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Figure 1: Our proposed self-conditional GAN model learns to perform clustering and image synthesis simultaneously. The model training

requires no manual annotation of object classes. Here, we visualize several discovered clusters for both Places365 (top) and ImageNet

(bottom). For each cluster, we show both real images and the generated samples conditioned on the cluster index.

Abstract

We introduce a simple but effective unsupervised method

for generating realistic and diverse images. We train a class-

conditional GAN model without using manually annotated

class labels. Instead, our model is conditional on labels

automatically derived from clustering in the discriminator’s

feature space. Our clustering step automatically discov-

ers diverse modes, and explicitly requires the generator to

cover them. Experiments on standard mode collapse bench-

marks show that our method outperforms several competing

methods when addressing mode collapse. Our method also

performs well on large-scale datasets such as ImageNet and

Places365, improving both image diversity and standard

quality metrics, compared to previous methods.

1. Introduction

Despite the remarkable progress of Generative Adversar-

ial Networks (GANs) [13, 5, 20], there remains a signifi-

cant gap regarding the quality and diversity between class-

conditional GANs trained on labeled data, and unconditional

GANs trained without any labels in a fully unsupervised set-

ting [30, 26]. This problem reflects the challenge of mode

collapse: the tendency for a generator to focus on a subset of

modes to the exclusion of other parts of the target distribu-

tion [12]. Both empirical and theoretical studies have shown

strong evidence that real data has a highly multi-modal dis-

tribution [33, 39]. Unconditional GANs trained on such data

distributions often completely miss important modes, e.g.,

not being able to generate one of ten digits for MNIST [37],

or omitting object classes such as people and cars within

synthesized scenes [3]. Class-conditional GANs alleviate
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this issue by enforcing labels that require the generator to

cover all semantic categories. However, in practice, it is

often expensive to obtain labels for large-scale datasets.

In this work, we present a simple but effective training

method, self-conditioned GANs, to address mode collapse.

We train a class-conditional GAN and automatically obtain

image classes by clustering in the discriminator’s feature

space. Our algorithm alternates between learning a fea-

ture representation for our clustering method and learning

a better generative model that covers all the clusters. Such

partitioning automatically discovers modes the generator is

currently missing, and explicitly requires the generator to

cover them. Figure 1 shows several discovered clusters and

corresponding generated images for each cluster.

Empirical experiments demonstrate that this approach

successfully recovers modes on standard mode collapse

benchmarks (mixtures of Gaussians, stacked MNIST,

CIFAR-10). More importantly, our approach scales well

to large-scale image generation, achieving better Fréchet

Inception Distance and Inception Score for both ImageNet

and Places365, compared to previous unsupervised methods.

Our code and models are available on our website.

2. Related Work

Generative Adversarial Networks (GANs). Since the in-

troduction of GANs [13], many variants have been pro-

posed [30, 8, 35, 37, 1, 27, 14, 28], improving both the

training stability and image quality. Due to its rapid advance,

GANs have been used in a wide range of computer vision

and graphics applications [40, 18, 41, 45, 17, 16]. GANs

excel at synthesizing photorealistic images for a specific

class of images such as faces and cars [19, 20]. However, for

more complex datasets such as ImageNet, state-of-the-art

models are class-conditional GANs that require ground truth

image class labels during training [5]. To reduce the cost

of manual annotation, a recent work [26] presents a semi-

supervised method based on RotNet [11], a self-supervised

image rotation feature learning method. The model is trained

with labels provided on only a subset of images. On the con-

trary, our general-purpose method is not image-specific, and

fully unsupervised. Section 4.4 shows that our method out-

performs a RotNet-based baseline. A recent method [32]

proposes to obtain good clustering using GANs, while we

aim to achieve realistic and diverse generation.

Mode collapse. Although GANs are formulated as a min-

imax game in which each generator is evaluated against

a discriminator, during optimization, the generator faces a

slowly-changing discriminator that can guide generation to

collapse to the point that maximizes the discriminator [29].

Mode collapse does occur in practice, and it is one of the

fundamental challenges for GANs training [12, 37]. Several

solutions have been proposed, including amending the ad-
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Figure 2: We learn a discriminator D and a generator G that are

both conditioned on the automatically discovered cluster c. (a)

For a specific c, the discriminator D must learn to recognize real

images sampled from the cluster πc of the dataset, and distinguish

them from (b) fake images synthesized by the class-conditional

generator G. (b) The class-conditional generator G synthesizes

images from z. By learning to fool D when also conditioned on

c, the generator learns to mimic the images in πc. Our method

differs from a conventional conditional GAN as we do not use

ground-truth labels to determine the partition {πc}
k

c=1. Instead, our

method begins with clustering random discriminator features and

periodically reclusters the dataset based on discriminator features.

versarial loss to look ahead several moves (e.g., Unrolled

GAN [29]), jointly training an encoder to recover latent dis-

tributions (e.g., VEEGAN [38]), packing the discriminator

with sets of points instead of singletons [37, 25], and training

a mixture of generators with an auxiliary diversity objec-

tive [15, 10]. Different from the above work, our method

partitions the real distribution instead of the generated dis-

tribution, and devotes a class-conditioned discriminator to

each target partition.

Another related line of research trains class-conditional

GANs on unlabelled images by clustering on features ob-

tained via unsupervised feature learning methods [26, 36].

Our method directly clusters on discriminator features that

inherently exist in GANs, leading to a simpler method

and achieving higher quality generation in our experiments

(Section 4.4). Mixture Density GAN proposes to use log-

likelihoods of a Gaussian mixture distribution in discrimina-

tor feature space as the GAN objective [9]. GAN-Tree uses

clustering to split a GAN into a tree hierarchy of GANs for

better mode coverage [23]. These methods, while also using

clustering or mixture models, are mostly orthogonal with

our work. Furthermore, the simplicity of our method allows

it to be easily combined with a variety of these techniques.
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3. Method

One of the core problems in generating diverse outputs in

a high-dimensional space such as images is mode collapse:

the support of the generator’s output distribution can be

much smaller than the support of the real data distribution.

One way mode collapse has been empirically lessened is by

use of a class-conditional GAN, which explicitly penalizes

the generator for not having support on each class.

We propose to exploit this class-conditional architecture,

but instead of assuming access to true class labels, we will

synthesize labels in an unsupervised way. On a high level,

our method dynamically partitions the real data space into

different clusters, which are used to train a class-conditional

GAN. Because generation conditioned on a cluster index

is optimized with respect to the corresponding conditioned

discriminator, and each discriminator is responsible for a dif-

ferent subset of the real distribution, our method encourages

the generator output distribution to cover all partitions of the

real data distribution.

Therefore, to train a GAN to imitate a target distribution

preal, we partition the data set into k clusters {π1, . . . , πk}
that are determined during training. No ground-truth la-

bels are used; training samples are initially clustered in the

randomly initialized discriminator feature space, and the

clusters are updated periodically. A class-conditional GAN

structure is used to split the discriminator and the generator.

Next, we describe two core components of our algorithm:

• Conditional GAN training with respect to cluster labels

given by the current partitioning.

• Updating the partition according to the current discrim-

inator features of real data periodically.

Conditional GAN training. The GAN consists of a

class-conditional generator G(z, c) associated with a class-

conditional discriminator D(x, c). We denote the internal

discriminator feature layers as Df and its last layer as Dh so

D = Dh ◦Df . The generator and discriminator are trained

to optimize the following adversarial objective:

LGAN(D,G) = E
c∼Pπ

[

E
x∼πc

[log(D(x, c)]

+ E
z∼N (0,I)

[log(1−D(G(z, c), c))]

]

,

where the cluster index c is sampled from the categorical

distribution Pπ that weights each cluster proportional to its

true size in the training set. Here G aims to generate images

G(z, c) that look similar to the real images of cluster c for

z ∼ N (0, I), while D(·, c) tries to distinguish between such

generated images and real images of cluster c. They are

jointly optimized in the following minimax fashion:

min
G

max
D
LGAN(D,G). (1)

Algorithm 1 Self-Conditioned GAN Training

Initialize generator G and discriminator D
Partition dataset into k sets {π1, ..., πk} using Df outputs

for number of training epochs do

// Conditional GAN training based on current partition

for number of training iterations for an epoch do

for j in {1, ...,m} do

Sample cluster c(j) ∼ Pπ , where c is chosen

with probability proportional to |πc|.
Sample image x(j) ∼ πc(j) from cluster c(j).
Sample latent z(j) ∼ N (0, I).

end for

Update G and D according to minG maxD LGAN

on minibatch {(c(j), x(j), z(j))}j . ⊲ Eqn. (1)

end for

// Clustering to obtain new partitions

Cluster on Df outputs of a subset of training set to

identify a new partition {πnew
c } into k sets, using

previous cluster centroids as initialization.

Find the matching ρ(·) between {πnew
c }c and {πc}c

that minimizes Lmatch. ⊲ Eqn. (4)

Update all πc ← πnew

ρ(c).

end for

When under the condition c, the discriminator is encouraged

to give low score for any sample that is not from cluster c
because preal(x | c) = 0 for all x /∈ πc. So the corresponding

conditioned generator is penalized for generating points that

are not from cluster c, which ultimately prevents the genera-

tor from getting stuck on other clusters. The optimization is

shown in Figure 2.

Computing new partition by clustering. As the training

progresses, the shared discriminator layers Df learn better

representations of the data, so we periodically update π by

re-partitioning the target dataset over a metric induced by

the current discriminator features. We use k-means clus-

tering [2] to obtain a new partition into k clusters {πc}
k
c=1

according to the Df output space, approximately optimizing

Lcluster({πc}
k
c=1) = E

c∼Pπ

[

E
x∼πc

[

‖Df (x)− µc‖
2
2

]

]

, (2)

where µc ,
1

|πc|

∑

x∈πc
Df (x) is the mean of each cluster

in Df feature space.

Clustering initialization. For the first clustering, we use

the k-means++ initialization, and when reclustering, we

initialize the k-means algorithm with the means induced

by the previous clustering. That is, if {πold
c }

k
c=1 denotes

the old cluster means and {µ0
c}

k
c=1 denotes the k-means
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initialization to compute the new clustering, we take

µ
0
c =

1

|πold
c |

∑

x∈πold
c

Dnew

f (x), (3)

where Dnew

f denotes the current discriminator feature space.

Matching with old clusters. After repartitioning, to avoid

retraining the conditional generator and discriminator from

scratch, we match the new clusters {πnew
c }

k
c=1 to the old

clusters {πold
c }

k
c=1 so that the target distribution for each

generator does not change drastically. We formulate the task

as a min-cost matching problem, where the cost of matching

a πnew
c to a πold

c′ is taken as |πold

c′ \ π
new
c |, the number of

samples missing in the new partition. Therefore, we aim to

find a permutation ρ : [k]→ [k] that minimizes the objective:

Lmatch(ρ) =
∑

c

|πold

c \ π
new

ρ(c)|. (4)

For a given new partitioning from k-means++, we solve this

matching using the classic Hungarian min-cost matching

algorithm [22], and obtain the new clusters to be used for

GAN training in future epochs. Algorithm 1 summarizes the

entire training method.

Online clustering. We also experimented with online K-

means based on gradient descent [4], where we updated the

cluster centers and membership using Equation (2) in each

iteration. Our online variant achieves comparable results

on mode collapse benchmarks (Section 4.2), but performs

worse for real image datasets (Section 4.3), potentially due to

the training instability caused by frequent clustering updates.

Additionally, in Section 4, we also perform an ablation study

regarding clustering initialization, online vs. batch cluster-

ing, and with or without clustering matching method.

4. Experiments

4.1. Implementation Details

Network architecture. For experiments on synthetic data,

our unconditional generator and discriminator adopt the

structure proposed in PacGAN[25]. To condition the gener-

ator, we add a fully connected layer before the input layer

of the generator. To condition the discriminator, we increase

the dimension of the output layer to be the number of clusters

k we use. We use the outputs of the last hidden layer of the

discriminator as features for clustering.

For Stacked-MNIST dataset, we use the DCGAN archi-

tecture [35] identical to that used in prior work[25]. For

experiments on CIFAR-10, we use the DCGAN architecture

identical to that used in SN-GANs [31]. We add condition-

ing to the GAN similarly to how we add conditioning to the

generator of PacGAN. We use the outputs of the last convo-

lutional layer of the discriminatoras features for clustering.

Large-scale GANs are trained on Places365 [43] and Im-

ageNet [7]. In this setting, our GAN adopts the conditional

architecture proposed in Mescheder et al. [28], and our un-

conditional GAN baseline removes all conditioning on the

input label. We use the output from the last ResNet block as

features for clustering.

Clustering details. To compute cluster centers, for

Stacked-MNIST and CIFAR experiments, we cluster a ran-

dom subset of 25,000 images from the dataset, and for Im-

ageNet and Places365 experiments, we cluster a random

subset of 50,000 images from the dataset. For K-means++,

we cluster the subset ten times and choose the clustering that

obtains the best performance on the clustering objective. We

recluster every 25,000 iterations for Stacked-MNIST and

CIFAR experiments, and recluster every 75,000 iterations

for ImageNet and Places365 experiments. For experiments

on synthetic datasets, we cluster a random sample of 10,000
data points and recluster every 10,000 iterations.

Training details. For experiments on synthetic datasets,

we use 2-dimensional latents, and train for 400 epochs using

Adam [21] with a batch size 100 and learning rate 10−3. The

embedding layer used for conditioning the generator has an

output dimension of 32.

For CIFAR-10 and Stacked-MNIST experiments, we use

128 latent dimensions, and Adam with a batch size of 64 and

a learning rate of 1 × 10−4 with β1 = 0, β2 = 0.99. We

train for 50 epochs on Stacked-MNIST and 400 epochs on

CIFAR-10. The embedding layer used for conditioning the

generator outputs a 256-dimensional vector.

For experiments on Places365 and ImageNet, our loss

function is the vanilla loss function proposed by [13] and

use R1 regularization as proposed by [28]. We find that

regularization parameter 0.1 works well with our method.

We train our networks from scratch using Adam with a batch

size of 128 and a learning rate of 10−4, for 200,000 iterations.

We choose a 256-dimensional latent space. All metrics are

reported using 50,000 samples from the fully trained models,

with the Fréchet Inception Distance (FID) computed using

the training set. The generator embedding layer outputs a

256-dimensional vector.

4.2. Synthetic Data Experiments

The 2D-ring dataset is a mixture of 8 2D-Gaussians,

with means (cos 2πi
8 , sin 2πi

8 ) and variance 10−4, for i ∈
{0, . . . , 7}. The 2D-grid dataset is a mixture of 25 2D-

Gaussians, each with means (2i − 4, 2j − 4) and variance

0.0025, for i, j ∈ {0, . . . , 4}.
We follow the metrics used in prior work [38, 25]. A

generated point is deemed high-quality if it is within three

standard deviations from some mean [38]. The number

of modes covered by a generator is the number of means

that have at least one corresponding high-quality point. To
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Table 1: Number of modes recovered, percent high quality samples, and reverse KL divergence metrics for 2D-Ring and 2D-Grid experiments.

Results are averaged over ten trials, with standard error reported.

2D-Ring 2D-Grid

Modes

(Max 8)
↑ % ↑ Reverse KL ↓

Modes

(Max 25)
↑ % ↑ Reverse KL ↓

GAN [13] 6.3± 0.5 98.2± 0.2 0.45± 0.09 17.3± 0.8 94.8± 0.7 0.70± 0.07
PacGAN2 [25] 7.9± 0.1 95.6± 2.0 0.07± 0.03 23.8± 0.7 91.3± 0.8 0.13± 0.04
PacGAN3 [25] 7.8± 0.1 97.7± 0.3 0.10± 0.02 24.6± 0.4 94.2± 0.4 0.06± 0.02
PacGAN4 [25] 7.8± 0.1 95.9± 1.4 0.07± 0.02 24.8± 0.2 93.6± 0.6 0.04± 0.01
MGAN (k = 50) [15] 7.6± 0.2 80.3± 1.7 0.32± 0.06 22.5± 0.6 51.1± 1.6 0.36± 0.06
Random Labels (k = 50) 7.9± 0.1 96.3± 1.1 0.07± 0.02 16.0± 1.0 90.6± 1.6 0.57± 0.07
Our Method (k = 50) 8.0± 0.0 99.5± 0.3 0.0014± 0.0002 25.0± 0.0 99.5± 0.1 0.0063± 0.0007
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Figure 3: The dependence of our method and MGAN on the choice of number of clusters k for 2D-grid (mixture of 25 Gaussians) experiment.

MGAN is sensitive to the value k and performance degrades if k is too large. Our method is generally more stable and scales well with k.

compare the reverse KL divergence between the generated

distribution and the real distribution, we assign each point

to its closest mean in Euclidean distance, and compare the

empirical distributions [25].

Our results are displayed in Table 1. We compare our

method to PacGAN [25] for various packing factors, on

PacGAN’s mother architecture. We observe that our method

generates both higher quality and more diverse samples than

competing unsupervised methods. The difference in quality

can be observed in Table 1. We also see that the success

of our method is not solely due to the addition of class

conditioning, as the conditional architecture with random

labels still fails to capture diversity and quality.

Our online clustering variant, with k = 50 on the 2D-grid

dataset is able to cover 25 modes with 99.1% high quality

samples and a reverse KL of 0.00122 and on the 2D-ring

dataset, is able to cover 8 modes with 99.9% high quality

samples and a reverse KL of 0.00349.

We also compare our method’s sensitivity regarding the

number of clusters k to existing clustering-based mode col-

lapse methods [15]. For k chosen to be larger than the ground

truth number of modes, we observe that our method levels

off and generates both diverse and high-quality samples. For

k chosen to be smaller than the ground truth number of

modes, our results worsen. Figure 3 plots the sensitivity of

k on the 2D-grid dataset, and the same trend holds for the

2D-ring dataset. Therefore, we lean towards using a larger

number of clusters to ensure coverage of all modes.

MGAN [15] learns a mixture of k generators that can be

compared to our k-way conditional generator. In Table 2,

we see that MGAN performs worse as k increases. We hy-

pothesize that when k is large, multiple generators must

contribute to a single mode, and MGAN’s auxiliary classifi-

cation loss, which encourages each generator’s output to be

distinguishable, makes it harder for the generators to cover a

mode collaboratively. On the other hand, our method scales

well with k, because it dynamically updates cluster weights,

and does not explicitly require the conditioned generators to

output distinct distributions.

We run both our method and MGAN with varying k
values on the 2D-grid dataset. The results summarized in

Figure 3 confirm our hypothesis that MGAN is sensitive

to the choice of k, while our method is more stable and

scales well with k. In our arXiv version, we further present

results showing that our method is much less sensitive to the

variance of each Gaussian than MGAN.

4.3. StackedMNIST and CIFAR10 Experiments

The Stacked-MNIST dataset [24, 38, 25] is produced by

stacking three randomly sampled MNIST digits into an RGB

image, one per channel, generating 103 modes with high

probability. To calculate our reverse KL metric, we use

pre-trained MNIST and CIFAR-10 classifiers to classify and

count the occurrences of each mode. For these experiments,

we use k = 100. We also compare our method against

an online variant, as well as a variant where we start with

14290



Table 2: Number of modes recovered, reverse KL divergence, and Inception Score (IS) metrics for Stacked MNIST and CIFAR-10

experiments. Results are averaged over five trials, with standard error reported. Results of PacGAN on Stacked MNIST are taken from [25].

For CIFAR-10, all methods recover all 10 modes.

Stacked MNIST CIFAR-10

Modes

(Max 1000)
↑ Reverse KL ↓ FID ↓ IS ↑ Reverse KL ↓

GAN [13] 133.4± 17.70 2.97± 0.216 31.90± 1.15 6.93± 0.108 0.0132± 0.0015
PacGAN2 [25] 1000.0± 0.00 0.06± 0.003 31.71± 1.17 7.03± 0.065 0.0124± 0.0012
PacGAN3 [25] 1000.0± 0.00 0.06± 0.003 32.66± 1.93 6.96± 0.122 0.0123± 0.0012
PacGAN4 [25] 1000.0± 0.00 0.07± 0.005 34.96± 1.30 6.99± 0.094 0.0149± 0.0006
Logo-GAN-AE [36] 1000.0± 0.00 0.09± 0.005 32.49± 1.37 7.05± 0.073 0.0106± 0.0005
Logo-GAN-RC [36] 1000.0± 0.00 0.08± 0.006 30.91± 1.30 7.04± 0.054 0.0103± 0.0004
Random Labels 240.0± 12.02 2.90± 0.192 31.14± 1.66 6.64± 0.135 0.0157± 0.0027
Online Clustering 995.8± 0.86 0.17± 0.027 32.45± 0.44 6.68± 0.068 0.0158± 0.0016
Ours + Supervised Init. 1000.0± 0.00 0.08± 0.014 21.14± 1.59 7.61± 0.077 0.0017± 0.0002
Our Method 1000.0± 0.00 0.08± 0.009 18.70± 1.28 7.79± 0.033 0.0015± 0.0002

Class-conditional GAN [30] 1000.0± 0.00 0.08± 0.003 30.03± 1.58 7.44± 0.092 0.0076± 0.0006

Table 3: Fréchet Inception Distance (FID), Inception Score (IS),

and reverse KL divergence metrics for Places365 and ImageNet

experiments. Our method improves in both quality and diversity

over previous methods but still fails to reach the quality of fully-

supervised class conditional ones.

Places365 ImageNet

FID ↓ IS ↑ FID ↓ IS ↑

GAN [13] 14.21 8.7122 54.17 14.0074

PacGAN2 [25] 18.02 8.5765 57.51 13.5052

PacGAN3 [25] 22.00 8.5637 66.97 12.3420

MGAN [15] 15.78 8.4141 58.88 13.2196

RotNet Feature Clustering 14.88 8.5436 53.75 13.7616

Logo-GAN-AE [36] 14.51 8.1936 50.90 14.4350

Logo-GAN-RC [36] 8.66 10.5474 38.41 18.8583

Random Labels 14.20 8.8154 56.03 14.1666

Our Method 9.76 8.8186 41.76 14.9620

Class Conditional GAN [30] 8.12 10.9738 35.14 24.0382

manual class labels as the first clustering. Details of these

variants are described in our arXiv version.

Our results are shown in Table 2. On both datasets, we are

able to achieve large gains in diversity, significantly improve

Fréchet Inception Distance (FID) and Inception Score (IS)

over baselines and even the supervised baselines (e.g., Class-

conditional GAN). Interestingly, starting with supervised

class labels seems to slightly degrade performance compared

to starting with clusters from random discriminator features.

We find that our cluster initialization step is necessary:

without it, on CIFAR, we obtain an FID score of 19.85 and

Inception Score of 7.41. Furthermore, our cluster rematching

step is necessary: without it, on CIFAR, we obtain an FID

score of 20.42 and Inception Score of 7.31.

4.4. LargeScale Image Datasets Experiments

Lastly, we measure the quality and diversity of images for

GANs trained on large-scale datasets Places365 ImageNet.

We trained using all 1.2 million ImageNet challenge images

across all 1000 classes and all 1.8 million Places365 images

across 365 classes. No class labels were revealed to the

model. For both datasets, we choose k = 100.

Across datasets, our method improves the quality of gen-

erated images in terms of FID, IS, and reverse KL divergence,

outperforming all baselines in most cases.

Figure 4 shows samples of the generated output, compar-

ing our model to a vanilla GAN and a PacGAN model and a

sample of training images. To highlight differences in diver-

sity between the different GAN outputs, Figure 4a shows a

sample of 20 images from each method taken from a single

Places365 class. To predict the class label from the generated

output, we classify each image using a standard ResNet18

scene classifier [43], and we show the 20 highest-scoring

members of the class from a sample of 50,000 generated

images. Similarly, Figure 4b shows samples from ImageNet

generators filtered to a single ImageNet class, as classified

by a standard ResNet50 classifier [34]. We observed that

across classes, vanilla GAN and PacGAN tend to synthesize

less diverse samples, repeating many similar images. On the

other hand, our method improves diversity significantly and

does not produce visually similar images.

4.4.1 Reconstruction of Real Images

While random samples reveal the positive output of the gen-

erator, reconstructions of training set images [44, 6] can be

used to visualize the omissions of the generator [3].

Previous GAN inversion methods do not account for class

conditioning, so we extend the encoder+optimization hy-

brid method of [44, 3]. We first train an encoder backbone

F : x → r jointly with a classifier Fc : r → c and a re-

construction network Fz : r→ z to recover the class c and

the original z of a generated image. We then optimize z to

match the pixels of the query image x as well as encoder

features extracted by F :

Lreconst(z, c) = ‖G(z, c)−x‖1+λf‖F (G(z, c))−F (x)‖22.
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PacGAN2 Ours Real	ImagesGAN

(a) Places365 samples with high classifier scores on the “embassy” category

PacGAN2 Ours Real	ImagesGAN

(b) ImageNet samples with high classifier scores on the “pot pie” category

Figure 4: Comparing visual diversity between the samples from a vanilla unconditional GAN, PacGAN2, our method, and real images for

specific categories. Images are sorted in decreasing order by classifier confidence on the class from top left to bottom right. Our method

successfully increases sample diversity compared to vanilla GAN and PacGAN2. More visualizations are available in the arXiv version.

We set λf = 5 × 10−4. When initialized using Fz and Fc,

this optimization faithfully reconstructs images generated by

G, and reconstruction errors of real images reveal cases that

G omits. More details regarding image reconstruction can

be found in our arXiv version.

To evaluate how well our model can reconstruct the data

distribution, we compute the average LPIPS perceptual sim-

ilarity score [42] between 50,000 ground truth images and

their reconstructions. Between two images, a low LPIPS

score suggests the reconstructed images are similar to target

real images. We find that on Places365, our model is able

to better reconstruct the real images, with an average LPIPS

score of 0.433, as compared to the baseline score of 0.528.

Figure 5 visually compares reconstructions of Places365

training set images created by our model with those of the

same architecture trained without self-conditioning and clus-

tering algorithm. Reconstructions done by previous training

iterations are also compared to the final models. Visualiza-

tions show distinctive features that can be reconstructed by

our model that are not present in the baseline model, includ-

ing improved forms for cars, buildings, and indoor objects.

These features correspond to common visual features that ap-

pear in the clusters. Self-conditioned classes include classes

of images with cars, buildings, indoor rooms, and scenes

from specific viewpoints.

We apply a similar procedure to evaluate reconstructions

of a particular cluster, obtaining the average LPIPS score

between real images in the cluster and their reconstructed

images. Figure 6 shows quantitatively that per cluster LPIPS

of our method are noticeably better than those of the uncon-

ditional GANs baseline, which is consistent with Figure 5.

4.5. Clustering Metrics

We measure the quality of our clustering through Normal-

ized Mutual Information (NMI) and clustering purity across

all experiments in Table 4.

NMI is defined as NMI(X,Y ) = 2I(X;Y )
H(X)+H(Y ) , where I

is mutual information and H is entropy. NMI lies in [0, 1],
and higher NMI suggests higher quality of clustering. Purity

is defined as 1
N

∑

c maxy |πc ∩ π∗
y |, where {πc}

k
c=1 is the

partition of inferred clusters and {π∗
y}

k
y=1 is the partition

given by the true classes. Higher purity suggests higher

clustering quality. Purity is close to 1 when each cluster has

a large majority of points from some true class set.
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Figure 5: Improvements of GAN reconstructions during training. Each GAN-generated image shown has been optimized to reconstruct a

specific training set image from the Places dataset, at right. Selected clusters formed by our algorithm are shown; these clusters include

images with cars, skyscrapers, and indoor rooms, as well as scenes sharing specific viewpoints. Reconstructions by generators from an early

training iteration of each model are compared with the final trained generators. Conditioning the model results in improved synthesis of

clustered features such as wheels, buildings, and indoor objects.
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Figure 6: We calculate the average reconstruction LPIPS error for

training images in each of the clusters. Overall, our method is able

to achieve better reconstruction than a vanilla GAN.

We observe that many of our clusters in large-scale

datasets do not correspond directly to true classes, but in-

stead corresponded to object classes. For example, we saw

that many clusters corresponded to people and animals, none

of which are part of a true class, which is an explanation for

low clustering metric scores.

Though our clustering scores are low, they are signifi-

cantly better than a random clustering. Randomly clustering

ImageNet to 100 clusters gives an NMI of 0.0069 and a pu-

rity of 0.0176; randomly clustering Places to 100 clusters

Table 4: Normalized Mutual Information (NMI) and purity metrics

for the clusters obtained by our method on various datasets.

2D

Ring

2D

Grid (25)

Stacked

MNIST
CIFAR-10 Places365 ImageNet

NMI 1.0 0.9716 0.3018 0.3326 0.1744 0.1739

Purity 1.0 0.9921 0.1888 0.1173 0.1127 0.1293

gives an NMI of 0.0019 and a purity of 0.0137.

5. Conclusion

We have found that when a conditional GAN is trained

with clustering labels derived from discriminator features, it

is effective at reducing mode collapse, outperforming several

previous approaches. We observe that the method continues

to perform well when the number of synthesized labels ex-

ceeds the number of modes in the data. Furthermore, our

method scales well to large-scale datasets, improving Fréchet

Inception Distance and Inception Score measures on Ima-

geNet and Places365 generation, and generating images that

are qualitatively more diverse than an unconditional GAN.
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