves state-of-the-art on popu-
lar face benchmarks.

5.1. Ablation Study

For the sake of fairly comparing different experiments,
we evaluate them on the authoritative and robust Wider Face
dataset [26]. This famous dataset, contains 32203 images
together with 393703 faces. Additionally, images consist-
ing of 61 event classes have a high degree of variability in
scale, pose and occlusion. For images in each classes, they
are divided into training (40%), validation (10%) and test-
ing (50%) set. Besides, by the difficulty of detection re-
sults, all faces are classified into Easy, Medium, Hard sub-
sets. The performance of detectors on the validation set are
taken into account in ablative experiments. Average Preci-
sion(AP) score are regarded as the evaluation metric. For
our method, we search the architecture on the training set
and evaluate it on the validation set.

Data Augmentation. Data augmentation in our method
is expressed as:

e Color distort: Applying some photometric distortions
similar to [11].

e Data anchor sampling: Resizing all training images by
reshaping a random face in this image to a smaller or
slightly larger scale.

e Horizontal flip: Resizing the cropped image patch gen-
erated in data augmentation to 640 X 640. Then each
image adopts horizontal flip with a probability of 0.5.

Training Details. In the phase of training, we adopt reti-
nanet [18] as baseline. The remaining architecture can be
seen in the figure 3. The process of training model con-
tains the supernet training and the best architecture training.
These two training procedures adopt the same settings (e.g.
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data augmentation, optimizer, etc.). Supernet is trained for
150000 iterations and the other is 80000 iterations.

Training Settings. Training Settings: For anchor set-
tings, we set 6 anchor scales from the set {16, 32, 64, 128,
256, 512} and anchor ratio as 1. The threshold of IOU for
positive anchors is changed to 0.35, and ignore zone only
contains the faces whose scale is smaller than 8. For opti-
mization details, each training iteration contains 7 images
per GPU on 4 NVIDIA Tesla P40s. Models are optimized
by synchronized SGD. The momentum and weight decay
are set to 0.9 and 5x10-5, respectively. For learning rate
schedule, the initial learning rate is set to 1e-3 and decreases
to 1e-4 in 60000 iterations.

Final Model Selection. After training the supernet com-
pletely , we randomly sample around 10000 architectures or
architectures under FLOPs constraint from the search space,
and then evaluated on the validation dataset. To quickly
evaluate the candidate architecture, we shrink the Face val-
idation dataset into 200 images. Besides, before evaluating
the model, we need recalculate the Batch Normalization op-
erations on a random subset of training data (500 images).
Finally, we select the architecture with the highest AP score
among all 10000 candidate ones and then train this final ar-
chitecture on the Face training dataset from scratch. Based
on the one-shot model, each architecture only takes almost
60 seconds on a P40 GPU. For all 10000 architectures, the
total time we need is 160 GPU-hours.

The Effect of Our Designed Face-appropriate Search
Space. To demonstrate the effectiveness of backbone search
space, we fix the FPN architecture and only search the back-
bone of detectors. The following ablative experiments are
shown in table 5. FDB(k) represents our designed search
space for backbone, k denoted as the number of blocks in
the search space of shallow layers. ICB(k) is a search space
in image classification applied in SPNAS. From the table
5, we can see FDB(4) achieves the best performance with
90.8% AP which exceeds FDB(3), FDB(6), FDB(8) with
0.6%, 2.7%, 3.4% AP and ICB(4) with 2.6% AP on the
validation hard set. Note that the capacity of search space
should be proper instead of the huge one has better perfor-
mance.

Similarly, we adopt resnet50 backbone for exploring the
efficiency of our proposed FPN search space. Table 6 show
the performance of different FPN modules and ours outper-
forms the others 0.8% AP at least on the validation hard set.

Table 5. Performance of our designed face-appropriate search
space for backbone on Wider Face validation set.

| Easy Medium Hard
FDB(4) + FPN 95.8 95.2 90.8
FDB(3) + FPN 95.2 94.5 90.2
FDB(6) + FPN 94.2 924 88.1
FDB(8) + FPN 93.8 93.2 87.4
ICB(4) + FPN 95.2 94.4 88.2

Table 6. Performance of our designed face-appropriate search
space for FPN on Wider Face Validation set.

| Easy Medium Hard

Resnet50 + FPN 95.1 944 87.8
Resnet50 + IFPN 94.9 94.3 88.2
Resnet50 + FEM 95.4 94.8 88.0
Resnet50 + Nas-fpn 95.3 942 88.6
Resnet50 + Ours 95.7 94.6 894

Table 7. Performance of jointly searching backbone and FPN on
Wider Face validation set.

| Easy Medium Hard

Intuitive Search Method 95.6 94.8 89.2
Two-step Search Method 95.8 95.2 89.7
Joint Searching Backbone and FPN 96.5 95.7 91.7

The Effect of jointly searching backbone and FPN.
By qualitative analysis in section 3, our method formu-
lates jointly searching method with our proposed FPN-
attention module. Table 7 shows the performance of our
jointly searching method and two-step searching method (as
discussed in section 4.3). Besides, we also compare our
method with intuitive search method (discussed in section
4.3). The results further prove the dominance of our method
instead of depending on qualitative analysis solely.

The Effect of random search method. Although SP-
NAS has demonstrated the superiority of evolutionary algo-
rithm in searching backbone, directly applying it on search-
ing backbone and FPN simultaneously has a lower perfor-
mance (shown in table 8). The hyper parameters in evolu-
tionary algorithm are set similarly with that in the SPNAS,
population size P=50, max iterations T=20, k=10, and with
probability 0.1 to produce a new candidate.

Table 8. Performance of search algorithm on Wider Face valida-
tion set.

|  Easy Medium Hard
Evolutionary Algorithm 96.4 95.7 90.8
Random Search Method 96.5 95.7 91.7

Our proposed backbone vs Others. To fairly compare
our method with others equipped with different backbones
(resnet50, densenet121, inceptionv4) and FPN architecture,
we add the FLOPs constraint in the process of final model
selection. From the table 9, our backbone under FLOPs
constraint outperforms resnet50, resnetlO1, densenetl21,
2.4%, 4.0%, 1.7%AP respectively on the validation hard
subset.

At the same time, with the constraint decreasing, our
method has a remarkable enhancement. However, this is an
opposite phenomenon comparing to resnet, densenet archi-
tecture. Note that our searched backbone is more suitable
for face detectors.
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(a) AFW

(b) PASCAL Face

(c) FDDB

Figure 4. Evaluation on the common face detection datasets.

(b) Val: Medium

(d) Test: Easy

Table 9. Performance of our proposed backbone and others on
Wider Face validation set.

|  FLOPs Easy Medium Hard

Resnet50 + FPN 3.8G 95.1 94.4 87.8
Resnet101 + FPN 7.6G 94.9 93.5 86.2
Densenet121 + FPN 3.0G 95.3 93.4 88.5
Ours + FPN 2.9G 95.7 95.1 90.2
Ours (final model) 4.1G 96.5 95.7 91.7

5.2. Evaluation on Common Benchmarks

To evaluate the robustness of our proposed method, We
test it on common face detection benchmarks, including
Wider Face [26], Annotated Faces in the Wild (AFW) [30],
PASCAL Faces [25], FDDB [13]. Our face detector is
trained by using Wider Face training set only and is tested
on all these benchmarks with state-of-the-art performance.

AFW Dataset. This dataset [30] contains 205 images
with 473 annotated faces. Figure 4(a) shows that our detec-
tor outperforms others significantly.

PASCAL Face Dataset. This popular benchmark con-
sists of 851 images with 1,335 annotated faces. Figure 4(b)
demonstrates the superiority of our proposed method.

FDDB Dataset. Comparing with two above datasets,

(e) Test: Medium

Figure 5. Precision-Recall (PR) curves on Wider Face validation and testing subsets.

Recall

(f) Test: Hard

FDDB dataset has lower image resolutions and complicated
scenes, such as occlusions, huge poses. Figure 4(c) shows
our method also achieves the states-of-the-art performance
on this challenging dataset.

Wider Face Dataset. We test our models on both test-
ing and validation sets. Figure 5 shows the precision-recall
curves both on the validation and testing sets. Our approach
achieves 96.5% (Easy), 95.7% (Medium), 91.7% (Hard)
AP on the validation dataset and 95.6% (Easy), 95.1%
(Medium), 91.0% (Hard) AP on test dataset.

6. Conclusions

We first find an inconsistent phenomenon that backbones
with high performance on COCO and ImageNet dataset al-
ways get lower AP score on Wider face dataset. This in-
structive appearance inspires us to design face-appropriate
architectures. Then by analyzing the performance of fea-
ture maps on various backbones, we design the scientific
search space for backbone and FPN architecture. Finally, to
enhance the correlation between FPN and backbone during
training, we propose a FPN-attention module and to search
backbone and FPN architecture jointly.
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