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Abstract

Mammogram mass detection is of great clinical signifi-
cance due to the high proportion of breast cancers. The in-
formation from cross views (i.e., mediolateral-oblique and
cranio-caudal) is highly related and complementary, and
is helpful to make comprehensive decisions. However, un-
like radiologists who can recognize masses with reason-
ing ability in cross-view images, most existing methods lack
the ability to reason under the guidance of domain knowl-
edge, thus it limits the performance. In this paper, we in-
troduce the bipartite graph convolutional network to en-
dow existing methods with cross-view reasoning ability of
radiologists in mammogram mass detection. The bipar-
tite node sets are constructed by cross-view images respec-
tively to represent relatively consistent regions in breasts,
while the bipartite edge learns to model both inherent cross-
view geometric constraints and appearance similarities be-
tween correspondences. Based on the bipartite graph, the
information propagates methodically through correspon-
dences and enables spatial visual features equipped with
customized cross-view reasoning ability. Experimental re-
sults on DDSM dataset demonstrate the proposed algorithm
achieves state-of-the-art performance. Besides, visual anal-
ysis shows the model has a clear physical meaning, which
is helpful to radiologists in clinical interpretation.

1. Introduction

Breast cancer continues to have the highest incidence
and mortality rates among women worldwide [49]. Screen-
ing mammography has been proved to effectively reduce
breast cancer mortality [48]. Mass is one of the most im-
portant signs of breast cancer. However, mammogram mass
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detection is challenging for both radiologists and computer-
aided detection (CAD) system, since masses can be par-
tially obscured by high-intensity compacted glands espe-
cially in dense breasts. In clinical practice, cross-view im-
ages (i.e, as shown in Figure 1, cranio-caudal (CC) view
which is a top-down view of the breast, and mediolateral
oblique (MLO) view which is a side view of the breast taken
at a certain angle) provide related and complementary infor-
mation [46], and help to make comprehensive decisions.

To exploit relations of cross-view mammogram images,
an intuitive idea is to adopt [21, 54] to model inter-image
non-local relations. For example, CVR-RCNN [32] adds a
relation module to the second stage of Faster RCNN [42] to
learn inter-proposal relations. However, unlike radiologists
who are able to reason with domain knowledge, the con-
straints of the relation learning is implicit and uncontrolled,
while cross-view geometric constraints and semantic rela-
tions are not explicitly considered. Thus, the learned rela-
tions may be incorrect. Besides, the relation module relies
on the quality of stage-one proposals. It may fail under se-
vere gland occlusions, which also lead to poor performance.

We argue that the key issue is how to endow the cur-
rent detection methods with the power of reasoning. When
identifying masses, radiologists take the reasoning proce-
dure explicitly. First extract suspicious regions in the ex-
amined image. And then search the regions in the auxiliary
view with compatible locations and appearances. If reason-
able correspondences are found, regions in both views are
more likely to be mass, and vice versa. Therefore, the cross-
view region-based reasoning procedure is helpful for mass
detection.

Motivated by the above observations, in this paper, we
introduce a novel Bipartite Graph convolutional Network
(BGN) to provide the reasoning ability in mammogram
mass detection. BGN can be embedded into any object
detection frameworks [42, 18, 59]. It takes backbone im-
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Figure 1. Relations between CC and MLO views. Figure (a)-(b)
indicate CC and MLO views of the breast. Line to the right side
of figure (b) corresponds to the projected pectoral muscle plain.
Figure (c) indicates an ideal projection model. The CC view is a
top-down view taken along the pectoral muscle plain, while the
MLO view is a side view taken at a certain angle.

age features as input and outputs cross-view enhanced fea-
tures. To model cross-view region-based reasoning proce-
dure, bipartite graph nodes are constructed by cross-view
images respectively, each of which represents a relatively
consistent region in breasts. The graph edges are designed
to model both inherent geometric constraints and appear-
ance similarities of cross-view nodes jointly. Therefore,
only edges between nodes from different views exist, lead-
ing to a bipartite graph structure. After several layers of
bipartite graph convolution, the node features are enhanced
through correspondences and enables spatial visual features
equipped with cross-view reasoning ability. Unlike existing
methods that use none or weak cross-view constraints, the
proposed model learns stronger customized cross-view rea-
soning with both geometric and semantic correspondences.
Moreover, instead of applying the module after the proposal
stage, the proposed graph module enhances backbone fea-
tures before the proposal. Therefore, it suffers less from the
proposal missing problem.

Experimental results on both a public dataset DDSM
[20] and an in-house dataset demonstrate that the proposed
algorithm achieves state-of-the-art performance. Besides,
visual analysis shows the model has a clear physical mean-
ing, which is helpful for clinical interpretation.

Our contributions are mainly two-fold: Firstly, we pro-
pose a novel mammogram mass detection framework that
effectively exploits cross-view information and visual cor-
respondences. Next, we build a bipartite graph convo-
lutional network capable of performing reasoning about
cross-view correspondences and modeling both geometric
constraints and visual similarities across views.

2. Related Work

Mammogram Mass Detection Mammogram mass de-
tection has been studied for several years. Traditional meth-

ods use handcrafted features to represent masses and design
complex classifiers for identification [37, 52, | 1]. However,
these methods are limited due to the lack of representa-
tion ability and end-to-end training ability. In recent years,
deep learning has made great progress in medical image
computing [58, 17, 10, 61]. Modern object detection net-
works are applied to enhance mass detection performance
[43, 24, 30, 55, 31, 5]. However, cross-view mammo-
gram images containing related and complementary infor-
mation are not considered. Ma et al. [32] attempt to model
cross-view property and integrate relation module [21] into
Faster RCNN [42] to learn cross-view inter-proposal rela-
tions. However, the relation learning is implicit and uncon-
trolled, and lacks reasoning ability under the guidance of
domain knowledge. Thus, it limits the performance. Be-
sides, severe gland occlusion may lead to proposal-missing
problem, which also causes poor performance. The BGN
provides reasoning ability with domain knowledge , which
helps to learn stronger customized feature enhancement.

Visual Reasoning based on Graph Convolutional Net-
work Visual reasoning aims to combine different infor-
mation or interactions between objects or things, and has
been applied to many computer vision tasks, such as classi-
fication [1, 34], object detection [8, 22], segmentation [28]
and so on [27, 35, 15, 33, 41]. Recently, researchers at-
tempt to introduce graph convolutional network [62] for
visual reasoning [56]. Li ef al. [28] propose graph con-
volutional units to learn graph visual representation from
2D data. However, information propagates from all se-
mantic correspondences which introduce noises for learn-
ing representation. Meanwhile, the reasoning procedure is
implicit and uncontrolled, and it limits the performance as
well as interpretation. Gao et al. [16] enhance target feature
by introducing a spatial-temporal graph in visual tracking
task. However, the nodes are represented by uniform grids,
which are sensitive to object scales, image shapes, geomet-
ric distortions, etc. Noticing crucial semantic dependencies
among objects, Xu et al. [57] attempt to reason with a class-
to-class prior graph. However, the graph remains fixed and
is hard to adapt to all cases. Besides, it cannot be applied to
the single-class detection tasks (e.g., mass detection).

Multi-view Visual Recognition Understanding and rep-
resenting 3D object is a fundamental problem in vision
recognition [39, 14] and stereo vision [25, 47, 6, 7, 40].
Multi-view based approaches render the 3D object from
multi views, and deploy image-based classifiers on individ-
ual view images [50, 23]. Feng et al. [14] propose a group-
view convolutional network to model hierarchical correla-
tion from multiple views. Yang et al. [60] learn to reinforce
the information by exploiting region-level and view-level
relations. Different from multi-view based approaches,
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Figure 2. The pipeline of the proposed BGN. BGN takes cross-view backbone features as inputs, and outputs enhanced features for further
prediction. First, bipartite graph nodes are constructed by mapping spatial visual features with pseudo landmarks. Each mapping cell is
a representative region for each graph node. Then, the bipartite graph edge learns to model both geometric constraints and semantic sim-
ilarities. Next, correspondence reasoning enhancement is conducted for feature enhancement by propagating information on the bipartite

graph. Finally, the enhanced features are aggregated with original

mammography cross-view images have more explicit cor-
respondences, which helps to design stronger customized
reasoning mechanisms. Explicit correspondences also exist
in stereo vision [47, 6, 7, 40], which matches key points in
general scenario as correspondences with calibrated cam-
eras. However, different from stereo vision, we cannot get
exact matched correspondences due to standard mammog-
raphy screening mechanisms [46] . The key challenge is to
utilize fuzzy correspondences for feature enhancement.

3. Methodology
3.1. Overview

The proposed BGN aims to endow cross-view corre-
spondence reasoning ability in the mammogram detection
framework. BGN is stacked on the backbone to enhance
feature representations, and can be integrated into any mod-
ern detection frameworks. As illustrated in Figure 2, there
are three major steps. Firstly, to model the region-based rea-
soning procedure, bipartite graph nodes are mapped from
cross-view backbone visual features, where each node de-
notes the representations of relative consistent region in
breasts. Then, bipartite graph edges are designed to model
both cross-view geometric constraints and appearance sim-
ilarities of bipartite graph nodes. Finally, correspondence

features for further prediction.

reasoning enhancement based on the pre-defined bipartite
graph is designed to enhance feature representations. Af-
ter information propagation through nodes, node represen-
tations are mapped to spatial visual domain reversely, which
enables enhanced spatial features aware of cross-view cor-
respondences. Both enhanced features and original back-
bone features are fused for further proposals.

Formally, we are given a paired 2D feature maps
F.,F, ¢ RH WxC extracted from the examined view
(where detection is performed) and its auxiliary view (the
other view), where e,a € {CC, M LO} indicate the view
types, H, W and C represent the height, width and channel
of the feature map. Note either CC' or M LO view can be
treated as the examined view. As formulated in Equation
1, BGN learns a function f, parameterized by the bipartite
graph G = (V,U, £) with node sets as V, U and edges as £.
V, U indicate nodes from C'C' and M LO views respectively,
each edge in £ connects a node in V to one in IA.

Y = f(Fe, Fo; 9) (1

3.2. Bipartite Graph Node

Bipartite graph node is designed to represent region-
level correspondences in breasts. There are two issues: (1)
Where to locate? (2) What to represent?
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Figure 3. [llustration of pseudo landmarks and bipartite graph node
mapping. (a)-(b) draw pseudo landmarks and the matched bound-
ing boxes on CC and MLO views respectively. (c) illustrates how
bipartite node mapping works when £ = 1. Each mapping cell
denotes the representative region of the node in the CC view.

Pseudo landmarks that preserve relative consistent loca-
tion in breasts are defined to solve the first issue, while bi-
partite graph node mapping produces node representations
from spatial visual features. We describe the details in the
following parts.

3.2.1 Pseudo Landmarks

Landmarks are points in a shape object in which correspon-
dences between and within the populations of the object
are preserved [12]. However, there are no specialized land-
marks for breasts. We have to define pseudo landmarks ac-
cording to prior knowledge.

The pseudo landmarks should satisfy the following three
properties: 1. Each pseudo landmark represents a relatively
consistent region in breasts; II. Different pseudo landmarks
represent different regions; III. The union of all pseudo
landmarks covers the breast region completely.

An intuitive idea is to treat uniform grids of the image as
landmarks. However, property I. is not satisfied, leading to
sensitiveness to image scale, geometric distortions, etc.

As illustrated in Figure 1, the design of the pseudo land-
mark embedding method is based on a basic observation:
CC and MLO views of standard mammography screening
have natural geometric correspondences. Ideally, a point
in CC view approximately corresponds to a line parallel to
projected pectoral muscle plane in MLO view.

To embed pseudo landmarks as shown in Figure 3,
equidistant parallel lines are first inserted between the nip-
ple and pectoral muscle line (projected by pectoral muscle
plane). The parallel lines and the breast contour intersect,
and we insert points uniformly between two intersection
points. Finally, all the points are re-ordered based on inter-
sections and defined as pseudo landmarks. Specially, as for

MLO view which contains pectoral muscle areas addition-
ally, a similar method is applied to define pseudo landmarks
in pectoral muscle areas. With these processes, we obtain a
set of pseudo landmarks for each view.

3.2.2 Bipartite Graph Node Mapping

Bipartite graph node mapping aims to project spatial visual
features (Foc, Farno) to node domain parameterized by
matrices X¢C € RIVIXC X MLO ¢ RIUIXC  The features
at a node are region-level features of the region correspond-
ing to the node.

The node mapping reveals the relation between graph
nodes and all the pixels. As illustrated in the following
equations, we design kNN (k Nearest Neighbor) forward
mapping ¢j with its auxiliary matrix A for node visual rep-
resentations. Each node corresponds to an irregular region
satisfying the property that for any pixel in the region, the
node is one of its k nearest nodes. ¢ performs region-
level feature pooling within the regions corresponding to
the graph nodes:

or(FN) = (Q)TF, )
QF =AW, 3)

N C))

s 1 if j th node is kNN of ¢ th pixel
710 Otherwise

where NV € {V,U} represents node set corresponding to
spatial visual feature ' € RIW>C A ¢ REWXINI 5 an
auxiliary matrix to assign spatial features to top-k nearest
graph nodes, A/ € RWIXIV is a diagonal matrix, Afj =
HW

S Ay, and QF € RIWXINT which is a normalized form
(z)f 14 serves as the forward mapping matrix.

Compared with fixed-grid assign methods [16], the pro-
posed node representations are more robust to image scales,
geometric distortions, etc, since ¢y selects representative
region adaptively according to relations among node loca-
tions. Besides, the mapping mechanism has a clear phys-
ical meaning, which is helpful for visual interpretation.
Specifically, Figure 3(c) shows the mapping degenerates to
Voronoi grids [2] when k& = 1.

Based on kNN forward mapping, we can obtain visual
representations of bipartite graph node sets.

X = ¢p(Foe, V) (5)
XM = ¢ (Furo,U) 6)
3.3. Bipartite Graph Edge

If given a mass locating at one certain node in the ex-
amined view, it is obvious that different nodes in the auxil-
iary view can have different probabilities representing the
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same mass instance as the given mass. Thus, bipartite
graph edge aims to reveal such underlying relations between
nodes. We characterize the edge in two aspects: geomet-
ric constraints and appearance similarities. The two as-
pects describe the inherent constraints caused by mammo-
gram screening mechanism and visual similarities between
nodes, respectively.

Formally, bipartite graph edge is represented as an adja-
cency matrix £ € RIVI*IUl composed of a geometric graph
&9 ¢ RVIXIUI and a semantic graph £° € RIVIXIUI| The
geometric graph as a global prior graph reveals the geomet-
ric constraints across views. The semantic graph as an in-
stance dependent graph represents the semantic similarities
between nodes. The two graphs jointly affect cross-view in-
formation propagation. Equation 7 illustrates the relations
of these matrices, where o indicates element-wise dot.

E=E90&° @)

3.3.1 Geometric Relation Learning

How to represent geometric constraints? Though the CC
and MLO views have standard camera pose, the exact ge-
ometric correspondence is not well-defined due to tissue
deformation under pressure and lack of visual cues. We
hereby model the geometric correspondence using masses
as visual cues. Each edge in the geometric graph repre-
sents the correlation of the linked nodes that denote the
same mass instance from different views. To approximate
the correlation, for each mass, if the node is the closest to
the center of the bounding box, it will be selected to rep-
resent this mass. Then we link the nodes that represent the
same mass instance from different views (e.g. 4 th node in
CC view and 3 th node in MLO view in Figure 3).

We take two steps to obtain the geometric graph. Firstly,
we obtain a frequent statistics matrix ¢ € RIVIXIUI based
on the annotated masses in the training set by calculating
occurrences of cross-view node pairs representing the same
mass instances. Then, we perform a column-row normal-
ization method [57] to obtain £9.

3.3.2 Semantic Relation Learning

The geometric graph provides global geometric prior cor-
relations. However, it is not precise enough to find exact
correspondence pairs across views. Thus, noises can be in-
volved in the reasoning procedure. The semantic graph is
designed to learn the semantic relation between nodes, and
can help filter the noisy relations.

How to define semantic similarities between nodes? An
intuitive idea is to measure by inner product or cosine dis-
tance [3, 53]. However, relations between nodes that rep-
resent backgrounds are unknown, and may enhance back-
ground representations. Thus we release the weights, and

allow the module to learn its own similarity:
s _ CC\T (v MLO\T
5ij =o([(Xi) v(Xj )" Jws), 3

where X£¢, X JM LO ¢ RY represent i th and j th node fea-
tures of CC and M LO views respectively, w, € R2¢ indi-
cates the fusion parameter, and o means the sigmoid activa-
tion function.

3.4. Correspondence Reasoning Enhancement

Correspondence reasoning enhancement, based on the
defined bipartite graph G, is designed to fully take the ad-
vantage of cross-view reasoning procedure for customized
feature enhancement. There are three major steps. Firstly,
we augment bipartite graph convolution to adapt to the mod-
ern graph convolutional manner. Then map node represen-
tations to spatial domain reversely, which enables spatial
feature aware of the correspondences. Last, we concatenate
with the original features to enhance the representations.

Bipartite Graph Convolution To adapt to the manner of
modern graph convolutional network [16, 26], we first give
the augmented form of the bipartite graph:

X — [()(C’C)T’()(MLO)T}T7 9)

e=(gr o). (10)

where X € RIVWUIXC & ¢ RIVUUIXIVUUI jpdicate the aug-
mented form of bipartite nodes and edges respectively.

We adopt similar fashion [16] to define graph convolu-
tion. An iteration of graph convolution layer with convo-
lution parameters W, € RE*D is formulated in Equation
11. Intuitively, we can stack multiple graph convolutional
layers in graph convolutional network.

Z =o(EXW,) (11)

kNN Reverse Mapping. To enhance spatial features, we
build a kNN reverse mapping function 1, to project graph
node features to the spatial domain. The mapping follows
similar design principles as the kNN forward mapping and
keeps the same number (k) of nearest neighbors.

Formally, vy, is formulated as :

I)Z)k(Z;NE) = QT[Z]ea (12)

Q" = (A")"'A, (13)

where N, € {V,U} represents the unipartite node set from
the examined view, A € REWXINT follows the similar def-
inition of the Equation 4, [-]. indicates an indexing oper-

ator which selects nodes in the examined view from all

bipartite nodes, A" € RHWXHW jq 3 diagonal matrix,
V]

AL = 3 Ay, and Q7 € RIWXIN g the reverse map-
i=1

ping matrix which is the normalized form of A.
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Table 1. Performance on DDSM dataset(%).

Table 3. Performance on in-house dataset(%).

Method R@t Method R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Campanini et at. [4] 80@1.1 Faster RCNN, FPN 82.9 84.7 88.0 89.1 89.6
Eltonsy et at. [13] 92@5.4,88@2.4, 81@0.6 Faster RCNN, FPN, DCN 83.1 86.9 88.7 89.8 90.3
Sampat er at. [45] 88@2.7,85@1.5,80@1.0 Mask RCNN, FPN 83.1 85.9 89.6 90.3 90.7
Faster RCNN [32] 85@2.1,75@1.8,73@1.2 Mask RCNN, FPN, DCN 84.2 87.8 90.2 91.6 92.1
CVR-RCNN [32] 92@4.4,88@1.9,85@1.2 BG-RCNN 87.8 90.5 92.8 93.9 94.1

BG-RCNN 95@4.4,92@1.9, 89@1.2

Table 2. Performance on DDSM dataset(%).

Method R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Faster RCNN, FPN 75.3 81.5 87.3 898 914
Faster RCNN, FPN, DCN  75.7 825 88.4  90.1 91.4
Mask RCNN, FPN 76.0 825 88.7 908 914
Mask RCNN, FPN, DCN 76.7 839 89.4 914 918
BG-RCNN 795 86.6 91.8 925 945

Feature fusion. We finally fuse and obtain the enhanced
feature Y, parameterized by W, € RP*(D+C);

F=yp(Z,N) (14)

Y = [F,F\W} (15)

4. Experiments
4.1. Implementation Details

The mammogram images are first segmented by OTSU
[38], and the foreground region is treated as input. We apply
hough transform to detect pectoral muscle line and the nip-
ple for pseudo landmark embedding. To avoid over-fitting
during training, we conduct several specific augmentation
methods (e.g. random flip, random crop, multi-scaling).

We build the proposed BG-RCNN by integrating
BGN into Mask RCNN object detection framework [18].
ResNet50 [19] which is pretrained on ImageNet [44] is
taken as a backbone network. Our implementation is based
on PyTorch deep learning framework [10]. We adopt SGD
with a learning rate 0.02, weight decay 10~%, momentum
0.9 and nesterov set True. The whole training procedure
takes 30 epoches. As for stacked bipartite graph model, we
keep the same number of nearest neighbors k for both ¢y
and vy, for bipartite node mapping and reverse mapping.

4.2. Datasets

Our experiments are conducted on both a public dataset
called DDSM [20] and an in-house dataset. We do not
choose other dataset such as INBreast [36] , MIAS [51],
because the amount of dataset is insufficient.

DDSM dataset. DDSM dataset contains 2620 mammog-
raphy cases. For most cases, each contains two views of im-
ages for both breasts. As in other approaches [32, 13, 4, 45],

we adopt the same method to split training, validation and
testing set. There are 512 cases used in the evaluation.

In-house dataset. We collect an in-house dataset, which
contains 3000 cases and 12000 images. Each case contains
cross-view images of each breast. The annotations, namely
the mask of each breast lesion, are labeled by 3 radiologists
with experiences of more than 10 years. When disagree-
ment meets, we take the majority opinion of radiologists.
The dataset is randomly divided into training, validation and
testing sets by 8:1:1.

4.3. Baselines

Faster RCNN, FPN. Faster RCNN [42] with Feature
Pyramid Network (FPN) [29] is a solid baseline in object
detection task. We use ResNet50[19] as the backbone.

Faster RCNN, FPN, DCN. Deformable Convolution
Network (DCN) [9] is used to enhance the transformation
modeling capability of convolutional networks. DCN is in-
tegrated into baselines to enhance the performance.

Mask RCNN, FPN. Mask RCNN [18] is a state-of-the-
art model on both object detection and instance segmenta-
tion. To exploit the mask supervision for localization, we
employ Mask RCNN as a baseline.

Mask RCNN, FPN, DCN. DCN is also integrated into
Mask RCNN baselines.

4.4. Comparison with state-of-the-art methods

We evaluate the performance by recall (R) at ¢ false
postive per image (FPI), simplified as RQt, where ¢t €
{0.5,1.0,2.0,3.0,4.0}.

Table 1 and Table 2 report the experimental performance
on DDSM dataset. Results in Table 1 are reported from
[4, 13,45, 32], and baselines in Table 2 are implemented by
us. We do not compare with [31], as they do not release the
dataset split method. We keep the same FPI and compare
the recall with a strong competitor CVR-RCNN[32]. We
can conclude that the proposed model outperforms state-
of-the-art methods. The same conclusion can be drawn on
the in-house dataset from Table 3. To understand how the
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Table 4. Effectiveness of pseudo landmarks on DDSM dataset(%).

Method R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Uniform 76.4 84.6 90.4 92.5 93.2
BG-RCNN 79.5 86.6 91.8 92.5 94.5

Table 5. Effectiveness of node number on DDSM dataset(%).

Method R@0.5 R@1.0 R@20 R@3.0 R@4.0
Vi, U 75.7 83.9 88.7 92.1 93.2
Vg, U13 79.5 86.0 90.4 92.5 93.2
Va1, Uss 79.5 86.6 91.8 92.5 94.5
Va2, Use 76.0 85.6 90.8 93.5 94.2
Vee, Ur1 78.8 85.6 90.1 92.1 93.2

proposed model benefits from the correspondence reason-
ing mechanism, we analyze the cases in Figure 4. We com-
pare the recall when keeping the same FPI. We can see that
the proposed method can significantly improve the recall
(the 2nd and 3rd row) and localization ability (the 1st row).

4.5. Ablation study

Ablation of Pseudo Landmarks As shown in Table 4,
We first investigate the effectiveness of pseudo landmarks
versus uniform grids. We keep the same number of uni-
form grids and pseudo landmarks. The results have demon-
strated that pseudo landmarks are rather more effective than
uniform grids. We also investigate how node number af-
fects the performance. “V;,{;” means there are i nodes in
CC view and j nodes in MLO view. Specifically, the set-
ting “V1,U;” is equivalent to two-branch Faster RCNN. As
shown in Table 5, we choose “Va1,Us5” as our final results.

Ablation of Bipartite Graph Node Mapping. To inves-
tigate the effectiveness of bipartite node mapping, we first
compare with a simple method, which directly crop a fixed
region for graph node representation. We also evaluate how
k influences the results. We keep the same k for both ¢, and
1. As shown in Table 6, we can see that bipartite graph
node mapping is effective and necessary. Meanwhile, when
dense nodes embedded, the model works better with larger
k, because larger k can abstract more context feature for the
node which may lack sufficient context representation.

Ablation of Bipartite Graph Edge. We analyze the in-
fluence of £° and £Y in the bipartite graph edge. It degen-
erates to naive Mask RCNN when neither £° nor £9 are
used, since no information propagates across views. When
either £° or £9 is used, we set £ to £° or £9 respectively. As
shown in Table 7, either £° or £9 can make an improvement,
and combining both parts achieves the best performance.

4.6. Visualization

Our visualization experiments mainly answer two ques-
tions: (1) Where does the bipartite graph focus on auxiliary

Table 6. Effectiveness of bipartite graph node mapping on DDSM

dataset(%).
Method R@0.5 R@1.0 R@2.0 R@3.0 R@4.0
Va1, Uas, crop 76.4 84.2 90.1 91.8 93.2
Va1, Uss, k=1 79.8 86.3 91.8 92.5 94.2
Va1, Uss, k=2 79.5 86.6 91.8 92.5 94.5
Va1, Uss, k=3 79.5 86.3 87.7 91.8 93.5
Ve6, U71, crop 75.3 84.2 89.4 91.8 92.1
Vee, U71, k=1 77.7 85.6 90.1 91.4 932
Vee, U71, k=2 78.8 85.6 90.1 92.1 93.2
Vee, U71, k=3 79.1 86.0 90.1 92.1 93.8

Table 7. Effectiveness of each component in bipartite graph edge
on DDSM dataset(%).

g &9 R@0.5 R@1.0 R@20 R@3.0 R@40
76.7 83.9 89.4 91.4 91.8
78.4 83.9 91.1 92.1 93.8
77.7 86.3 89.4 91.8 93.5
79.5 86.6 91.8 92.5 94.5

S0)

< U X X
X LU X

view? (2) How does the correspondence reasoning mecha-
nism enhance the feature representations?

To answer the first question, we design a specialized
method for correspondence visualization. The main pur-
pose is to find representative regions of correlated nodes in
the auxiliary view when given a query mass in the exam-
ined view. We first define a one-hot representative vector
x € RVl to represent locations of the mass in the exam-
ined area. The index of the node which is nearest to the cen-
ter of the analyzed mass in the examined image is set to 1.
Then visualize the feature by Equation 16, where o € RHW
represents the response vector, and [-], indicates indexing
operator which selects nodes in the examined view from bi-
partite graph nodes. As shown in Figure 4, we can see that
the bipartite graph focuses on the mated mass area in the
auxiliary view, which helps to learn complementary feature
representations. Besides, our model has a clear physical
meaning and provides visual cues of mated masses. Thus it
can help radiologists in clinical interpretation.

0=Q"[Ex]. (16)

To answer the second question, we compare the response
map before and after feature enhancement. Specifically,
channel-wise max pooling is conducted on F, and Y re-
spectively. As shown in Figure 4, feature response map
activates more prominently on mass located area after en-
hancement. As a result, the corresponding reasoning en-
hancement method can help to improve the detection perfor-
mance and make comprehensive and sufficient judgment.

5. Conclusions and Future Work

In this paper, we introduce the bipartite graph convolu-
tional network to provide customized reasoning ability in
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(e)

Figure 4. Detection results of BG-RCNN. Each row shows a representative case. Column (a)-(b) refer to the examined image and its
auxiliary view image with annotations. Column (c)-(d) indicate detection results by Mask-RCNN and BG-RCNN. Column (e) visualizes
the attention area on the auxiliary view. Column (f)-(g) visualize the response maps before and after correspondence visual reasoning.

mammogram mass detection. To model the cross-view rea-
soning procedure, bipartite graph nodes induced by pseudo
landmarks are constructed from cross-view images respec-
tively, which are able to represent the relatively consistent
regions. Then bipartite graph edge learns both cross-view
inherent geometric constraints and semantic relations. Fi-
nally, in correspondence reasoning enhancement, informa-
tion propagates on the bipartite graph and it enables spatial
visual features aware of cross-view correspondences. Thus
feature representations are enhanced. Experiments on both
public and in-house datasets demonstrate that the proposed
method achieves state-of-the-art performance. Besides, vi-
sual analysis shows that the proposed model has a clear
physical meaning, which is helpful to radiologists in clin-

ical interpretation.

Future work will include: (1) exploring learnable forms
of pseudo landmarks; (2) integrating bilateral (same view
of left and right breasts) domain knowledge to the model;
(3) exploiting more powerful graph mechanisms to facilitate
information propagation.
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