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Abstract

Semantic human matting aims to estimate the per-pixel

opacity of the foreground human regions. It is quite chal-

lenging and usually requires user interactive trimaps and

plenty of high quality annotated data. Annotating such

kind of data is labor intensive and requires great skills be-

yond normal users, especially considering the very detailed

hair part of humans. In contrast, coarse annotated human

dataset is much easier to acquire and collect from the pub-

lic dataset. In this paper, we propose to use coarse anno-

tated data coupled with fine annotated data to boost end-

to-end semantic human matting without trimaps as extra

input. Specifically, we train a mask prediction network to

estimate the coarse semantic mask using the hybrid data,

and then propose a quality unification network to unify the

quality of the previous coarse mask outputs. A matting re-

finement network takes in the unified mask and the input

image to predict the final alpha matte. The collected coarse

annotated dataset enriches our dataset significantly, allows

generating high quality alpha matte for real images. Ex-

perimental results show that the proposed method performs

comparably against state-of-the-art methods. Moreover, the

proposed method can be used for refining coarse annotated

public dataset, as well as semantic segmentation methods,

which reduces the cost of annotating high quality human

data to a great extent.

1. Introduction

Human matting is an important image editing task which

enables accurate separation of humans from their back-

grounds. It aims to estimate the per-pixel opacity of the

foreground regions, making it valuable to use the extracted

human image in some recomposition scenarios, including

digital image and video production. One may refer this

task as semantic segmentation problem [4, 7, 24], which

(a) Image (b) Trimap (c) DIM

(f) Alpha-GT(d) W/O coarse annotations (e) Ours

Figure 1. The user interactive method could catch precise seman-

tics and details under the guidance of trimaps. Without the trimap

and enough training dataset, one may get inaccurate semantic es-

timation, which inevitably leads to wrong matting results. Our

methods achieve comparable matting results by leveraging coarse

annotated data while do not need trimaps as inputs.

achieves fine-grained inference for enclosing objects. How-

ever, segmentation techniques focus on pixel-wise binary

classification towards scene understanding, although se-

mantic information is well labelled, it could not catch com-

plicated semantic details like human hair.

The matting problem can be formulated in a general

manner. Given an input image I , matting is modeled as

the weighted combination of foreground image F and back-

ground image B as follows [30]:

Iz = αzFz + (1− αz)Bz , αz ∈ [0, 1] . (1)

where z represents any pixel in image I . The known in-

formation in Eq. 1 are the three dimensional RGB color Iz ,

while the RGB color Fz and Bz , and the alpha matte es-

timation αz are unknown. Matting is thus to solve the 7

unknown variables from 3 known values, which is highly

under-constrained. Therefore, most existing matting meth-

ods take a carefully specified trimap as constraint to reduce
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the solution space. However, a dilemma in terms of quality

and efficiency for trimaps still exists.

The key factor that affecting the performance of matting

algorithm is the accuracy of trimap. The trimap divides

the image into three regions, including the definite fore-

ground, the definite background and the unknown region.

Intuitively, the smaller regions around foreground boundary

that the trimap contains, the less unknown variables would

be estimated, leading to a more precise alpha matte result.

However, designing such an accurate trimap requires a lot

of human efforts with low efficiency. The labeling quality

should be unified among all the data, either large or small

size of unknown regions will degrade the final alpha matte

effects. One possible solution to solve the dilemma is adap-

tively learn a trimap from coarse to fine [28, 6]. In con-

trast, another solution discards the trimap from the input

and employs it as an implicit constraint to a deep matting

network[8, 33]. However, these methods still rely on the

quality of the generated trimap, unable to retain both the se-

mantic information and high quality details when implicit

trimap is inaccurate.

Another limitation comes from the data for human mat-

ting. It is important to have high quality annotation data for

image matting task. Since humans in natural images possess

a variety of colors, poses, head positions, clothes, acces-

sories, etc. The semantically meaningful structure around

the foreground like human hair, furs are the challenging

regions for human matting. Annotating such accurate al-

pha matte is labor intensive and requires great skills be-

yond normal users. Shen et al. [28] proposed a human por-

trait dataset with 2000 images, but it has strict constraint

on position of human upper body. The widely used DIM

dataset [32] is limited in human data, with only 213 hu-

man images. Although Chen et al. [8] created a large hu-

man matting dataset, it is only for commercial use. Unfor-

tunately, collecting the dataset in [8] with 35,311 images

takes more than 1,200 hours, which is undesirable in prac-

tice. Therefore, we argue that there is a solution by combin-

ing the limited fine annotated image with easily collected

coarse annotated image for human matting.

To address the aforementioned problems, we propose a

novel framework to utilize both coarse and fine annotated

data for human matting. Our method could predict accu-

rate alpha matte with high quality details and sufficient se-

mantic information without trimap as constraint, as shown

in Figure 1. We achieve this goal by proposing a cou-

pled pipeline with three subnetworks. The mask predic-

tion network (MPN) aims to predict low resolution coarse

mask, which contains semantic human information. MPN is

trained using both fine and coarse annotated data for better

performance on various real images. However, the output

of MPN may vary and are not consistent with respect to

different input images. Therefore, a quality unification net-

work (QUN) trained on hybrid annotated data is introduced

to rectify the quality level of MPN output to the same level.

A matting refinement network (MRN) is proposed to pre-

dict the final accurate alpha matte, taking in both the origin

image and its unified coarse mask as input. Different with

MPN and QUN, the matting refinement network is trained

using only the fine annotated data.

We also constructed a hybrid annotated dataset for hu-

man matting task. The dataset consists of both high quality

(fine) annotated human images and low quality (coarse) an-

notated human images. We first collect 9526 images/alpha

pairs with fine annotations. In comparison with previous

dataset, we diversity the distribution of human images with

carefully annotated alpha matte [28, 32], within a labor ra-

tional volume size [8]. We further collect 10597 coarse an-

notated data to better capture accurate semantics within our

framework. We follow [32] to composite both data onto 10

background images in MS COCO [23] and Pascal VOC [12]

to form our dataset. Comprehensive experiments have been

conducted on this dataset to demonstrate the effectiveness

of our method, and our model is able to refine coarse anno-

tated public dataset as well as semantic segmentation meth-

ods, which further verifies the generalization of our method.

The main contributions of this work are:

• To our best knowledge, this is the first method that uses

coarse annotated data to enhance the performance of

end-to-end human matting. Previous methods either

take trimap as constraint or use sufficient fine anno-

tated dataset only.

• We propose a quality unification network to rectify the

mask quality during the training process so as to utilize

both coarse and fine annotations, allowing accurate se-

mantic information as well as structural details.

• The proposed method can be used to refine coarse an-

notated public dataset as well as semantic segmenta-

tion methods, which makes it easy to create fine anno-

tated data from coarse masks.

2. Related Work

Natural Image Matting. Natural image matting tries to

estimate the the unknown area with known foreground and

background in the trimap.

The traditional methods can be summarized to sampling

based methods and affinity based methods [30]. The sam-

pling based methods [11, 14, 15, 17, 19, 20, 27] leverage the

nearby known foreground and background colors to infer

the alpha values of the pixels in the undefined area. Assum-

ing that alpha values for two pixels have strong correlations

if the corresponding colors are similar. Following the as-

sumption, various sampling methods are proposed includ-

ing Bayesian matting [11], sparse coding [14, 19], global

sampling [17] and KL-divergence approaches [20]. Com-
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Figure 2. An overview of our network architecture. The proposed method is composed of three parts. The first part is mask prediction

network (MPN), to predict low resolution coarse semantic mask. MPN is trained using both coarse and fine data. The second part is quality

unification network (QUN). QUN aims to rectify the quality of the output from the mask prediction network to the same level. The rectified

coarse mask is then unified and enables consistent input for training the following alpha matte prediction stage. The third part is matting

refinement network (MRN), taking in the input image and the unified coarse mask to predict the final accurate alpha matte.

pared with sampling based methods, Affinity based meth-

ods [2, 3, 5, 9, 16, 21, 22, 29] define different affinities be-

tween neighboring pixels, trying to model the matte gradi-

ent instead of the per-pixel alpha value.

Deep learning based method is able to learn a mapping

between the image and corresponding alpha matte in an

end-to-end manner. Cho et al. [10] take the advantage of

close-form matting [21] and KNN matting [9] for alpha

mattes reconstruction. Xu et al. [32] integrate the encoder-

decoder structure with a following refinement network to

predict alpha matte. Lutz et al. [25] further employ the gen-

erative adversarial network for image matting task. Cai et

al. [6] argue the limitation of directly estimating the alpha

matte from a coarse trimap, and propose to disentangle the

matting into trimap adaptation and alpha estimation tasks.

Compared with the above methods, our method simply use

RGB images as input without the constraint of designated

trimaps.

Human image Matting. As a specific type of image mat-

ting, human matting aims to estimate the accurate alpha

matte corresponding to the human in the input image, which

involves semantically meaningful structures like hair. Re-

cently, several deep learning based human matting meth-

ods [8, 28, 34] have been proposed. Shen et al. [28] pro-

pose a deep neural network to generate the trimap of a por-

trait image and add a matting layer[21] for network opti-

mization using the forward and backward propagation strat-

egy. Zhu et al. [34] use a similar pipeline and design a light

dense network for portrait segmentation and a feature block

to learn the guided filter [18] for alpha matte prediction.

Chen et al. [8] introduce an automatic human matting al-

gorithm without feeding trimaps. It combines a segmenta-

tion module with a matting module for end-to-end matting.

The late fusion CNN structure in [33] integrates the fore-

ground and background classification presents its capacity

for human image matting. However, these models require

carefully collected image/alpha pairs, which may also suf-

fer from inaccurate semantics due to lack of fine annotated

human data.

3. Proposed Approach

We develop three subnetworks as a sequential pipeline.

The first one is mask prediction network (MPN), to predict

coarse semantic masks using data at different annotation

quality level. The second one is quality unification network

(QUN). QUN rectifies the quality of the output coarse mask

from MPN to the same level. The third part is matting re-

finement network (MRN), to predict the final accurate alpha

matte. The flowchart and the network structure is displayed

in Figure 2.

3.1. Mask Prediction Network

As no trimap is required as input, the first stage of the

proposed method is to predict a coarse semantic mask. The

network we use is encoder-decoder structure with skip con-

nection, and we predict the foreground mask and the back-

ground mask at the same time. At this stage, we aim to

estimate a coarse mask, and therefore the network is not

trained at a high resolution. We resize all training data to

resolution 192 × 160 so as to train the mask prediction

network (MPN) efficiently. In addition, the mask predic-
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tion network is trained using all training data, including low

quality and high quality annotated data. The loss function

to train LRPN is L1 loss,

LMPN = λL|α
c
p − αc

g|1 + (1− λL)|β
c
p − βc

g|1 , (2)

where the output is a 2-channel mask, αc
p denotes the first

channel of the output, i.e., the predicted foreground mask,

αc
g denotes the ground truth foreground mask, βc

p denotes

the second channel of the output, i.e., the predicted back-

ground mask, and βc
g denotes the ground truth background

mask. We set λL = 0.5 in experiments.

3.2. Quality Unification Network

Due to the high cost of annotating high quality matting

data, we propose to use hybrid data from different data

source. Some of the data is annotated at high quality , even

hairs are very well separated from the background (Fig-

ure 3(a)). Whereas, majority of other data are annotated

at a relatively low quality (Figure 3(b)). Mask prediction

network is trained with both fine annotated data and coarse

annotated data. Thus, the quality of the predicted mask may

vary significantly. As the alpha matte prediction network

can only be trained on the high quality annotated data, the

variation of the coarse mask quality will inevitably lead to

inconsistent matting results during the inference stage. As

illustrated in Figure 6(c), if the coarse mask is relatively ac-

curate, the refinement network will work well to output ac-

curate alpha matte. On the contrary, the refinement network

will fail if the coarse mask lacks important details.

We proposed to eliminate the data bias for training mat-

ting refinement network by introducing a quality unifica-

tion network (QUN). The quality unification network aims

to rectify the output quality of the mask prediction network

to the same level, by improving the quality of coarse masks

and lowering the quality of fine masks simultaneously. The

output of the mask prediction network and the original im-

age are feed into the quality unification network to unify

the quality level. The rectified coarse mask is unified and

enables consistent input for training the following accurate

alpha matte prediction stage.

The loss function of training QUN network contains two

parts, identity loss and consistence loss. Identity loss forces

the output of QUN not to change much from the original

input,

Lidentity = |Q(x)− x|1 + |Q(x′)− x′|1 , (3)

where Q(·) represent the quality unification network. x de-

notes the concatenation of the input image and the accurate

mask, x′ denotes the concatenation of the input image and

the inaccurate mask. The second part is consistence loss.

Consistence loss forces the output of QUN corresponding

to accurate mask and inaccurate mask to be close.

(a) Fine mask (b) Coarse mask (c) Diff map of (a,b)

(d) Unified (a) (e) Unified (b) (f) Diff map of (d,e)

(g) Diff map of (a,d) (h) Diff map of (b,e) (i) Input image

Figure 3. Different quality of masks are unified by QUN. (a) High

quality mask. (b) low quality mask. (c) Difference map of high and

low quality mask. (d) Unified result of high quality mask by QUN.

(e) Unified result of low quality mask by QUN. (f) Difference map

of the unified high quality mask and the low quality mask. (g)

Difference map of the unified high quality mask and the original

high quality mask. (h) Difference map of the unified low quality

mask and the original low quality mask. (i) Input image.

Lconsist = |Q(x)−Q(x′)| . (4)

Thus, the loss function of training QUN is the weighted

sum of identity loss and consistence loss,

LQUN = λ1Lidentity + λ2Lconsist . (5)

During the training, we set λ1 = 0.25 and λ2 = 0.5.

In Figure 3, we illustrate the results of QUN. Fine mask

(Figure 3(a)) and coarse mask (Figure 3(b)) are unified by

QUN to Figure 3(d) and (e) respectively. The difference

maps are also calculated. We can observe that the unified

high quality mask become relatively coarser and low qual-

ity mask becomes relatively finer. As a result, the unified

masks are much closer to each other than the original fine

and coarse masks.

3.3. Matting Refinement Network

Matting refinement network (MRN) aims to predict ac-

curate alpha matte. Therefore, we train MRN at a higher

resolution (768 ∗ 640 in all experiments). Note that the

coarse mask from MPN and QUN is at low resolution

(192 × 160). The coarse mask is integrated to MRN as ex-

ternal input feature maps, where the input is downscaled 4
times after several convolution operations. The output of
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(a) Coarse annotated dataset

(b) Fine annotated dataset

Figure 4. Input images and the corresponding annotations in our

dataset. Our dataset consists of both coarse annotated images (a)

and fine annotated images (b).

MRN are 4-channel maps, including three foreground RGB

channels and one alpha matte channel. Predicting the fore-

ground RGB channels coupled with alpha matte is able to

increase the robustness, which plays a similar role of the

compositional loss used in [32, 8]. The loss function we

used to train MRN is L1 loss,

LMRN = λH |RGBp −RGBg|1 + (1− λH)|αp − αg|1 ,
(6)

where RGBp and RGBg denote the predicted RGB fore-

ground channels and ground truth foreground channels re-

spectively. αp and αg denote the predicted alpha matte and

ground truth alpha matte respectively. We set λH = 0.5 in

experiments.

3.4. Implementation details

We implement our method with Tensorflow [1] frame-

work. We perform training for our three networks sequen-

tially. Before feeding into the mask prediction network, we

conduct a down-sampling operation on images at 192×160
resolution, including both fine and coarse annotated data.

Flipping is performed randomly on each training pair. We

first train the mask prediction network for 20 epochs and

fix the parameters. Then we concatenate the low resolu-

tion image and the output foreground mask as input to train

quality unification network. When training QUN, random

filters(filter size set as 3 or 5), binarization and morphology

operations(dilate and erode) are exerted to fine annotated

data to generate paired high and low quality mask data. Af-

ter training quality unification network, all parameters are

fixed. We finally train the matting refinement network with

only the fine annotated data. The entire data pairs (image,

alpha matte) are randomly cropped to 768×640. The learn-

ing rate for training all networks is 1e− 3. MPN and QUN

Table 1. The configurations of human matting datasets.

Dataset
Train Set Test Set

Human image Human image

Shen et al. [28] 1700 1700 300 300

TrimapDIM [32] 202 20200 11 220

SHM [8] 34493 34493 1020 1020

Ours(coarse) 10597 105970
125 (+11) 1360

Ours(fine) 9324(+202) 95260

are trained using batch size 16 and MRN is trained using

batch size 1, as MRN is trained using only high resolution

data.

When testing, a feed-forward pass of our pipeline is

performed to output the alpha matte prediction with only

the image as input. The average testing time on multiple

800×800 images is 0.08 seconds.

4. Human matting dataset

A main challenge for human matting is the lack of data.

Xu et al. [32] proposed a general matting dataset by com-

positing foreground objects from natural images to differ-

ents backgrounds, which has been widely used in the fol-

lowing matting works[6, 25, 33]. However, the diversity of

human images is severely limited, including only 202 hu-

man images in training set and 11 human images in testing

set. For human matting dataset, Shen et al. [28] collected a

portrait dataset with 2000 images, it assumes that the upper

body appears at similar positions in human images and the

images are annotated by Closed From [21], KNN [9] meth-

ods, which can be inevitably biased. Although a large hu-

man fashion dataset is created by [8] for matting, it is only

for commercial use. To this end, we create a human matting

dataset with high-quality for research. We carefully col-

lected 9449 diverse human images with simple background

from the Internet (i.e., white or transparent background in

PNG format), each human image acquires a well annotated

alpha matte after simple processing. The human images are

split to training/testing set, with 9324 and 125 respectively.

Following Xu et al. [32], we first add the human images in

DIM dataset[32] into our training/testing set, forming a total

of 9526 and 136 human foregrounds respectively. We then

randomly sample 10 background images in MS COCO [23]

and Pascal VOC [12] and composite the human images onto

those background images. During composition, we ensure

that the background images are not containing humans.

Another issue should be addressed for human matting

dataset is the quality of annotations. Image matting task

requires user designated annotations for objects, i.e., the

high quality alpha matte. Besides, the user interaction meth-

ods require carefully prepared trimaps and scribbles as con-

straints, which is labor intensive and less scalable. Method

without user provided trimaps is to predict the alpha matte

by first generating implicit trimaps for further guidance,

thus lead to some artifacts as well as losing some semantics
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(a) Image (c) Closed-form(b) DeepLab (d) DIM (e) SHM (g) Ours (h) Alpha-GT(f) Ours (fine data)

Figure 5. The qualitative comparison on our proposed dataset. The first column and the last column show the input image and the ground

truth alpha matte, and the rest columns present the estimation results by DeepLab [7], Closed-form matting [21], DIM [32], SHM [8], our

method trained using fine annotated data only and our method trained using hybrid annotated data.

for complex structures. We integrate the coarse annotation

data to tackle this problem as they are much easier to ob-

tain. We collect another 10597 human data from [31] and

Supervisely Person Dataset, and follow the above setup to

generate 105970 image with coarse annotations.

Table 1 shows the configuration of the existing human

matting dataset. Our dataset consists of both fine and coarse

annotated data, with nearly the same amount. Compared

with user interactive methods [28, 32], our dataset covers

diverse high quality human images, making it more robust

for human matting models. Although sacrifice the number

of high quality annotations than automatic method [8], we

introduce coarse annotated data to enhance the capacity for

extracting both semantic and matting details at a lower cost.

The data for both annotations are shown in Figure 4.

5. Experiments

5.1. Evaluation results.

Evaluation metrics. We adopt four widely used metrics

for matting evaluations following the previous works [32,

8]. The metrics are MSE (mean square error), SAD (sum

of the absolution difference), the gradient error and the con-

nectivity error. The gradient error and connectivity error

proposed in [26] are used to reflect the human perception

towards visual quality of the alpha matte. Lower values of

these metrics correspond to better estimated alpha matte.

We normalize the estimated alpha matte and true alpha

matte to [0, 1] to calculate these evaluation metrics. Since

no trimap is required, we calculate over the entire images

and average by the pixel number.
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Table 2. The quantitative results.
Method SAD MSE Gradient Connectivity

DeepLab [7] 0.028 0.023 0.012 0.028

Trimap+CF [21] 0.0083 0.0049 0.0035 0.080

Trimap+DIM [32] 0.0045 0.0017 0.0013 0.0043

SHM [8] 0.011 0.0078 0.0032 0.011

ours(w/o coarse data) 0.0099 0.0067 0.0029 0.0095

ours(w/o QUN) 0.0076 0.0042 0.0024 0.0072

ours 0.0058 0.0026 0.0016 0.0054

Baselines. We select the most typical method from se-

mantic segmentation methods, traditional matting methods,

user interactive methods and automatic methods respec-

tively as our baselines. These methods are DeepLab [7],

Closed-form matting [21], DIM [3] and SHM [8]. Note that

the Closed-form matting and DIM need extra trimap as in-

put. DIM and SHM can only be trained using the fine an-

notated data. DeepLab and the proposed method are trained

using the proposed hybrid annotated dataset.

Performance comparison. In Table 2, we list the quanti-

tative results over 1360 testing images. The semantic seg-

mentation method DeepLab [7] only predict coarse mask

and lack fine details (Figure 5(b)), resulting in the worst

quantitative metrics. SHM [8] does not perform well as the

volume of our high quality training dataset is limited, and

fails to predict accurate semantic information for some im-

ages (Figure 5(d)). In contrast, the interactive method close-

form matting [21] and DIM [32] performs well, benefiting

from the input semantic information provided by trimaps.

These two methods only need to estimate the uncertain part

in trimaps. The proposed method using hybrid training

dataset outperforms most methods and is comparable with

state-of-the-art methods. DIM [32] is slightly better than

the proposed method. Note that the proposed method only

take in input images, DIM requires high informative trimaps

as extra input. Even though, the visual quality of the pro-

posed method (Figure 5(g)) and DIM (Figure 5(d)) looks

very close.

Self-comparisons. Our method can achieve high quality

alpha matte estimation by incorporating coarse annotated

human data. Coarse annotated data promote the proposed

network to estimate semantic information accurately. To

verify the importance of the these data, we separately train

the same network with fine annotated dataset only. The

quantitative results are listed in Table 1. Without using the

coarse data, the performance is obviously worse. From Fig-

ure 5(f) and (g), we can also observe that method trained

only with fine annotated data suffers from inaccurate se-

mantic estimation and presents incomplete alpha matte.

The mask quality unification network make it possible

for the final matting refinement network to adapt to differ-

ent kinds of coarse mask input. Without QUN, inputs to the

(a) Input image (b) Predicted coarse 

mask

(c) Estimated alpha 

matte without QUN

(d) Estimated alpha 

matte with QUN

Figure 6. Self-comparisons. Without quality unification network

(QUN), the quality of coarse mask sent to the matting refinement

network (MRN) may vary significantly. When the coarse mask

is relatively accurate, MRN predicts alpha matte well. When the

coarse mask lacks most hair details, the estimated alpha matte is

accurate. Equipped with QUN, the mask quality is unified before

feeding into MRN. The estimated alpha matte is more consistent

against different kinds of coarse masks.

Figure 7. Real image matting results. The collected coarse anno-

tated dataset enriches our dataset significantly and enables the pro-

posed method to capture the semantic information well and pre-

dicts accurate alpha matte for different kinds of input images.

matting refinement network may vary significantly, which is

hard to deal with at inference stage. We list the quantitative

metrics without QUN being used in Table 1. Both fine and

coarse annotated dataset are used in this comparison. The

results are obviously worse when QUN is removed. For a

better visual comparison, we display the results in Figure 6.

The predicted alpha matte is fine if the coarse mask is rela-

tively accurate. When the coarse mask lacks most hair de-

tails, the estimated alpha matte is not good. With QUN, the

mask quality is unified before feeding into MRN. The esti-

mated alpha matte is more accurate and robust to different

kinds of coarse masks.

5.2. Applying to real images

We further apply the proposed method to real images

from the Internet. Matting on real images is challenging as

the foreground is smoothly fused with the background. In

Figure 7, we display our testing results on real images. Ben-

efiting from the sufficient training on our hybrid dataset, the
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(d) Input image (e) COCO annotation (f) Our refinement

(g) Input image (h) DeepLab output (i) Our refinement

(a) Input image (b) Pascal annotation (c) Our refinement

Figure 8. Using the proposed method to refine coarse human mask

from public dataset annotations or semantic segmentation meth-

ods. Feed the coarse human mask from Pascal (b) or Coco (e)

dataset annotation or DeepLab (h) to our quality unification net-

work, and then use the matting refinement network to generate the

accurate human alpha matte.

proposed method captures the semantic information very

well for different kinds of input images and predicts accu-

rate alpha matte at a detailed level.

6. Applications

The mask prediction network in the proposed method

aims to capture coarse semantic information requiring by

the subsequent networks. The semantic mask from this net-

work can be coarse or accurate. The following quality unifi-

cation network will unify the mask quality for the final mat-

ting refinement network. Therefore, if the semantic mask

is arrange in some way, the proposed method is still able to

work seamlessly and generate accurate alpha matte.

Thus we can apply our framework to refine coarse anno-

tated public dataset, such as the PASCAL [13] (Figure 8(a-

c)) and COCO dataset [23] (Figure 8(d-f)). The annotated

human mask are resized and used as input for our QUN and

MRN. Even though the annotations are not accurate, es-

pecially the annotations from COCO dataset, the proposed

method manages to generate accurate refinement results.

We can also use the proposed method to refine semantic

segmentation methods (Figure 8(g-i)). Semantic segmenta-

tion methods are usually trained on coarse annotated public

dataset, and the output mask is not precise. We feed the

coarse mask obtained from DeepLab [7] to our QUN and

MRN. The proposed method generates surprisingly good

alpha matte. Details that are missing from the coarse mask

are well recovered, even for the very detailed hair parts.

7. Conclusion

In this paper, we propose to use coarse annotated data

coupled with fine annotated data to enhance the perfor-

mance of end-to-end semantic human matting. We propose

to use MPN to estimate coarse semantic masks using the

hybrid annotated dataset, and then use QUN to unify the

quality of the coarse masks. The unified mask and the input

images are fed into MRN to predict the final alpha matte.

The collected coarse annotated dataset enriches our dataset

significantly, and makes it possible to generate high quality

alpha matte for real images. Experimental results show that

the proposed method performs comparably against state-of-

the-art methods. In addition, the proposed method can be

used for refining coarse annotated public dataset, as well as

semantic segmentation methods, which potentially brings a

new method to annotate high quality human data with much

less effort.
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