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Abstract

High-quality 3D reconstructions from endoscopy video

play an important role in many clinical applications, in-

cluding surgical navigation where they enable direct video-

CT registration. While many methods exist for general

multi-view 3D reconstruction, these methods often fail to

deliver satisfactory performance on endoscopic video. Part

of the reason is that local descriptors that establish pair-

wise point correspondences, and thus drive reconstruction,

struggle when confronted with the texture-scarce surface of

anatomy. Learning-based dense descriptors usually have

larger receptive fields enabling the encoding of global in-

formation, which can be used to disambiguate matches. In

this work, we present an effective self-supervised training

scheme and novel loss design for dense descriptor learn-

ing. In direct comparison to recent local and dense descrip-

tors on an in-house sinus endoscopy dataset, we demon-

strate that our proposed dense descriptor can generalize

to unseen patients and scopes, thereby largely improving

the performance of Structure from Motion (SfM) in terms

of model density and completeness. We also evaluate our

method on a public dense optical flow dataset and a small-

scale SfM public dataset to further demonstrate the effec-

tiveness and generality of our method. The source code is

available at https://github.com/lppllppl920/

DenseDescriptorLearning-Pytorch.

1. Introduction

Background. In computer vision, correspondence es-

timation aims to find a match between 2D points in image

space and corresponding 3D locations. Many potential ap-

plications rely on this fundamental task, such as Structure

from Motion (SfM), Simultaneous Localization and Map-

ping (SLAM), image retrieval, and image-based localiza-

tion. In particular, SfM and SLAM have been shown to

be effective for endoscopy-based surgical navigation [20],

video-CT registration [15], and lesion localization [40].

These successes rely on the fact that SfM and SLAM es-

timate a sparse 3D structure of the observed scene as well

as the camera’s trajectory from unlabeled video, simultane-

ously.

The advantages of SLAM and SfM are complementary.

In applications that require real-time estimation, e.g. surgi-

cal navigation, SLAM provides a computationally efficient

framework for correspondence estimation. Robust camera

tracking requires a dense 3D reconstruction estimated from

previous frames, but computational constraints usually limit

SLAM to local optimization. This often leads to drifting

errors, especially when the trajectory loop is not evident.

On the other hand, SfM prioritizes high density and accu-

racy for the sparse 3D structure. This is due to the time-

consuming global optimization used in the bundle adjust-

ment, which limits SfM to applications where offline esti-

mation is acceptable.

In video-CT registration, a markerless approach relies on

correspondence estimation to provide a sparse reconstruc-

tion and the camera trajectory from the video. The recon-

struction is then registered to the CT surface model with a

registration algorithm [32]. This requires SfM since it relies

on a dense and accurate 3D reconstruction. The accuracy of

the estimated camera trajectory is also crucial so that the

camera pose of each video frame aligns with the CT sur-

face model. However, when estimating camera trajectory

from endoscopic video, typical SfM or SLAM pipeline fails

to produce a high-quality reconstruction or accurate cam-

era trajectory. Recent work aims to mitigate this shortcom-

ing through procedural changes in the video capture, which

we discuss below. In this work, we focus on developing a

more effective feature descriptor, which is used in the fea-

ture extraction and matching module of the pipeline, to sub-

stantially increase the density of extracted correspondences
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(cf. Fig. 1).

Related Work. A local descriptor consists of a fea-

ture vector computed from an image patch, whose size and

orientation are usually determined by a keypoint detector,

such as Harris [10], FAST [29], and DoG [18]. The hand-

crafted local descriptor SIFT [18] has been arguably the

most popular feature descriptor for correspondence estima-

tion and related tasks. In recent years, advanced variants of

SIFT have been proposed, such as RootSIFT [1], RootSIFT-

PCA [3], and DSP-SIFT [7]. Some of these outperform the

SIFT descriptor in tasks such as fundamental matrix estima-

tion [2], pair-wise feature matching, and multi-view recon-

struction [31]. Additionally, learning-based local descrip-

tors have grown in popularity with the advent of deep learn-

ing, with recent examples being L2-Net [36], GeoDesc [19],

and HardNet [22]. Though learning-based methods have

outperformed hand-crafted ones in many areas of computer

vision, advanced variants of SIFT continue to perform on

par with or better than their learning-based local descrip-

tors [2, 31].

Several dense descriptors have been proposed, such as

DAISY [37], UCN [5], and POINT2 [16]. Compared with

local descriptors, which follow a detect-and-describe ap-

proach [8], dense descriptors extract image information

without using a keypoint detector to find specific locations

for feature extraction. As a result, dense descriptors have

higher computation efficiency than local descriptors in ap-

plications that require dense matching. They also avoid the

possibility of repeated keypoint detection [8]. On the other

hand, learning-based dense descriptors typically show bet-

ter performance compared with hand-crafted ones. This is

because Convolutional Neural Networks (CNN) can encode

and fuse high-level context and low-level texture informa-

tion more effectively than manual rules given enough train-

ing data. Our method belongs to the category of learning-

based dense descriptors. There are also works that jointly

learn a dense descriptor and a keypoint detector, such as

SuperPoint [6] and D2-Net [8], or learn a keypoint detector

that improves the performance of a local descriptor, such as

GLAMpoints [38].

In the field of endoscopy, researchers have applied SfM

and SLAM to video from various anatomy, including si-

nus [15], stomach [40], abdomen [9, 20], and oral cav-

ity [27]. Popular SfM pipelines such as COLMAP [30]

and SLAM systems such as ORB-SLAM [24] usually do

not achieve satisfactory results in endoscopy without fur-

ther improvement. Several challenges stand in the way of

successful correspondence estimation in endoscopic video.

First, tissue deformation, as in video from a colonoscopy,

violates the static scene assumption in these pipelines. To

mitigate this issue, researchers have proposed SLAM-based

methods that tolerate scene deformation [14, 34]. Second,

the textures in endoscopy are often smooth and repetitive,

which makes the sparse matching with local descriptors

error-prone. Widya et al. [40] proposed spreading IC dye in

the stomach to manually add texture to the surface, increas-

ing the matching performance of local descriptors. This

leads to denser and more complete reconstructions. Qiu et

al. [27] use a laser projector to project patterns on the sur-

face of the oral cavity to add more textures to improve the

performance of a SLAM system. However, introducing ad-

ditional procedures as above is usually not desired by sur-

geons because it will interrupt the original workflow. There-

fore, instead of adding textures, we develop a dense descrip-

tor that works well on the texture-scarce surface to replace

the original local descriptors in these systems.

Contributions. First, to the best of our knowledge,

this is the first work that applies learning-based dense de-

scriptors to the task of multi-view reconstruction in en-

doscopy. Second, we present an effective self-supervised

training scheme which includes a novel loss called Relative

Response Loss that can train a high-precision dense descrip-

tor with the learning style of keypoint localization. The pro-

posed training scheme outperforms the popular hard nega-

tive mining strategy used in various learning-based descrip-

tors [5, 4, 22]. For evaluation, we have conducted extensive

comparative studies on the task of pair-wise feature match-

ing and SfM on a sinus endoscopy dataset, pair-wise feature

matching on the KITTI Flow 2015 dataset [21], and SfM on

a small-scale natural scene dataset [35].

2. Methods

In this section, we describe our self-supervised training

scheme for dense descriptor learning, which includes over-

all network architecture, training scheme, custom layers,

loss design, and a dense feature matching method.

Overall Network Architecture. As shown in Fig. 2,

the training network is a two-branch Siamese network. The

input is a pair of color images, which are used as source and

target. The training goal is, given a keypoint location in the

source image, finding the correct corresponding keypoint

location in the target image. A SfM method [15] with SIFT

is applied to video sequences to estimate the sparse 3D re-

constructions and camera poses. The groundtruth point cor-

respondences are then generated by projecting the sparse

3D reconstructions onto the image planes using the esti-

mated camera poses. The dense feature extraction module is

a fully convolutional DenseNet [13] which takes in a color

image and output a dense descriptor map that has the same

resolution as the input image and the length of the feature

descriptor as the channel dimension. The descriptor map

is L2-normalized along the channel dimension to increase

the generalizability [39]. For each source keypoint location,

the corresponding descriptor is sampled from the source de-

scriptor map. Using the descriptor of the source keypoint as

a 1×1 convolution kernel, a 2D convolution is performed on
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Figure 1. Qualitative comparison of SfM performance in endoscopy. The figure shows the performance of different descriptors on the

task of SfM on the same sinus endoscopy video sequence. The comparison descriptors are ours, UCN [5] trained with recently proposed

Hardest Contrastive Loss [4] on endoscopy data, HardNet++ [22] fined-tuned with endoscopy data, and SIFT [18]. The first row shows

the same video frame and the reprojection of the corresponding sparse 3D reconstruction from SfM. The second row displays the sparse

reconstructions and relevant statistics; the number in the first row of each image is the number of points in the reconstruction; the two

numbers in the second row of each image are the number of registered views and the total number of views in the sequence. The red points

are those not visible in the showed frame. The yellow points are in the field of view of the displayed frame but reconstructed by other

frames. The triangulation of blue points in the figure involves the displayed frame.

Figure 2. Overall network architecture. The training data consists of a pair of source and target images and groundtruth source-target

2D point correspondences. The source and target images are randomly selected from the frames which share observations of the same 3D

points. For each pair of images, a certain number of point correspondences are randomly selected from the available ones in each training

iteration. For the simplicity of illustration, only one target-source point pair and the corresponding target heatmap are shown in the figure.

All concepts in the figure are defined in the Methods section.

the target descriptor map in the Point-of-interest (POI) Conv

Layer [16]. The computed heatmap represents the similarity

between the source keypoint location and every location on

the target image. The network is trained with proposed Rel-

ative Response Loss (RR) to force the heatmap to present

high response only at the groundtruth target location. The

idea of converting the problem of descriptor learning to key-

point localization is proposed by Liao et al. [16], which was

originally used to solve the problem of X-ray-CT 2D-3D

registration.

Point-of-Interest (POI) Conv Layer. This layer is

used to convert the problem of descriptor learning to key-
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point localization [16]. For a pair of source and target input

images, a pair of dense descriptor maps, Fs and Ft, are

generated from the feature extraction module. The size of

an input image and a descriptor map are 3 × H × W and

C × H × W , respectively. For a descriptor at the source

keypoint location xs, the corresponding feature descrip-

tor, Fs (xs), is extracted with the nearest neighbor sam-

pling, which could be changed to other sampling methods if

needed. The size of the descriptor is C × 1× 1. By treating

the sampled feature descriptor as a 1×1 convolution kernel,

the 2D convolution operation is performed on Ft to gener-

ate a target heatmap, Mt, storing the similarity between the

source descriptor and every target descriptor in Ft.

Relative Response Loss (RR). The loss is proposed

with the intuition that a target heatmap should present a high

response at the groundtruth target keypoint location and the

responses at other locations should be suppressed as much

as possible. Besides, we do not want to assume any prior

knowledge on the response distribution of the heatmap to

preserve the potential of multimodal distribution to respect

the matching ambiguity of challenging cases. To this end,

we propose to maximize the ratio between the response at

the groundtruth location and the summation of all responses

of the heatmap. Mathematically, it is defined as,

Lrr = − log

(

eσMt(xt)

∑

x
eσMt(x)

)

, where (1)

a scale factor σ is applied to the heatmap Mt to enlarge

the value range which was [−1, 1]. A spatial softmax is

then calculated at the groundtruth location xt of the scaled

heatmap, where the denominator is the summation of all

elements of the scaled heatmap. The logarithm operation

is used to speed up the convergence. We observe that, by

only penalizing the value at the groundtruth location after

spatial softmax operation, the network learns to reduce the

response at the other locations and increase the response at

the groundtruth location effectively. We compare the fea-

ture matching and SfM performance of dense descriptors

trained with different common loss designs that are orig-

inally for the task of keypoint localization in the Experi-

ments section. A qualitative comparison of target heatmaps

generated by different dense descriptors is shown in Fig. 3.

Dense Feature Matching. For each source keypoint lo-

cation in the source image, a corresponding target heatmap

is generated with the method above. The location with the

largest response value in the heatmap is selected as the es-

timated target keypoint location. The descriptor at the esti-

mated target keypoint location then performs the same op-

eration on the source descriptor map to estimate the source

keypoint location. Because of the characteristics of dense

matching, the traditional mutual nearest neighbor criterion

used in the pair-wise feature matching of a local descriptor

is too strict. We relax the criterion by accepting the match as

UCN-C UCN-HC Softarg. Softarg.+BCE Softmax+BCE RR+Softarg. RR

PCK@5px 25.5 58.8 36.5 44.6 35.4 57.9 63.0

PCK@10px 35.0 67.2 54.6 63.1 51.1 68.6 71.9

PCK@20px 47.0 74.0 73.6 77.4 66.0 78.6 80.0

Table 1. Evaluation of feature matching performance in en-

doscopy. This table shows the average percentage of correct key-

points (PCK) with threshold 5px, 10px, and 20px over all 9 se-

quences from the 3 testing patients. The PCK is calculated on

all image pairs whose interval is within 20 frames. For each pair,

PCK is computed by comparing the dense matching results with

the groundtruth point correspondences from SfM results. The fea-

ture matching results in each column are generated by the descrip-

tor whose name is on the first row. From left to right, the eval-

uated descriptors are UCN trained with Contrastive Loss (UCN-

C) [5], UCN trained with Hardest Contrastive Loss (UCN-HC) [4],

replacing the proposed Relative Response Loss (RR) with Soft-

argmax [12], replacing RR with Softargmax and Binary Cross En-

tropy (BCE), replacing RR with spatial softmax and BCE [11],

RR and Softargmax, and the proposed training scheme with RR.

The model trained with the proposed RR achieves the best average

matching accuracy.

long as the estimated source keypoint location is within the

vicinity of the original source keypoint location, which we

call cycle consistency criterion. The computation of dense

matching can be parallelized on modern GPU by treating

all sampled source descriptors as a kernel with the size of

N × L× 1× 1; N is the number of query source keypoint

locations used as the output channel dimension; L is the

length of the feature descriptor used as the input channel

dimension of a standard 2D convolution operation.

3. Experiments

We evaluate our proposed method on three datasets. Si-

nus endoscopy dataset is used to evaluate the performance

of local and dense descriptors on the task of pair-wise fea-

ture matching and SfM in endoscopy. KITTI Flow 2015

dataset [21] is used to evaluate the performance of dense de-

scriptors on the task of pair-wise feature matching in natural

scenes. A small-scale dataset with a collection of building

photos [35] is used to evaluate the performance of local and

dense descriptors on the task of SfM in natural scenes. All

experiments are conducted on a workstation with 4 NVIDIA

Tesla M60 GPUs, each with 8 GB memory, and the method

is implemented using PyTorch [25].

Evaluation on Sinus Endoscopy. The dataset consists

of video data collected from 8 patients and 2 cadavers. The

overall duration is around 30 minutes. For the ease of ex-

periments, all images are downsampled to 256 × 320 pix-

els during both training and testing. For our method, we

use a light-weight version of Fully Convolutional DenseNet

(FC-DenseNet) [13] with 32 layers and filter growth rate of

10. The length of the output descriptor is 256; the overall

number of parameters is 0.53 million. The model is trained

with Stochastic Gradient Descent with the cyclic learning
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Figure 3. Qualitative comparison of feature matching performance in endoscopy. The figure qualitatively shows the performance

of three dense descriptors trained with different loss designs on the task of pair-wise feature matching. The first two rows are training

images and the rest are testing ones. The first and second columns show the source-target image pairs, where the green crossmarks indicate

the groundtruth source-target point correspondences. For each dense descriptor, a target heatmap, as shown in the last three columns, is

generated from the POI Conv Layer. To visualize the contrast better, the displayed heatmap is normalized with spatial softmax operation

and then with the maximum value of the processed heatmap. The numbers shown in the last three columns are the pixel errors between the

estimated target keypoint locations and the groundtruth ones. The fourth column shows the results of UCN [5] trained with recent Hardest

Contrastive Loss on the endoscopy dataset. The model in the fifth column is trained with the same method as ours except that the training

loss is Softargmax [12] and BCE instead of the proposed Relative Response Loss. The results show that our method produces fewer high

responses, which leads to better matching accuracy.

Seq. 1-1 (381) Seq. 1-2 (314) Seq. 1-3 (370) Seq. 2-1 (455) Seq. 2-2 (630) Seq. 2-3 (251) Seq. 3-1 (90) Seq. 3-2 (1309) Seq. 3-3 (336)

SIFT 104 474 5.62 219 1317 5.58 113 938 5.16 119 751 5.81 295 10384 6.43 122 1896 5.38 48 435 5.09 55 953 5.51 169 2169 5.57

DSP-SIFT 149 783 5.09 235 1918 5.06 132 1228 4.78 404 6557 5.32 296 7322 5.64 167 3450 5.00 42 293 4.81 150 745 5.17 180 1180 5.18

RootSIFT-PCA 104 384 5.89 219 1004 5.67 115 661 5.11 227 821 5.82 295 10147 6.43 128 2025 5.46 50 255 5.18 217 3188 5.35 176 2450 5.62

HardNet++ 180 1554 4.63 233 2162 4.81 244 3003 4.65 424 4755 4.65 534 9828 4.85 225 5727 4.56 79 610 4.66 416 4658 4.62 228 3196 4.66

UCN-C 349 13402 4.26 311 13198 4.50 248 8336 4.43 405 11935 4.13 293 8258 4.46 196 9273 3.98 77 2445 4.10 503 16166 4.29 206 3736 4.17

UCN-HC 381 15274 4.84 314 13519 4.84 352 16900 4.89 455 33299 4.67 630 45375 4.81 251 26322 4.37 86 2988 4.39 484 13394 4.39 283 11555 4.39

Softarg. 348 5966 4.74 312 7774 4.74 252 7426 4.63 293 4861 4.50 547 12590 4.24 205 2847 4.22 59 534 4.17 451 7247 4.76 302 6039 4.26

Softarg.+BCE 357 11502 4.47 314 10373 4.57 244 10339 4.55 426 19848 4.34 560 22482 4.19 125 1150 4.04 46 774 4.04 500 12187 4.51 303 6268 4.06

Softmax+BCE 165 2246 4.26 306 8885 4.26 228 8628 4.19 378 8559 4.10 296 12081 4.19 77 1124 3.96 34 353 4.02 261 5024 4.19 181 2973 4.07

RR+Softarg. 381 19921 4.99 314 20375 4.98 256 20550 4.94 455 44388 4.75 630 39752 4.64 244 10055 4.35 87 5071 4.33 507 20906 4.61 312 12856 4.36

RR 381 27317 5.07 314 22898 5.23 367 29734 5.06 455 41380 4.78 630 45654 4.80 251 19645 4.43 89 6763 4.62 507 35645 4.68 313 21703 4.53

Table 2. Evaluation of SfM performance in endoscopy. We compare the SfM results of 9 sequences from the 3 testing patients. The

SfM results are generated by the descriptors whose names are on the first column. We compare the SfM performance of local and dense

descriptors. Starting from the first descriptor, these are SIFT [18], DSP-SIFT [7], RootSIFT-PCA [3], HardNet++ [22] fine-tuned with the

endoscopy dataset, UCN trained with Contrastive Loss (UCN-C) [5], UCN trained with Hardest Contrastive Loss (UCN-HC) [4], replacing

the proposed RR with Softargmax [12], replacing RR with Softargmax and BCE, replacing RR with spatial softmax and BCE [11], RR and

Softargmax, and the proposed training scheme with RR. Each number in the first row represents the number of frames in each sequence. In

the following rows, for each sequence and each method, three numbers from left to right are the number of registered views, the number of

sparse points, and the average track length of sparse points. It shows that the proposed method (RR) obtains the most number of registered

views in all sequences and the densest reconstructions for most of the sequences. SIFT or RootSIFT-PCA achieve highest average track

length in all sequences.
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rate [33] ranging from 1.0e-4 to 1.0e-3. The scale factor

σ used in the Relative Response Loss is empirically set to

20.0. Data from 5 patients and 1 cadaver are used for train-

ing; the other cadaver is used for validation; the remaining

3 patients are for testing. Because our evaluation focuses

on the loss design, for fairness, we use the same network

architecture described above for all dense descriptors to ex-

tract features. All models are trained until the performance

on the validation data stops improving. The evaluation re-

sults of pair-wise feature matching are shown in Table 1.

To measure the accuracy of feature matching, we use the

percentage of correct keypoints (PCK) with three thresh-

olds, which are 5, 10 and 20 pixels. The matching is deter-

mined as correct if the detected target keypoint location is

within a specified number of pixels. The results show that

our proposed training scheme for the dense descriptor out-

performs competing methods for dense descriptor learning,

which are Contrastive Loss in [5] and Hardest Contrastive

Loss in [4]. Besides, since we convert the problem of de-

scriptor learning to keypoint localization, we also evaluate

the performance of several loss functions used in keypoint

localization by training the proposed network with these in-

stead of Relative Response Loss. For the proposed method,

generating and matching a pair of dense descriptor maps

under the current setting takes about 37ms. To evaluate the

performance of local and dense descriptors on the task of

SfM in endoscopy, we use a simple SfM pipeline [15] which

takes in pair-wise feature matches, uses Hierarchical Multi-

Affine [26] for geometric verification, and global bundle ad-

justment [23] for optimization. Pair-wise feature matches

are estimated in all image pairs whose interval is within 30

frames. For all local descriptors, DoG [18] is used to ex-

tract keypoint locations in both source and target images

for sparse feature matching with mutual nearest neighbor

(MNN) as the matching criterion. For dense descriptors,

DoG is used to extract keypoint locations in only source

images and dense matching is performed on the target im-

ages for these detected candidate keypoint locations in the

source images. The false matches are ruled out using the

cycle consistency criterion described in the Dense Feature

Matching subsection. Because of the texture smoothness

of endoscopy, we change the hyperparameters of DoG so

that more candidate keypoint locations can be detected. The

number of layers in each octave is 8; the contrast threshold

is 5.0e−5; the edge threshold is 100.0; the standard devi-

ation of the Gaussian applied to the image at the first oc-

tave is 1.1. All hand-crafted descriptors use the parameter

setting recommended by the original authors. The SfM re-

sults are shown in Table 2. Note that we build an image

patch dataset from SfM results in endoscopy using the same

method as [19] to fine-tune the HardNet++ [22] for a fair

comparison, which does have better performance compared

with the pre-trained model released by the authors.

Figure 4. Qualitative comparison of feature matching perfor-

mance in KITTI Flow 2015 [21]. The optical flow estimates

from three dense descriptors for the same source-target image pair

are shown in this figure. The descriptors are our method, UCN-

HC [4], and the proposed method trained with Softargmax [12]

instead of RR. The numbers shown in each image in the second

column represent the putative match ratio, precision, and matching

score of the optical flow estimates. We use the cycle consistency

criterion with 6px threshold to rule out potential false matches.

The images in the first column are source, target, and groundtruth

dense optical flow map, where black values mean there are no

valid measurements. The second column shows the dense opti-

cal flow estimates, where the black pixels include those with no

groundtruth measurements or ruled out with cycle consistency cri-

terion.

Evaluation on KITTI Flow 2015 [21]. In this eval-

uation, we evaluate the performance of dense descriptors

on the task of optical flow estimation. First, we estimate

the Matching Score = #Inliner Matches
#Features

. The #Inlier Matches

is the number of matches where the distance between the

estimated target keypoint location and the groundtruth tar-

get location is within 10 pixels. The #Features is equal

to the number of pixels in an image. We also evaluate

the Putative Match Ratio = #Putative Matches
#Features

and Precision =
#Inlier Matches

#Putative Matches
[31]. The match is determined as putative if it

passes the cycle consistency criterion. We follow the same

training protocol as [5], where 1000 point correspondences

are randomly selected for each image pair in the KITTI

dataset and fixed during training. The models trained with

the proposed Relative Response Loss, Softargmax loss [12],

Contrastive Loss [5], and Hardest Contrastive Loss [4], re-

spectively, are evaluated. To evaluate the performance of

different loss designs, we train all models with the same

network architecture for feature extraction. We use FC-

DenseNet with 38 layers and filter growth rate of 16. The

overall number of parameters is 1.68 million. Other param-

eter settings are the same as the evaluation in endoscopy.

The images are downsampled by a factor of 2 during train-

ing. Two top-performing results of the comparison methods

presented in [5] are cited here. An example of dense opti-

cal flow estimates from different trained models is shown

in Fig. 4. The quantitative evaluation results are shown in

Table 3.

Evaluation on Multi-view Stereo 2008 [35]. The
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DaisyFF DM UCN-C UCN-HC Softargmax RR

Putative Match Ratio (%) 100.0 100.0 73.6 80.6 46.0 88.0

Precision (%) 79.6 85.6 73.2 90.9 70.7 89.8

Matching Score (%) 79.6 85.6 61.9 76.9 41.5 81.7

Table 3. Evaluation of optical flow estimation on KITTI Flow

2015 [21]. DaisyFF [41] and DM [28] use global optimization

to estimate a dense optical flow map between a pair of images.

The last four methods are introduced in Table 2. It shows that, by

removing unconfident matches using cycle consistency criterion

with 6 pixels as the threshold, our method achieves marginally

lower precision than UCN-HC, whereas UCN-HC has lower puta-

tive match ratio than ours. Our method obtains the highest match-

ing score among the last four methods. Note that we assume the

first two methods do not discard any matches, which is why the

putative match ratios are shown as 100.

dataset consists of several small-scale sequences where the

same building is captured from different viewpoints within

each sequence. We evaluate the performance of the pro-

posed method on the task of SfM in natural scenes and com-

pare it with the hand-crafted local descriptors. Our model is

trained with the SfM results of gerrard-hall, personal-hall,

and south-building, which were released by the author of

COLMAP [30]. We use FC-DenseNet with 32 layers and

filter growth rate as 16. The overall number of parameters

is 1.26 million. Other parameter settings are the same as

the evaluation in endoscopy. All images for training and

testing are downsampled to 256 × 320. All descriptors use

the DoG keypoint detector with the same parameter setting

as the evaluation in endoscopy. The evaluation results are

shown in Table 4. Most experiments are conducted on the

same SfM pipeline [15] as in endoscopy. SIFT and DSP-

SIFT are also evaluated with COLMAP.

4. Discussion

Intuition on the Performance Difference of Various

Training Schemes for Dense Descriptor Learning. We

attribute the performance difference between our method

and UCN-HC to the different strategies of training data

sampling. For UCN-HC, given a positive point pair, one

hardest negative point is obtained in a minibatch for each of

the points in the pair to calculate the negative loss. A di-

ameter threshold is also set to avoid mining points that are

too close to the positive point. A positive margin threshold

and negative margin threshold is also set to avoid penalizing

positive pairs that are close enough or negative pairs that

are far enough. There are several potential problems with

this setting. First, the strategy of hardest sample selection,

which was also used similarly in the local descriptor train-

ing [22], could potentially lead to training instability, which

was also mentioned by the original authors in their Github

repository. Because for each iteration of training, only the

hardest negative samples in a minibatch provide gradients

to the network training with other samples being ignored,

the gradient direction may not be helpful to these ignored

Entry (10) Fountain (11) HerzJesu (25) Castle (30)

SIFT-COLMAP 10 1557 3.86 11 1566 4.33 25 3637 5.91 30 3718 4.57

DSP-SIFT-COLMAP 10 1849 3.93 11 1769 4.42 25 3650 5.90 30 4203 4.78

SIFT 10 1444 3.54 10 2775 3.63 24 6706 4.59 30 4589 3.76

DSP-SIFT 10 3041 3.79 11 4244 3.85 25 7334 4.35 22 1804 3.96

RootSIFT-PCA 7 1109 3.42 10 2467 3.54 25 6584 4.47 21 3991 3.84

RR 10 2980 3.62 7 6293 3.72 25 12807 3.96 29 3684 3.67

RR-SG 10 5310 3.60 8 7676 3.90 24 15799 4.28 27 3431 3.88

Table 4. Evaluation of SfM performance on Multi-view Stereo

2008 [35]. Though the scene variation between the training and

testing dataset is large, our method (RR) still performs compara-

bly against the hand-crafted local descriptors. However, compared

with endoscopy, we do observe a larger amount of false matches

in the pair-wise feature matching phase. This potentially means a

dense descriptor needs a larger amount of training data or a lim-

ited receptive field to avoid overfitting when the scene variation is

large. To test the hypothesis, we train another model, which is RR-

SG, with 4 times smaller receptive field and gray image as input

and similar number of parameters to RR. It shows that RR-SG pro-

duces denser reconstructions in three out of four sequences. This

might mean, compared with RR-SG, RR overfits to the high-level

context information to a larger degree. Compared with the SfM

pipeline in [15], COLMAP has more stable performance in terms

of the completeness of the camera trajectory but usually smaller

number of sparse points. This observation is similar to the results

in [30], where they compared COLMAP with other SfM pipelines.

It is probably due to the stricter inlier criteria of COLMAP.

samples. This could potentially lead to training oscillation

where hardest samples jump among different samples but

the network never converges to the optimal solution. The

results of instability can be found in Fig. 3, where many

high responses are scattered in the heatmap. Second, the

manually specified diameter and margin thresholds could

also lead to a suboptimal solution. Because samples that

are within the diameter of a selected sample are not con-

sidered as negative ones, the network will never try to push

nearby samples away from the selected one. Therefore, this

limits the matching precision of the descriptor. This again

can be observed in Fig. 3, where the high-response clusters

around the groundtruth target locations appear to be wider

than our proposed method. The margin thresholds in the

loss design also remove the possibility of further pushing

away negative samples from the positive ones and pulling

positive pairs closer, which could be another reason for ob-

taining such heatmaps. As a comparison, in our method, for

each sampled point in the source image, all points in the tar-

get image are observed in one training iteration. Only the

groundtruth target point is considered a positive point and

all other points are considered negative ones. This avoids

the oscillation related to the descriptor distance between the

selected source point and all points in the target image. The

reason why this training scheme will not suffer from the

problem of data imbalance is due to the proposed Relative

Response Loss (RR). The goal of RR is to make the ratio

between the response at the groundtruth target location and

the summation of all responses in the target image as high as

possible. By doing this, the network will try to suppress all
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responses except the one at the target groundtruth location.

It does not assume any prior distribution of the response

heatmap and conveys the goal of precise feature matching

clearly, which we believe improves the expressivity of the

network.

We have also evaluated some common losses used in

the task of keypoint localization, such as spatial softmax

+ BCE and Softargmax [12]. Spatial softmax + BCE is

used for heatmap regression so that the network produces

a similar heatmap as the groundtruth one. However, be-

cause the groundtruth distribution is usually assumed to

be Gaussian with a manually specified standard deviation,

this limits the expressivity of the network in cases where

Gaussian distribution is not optimal. This can be observed

in the third row in Fig. 3, where the model trained with

Softargmax + BCE tries to infer a Gaussian-like distribu-

tion around the groundtruth location. As a comparison, the

learned descriptor in our proposed method naturally pro-

duces high response along the edge of the surface, which

is where the most ambiguities come from. Besides, BCE

also suffers from the data imbalance problem for the case

where positive and negative samples are highly unbalanced,

which is also observed in [17]. Softargmax converts the

task of keypoint localization to a position regression task

where the network tries to produce a heatmap so that the

centroid of the heatmap is close to the groundtruth target

location. However, this suffers from the fact that any dis-

tribution where the centroid is equal to the target location

will not be further penalized. Therefore, Softargmax makes

the network easily trapped in suboptimal solutions of learn-

ing a discriminative descriptor, whereas there are no such

training ambiguities in RR. Though this ambiguity can be

reduced by combining Softargmax with BCE, the perfor-

mance is still worse than RR, as observed in Table 1 and 2,

because of the unimodal distribution assumption.

Local Descriptor vs. Learning-based Dense Descrip-

tor. We observe that learning-based dense descriptors

usually perform better than local descriptors in the exper-

iments related to SfM in sinus endoscopy. We attribute this

to two reasons. First, local descriptors usually need a key-

point detector, such as DoG [18], to detect candidate key-

points before sparse feature matching. The lack of repeata-

bility in the keypoint detector makes many true matches un-

able to be found because either source or target locations for

these matches are not detected as candidate keypoints in the

keypoint detection phase. As observed in [8], the unstable

detection is because the detector usually uses low-level in-

formation, which is often significantly affected by changes

such as viewpoint and illumination. Second, the smooth and

repetitive textures in endoscopy make it challenging for the

local descriptors that have a limited receptive field to find

correct matches even if all points in the true matches are de-

tected by the keypoint detector. On the other hand, learning-

based dense descriptors do not rely on the keypoint detector

to produce repeatable keypoint locations and have a larger

receptive field.

Compared with local descriptors, dense descriptors also

have disadvantages. First, a dense descriptor is more

memory-demanding. This is because, to parallelize the

dense matching procedure with many keypoint locations,

the descriptors need to be organized in the form described

in the Dense Feature Matching subsection. This requires

memory to store a response target heatmap for each source

keypoint location before the target location is estimated

from the heatmap. Though a sparse matching can also be

performed with a dense descriptor, the performance will

degrade because of the reliance on a repeatable keypoint

detector. Therefore, the practical usage of a dense de-

scriptor on a low-cost embedded system is limited. Sec-

ond, learning-based dense descriptors seem to be more

overfitting-prone compared with learning-based local de-

scriptors. This is because the dense descriptor network

relies on both high-level and low-level image information

to generate a descriptor map. Because high-level informa-

tion, presumably, has more variation compared with low-

level texture information that learning-based local descrip-

tors only need, more training data is probably needed for a

dense descriptor. The reason why dense descriptors seem

to generalize well in endoscopy could be due to the lower

anatomical variation compared with the variation in natural

scenes.

5. Conclusion

In this work, we propose an effective self-supervised

training scheme with a novel loss design for the learning-

based dense descriptor. To the best of our knowledge, this is

the first work that applies a learning-based dense descriptor

to endoscopy for multi-view reconstruction. We evaluate

our method on both endoscopy and natural scene dataset

on the task of pair-wise feature matching and SfM, where

our proposed method outperforms other local and dense de-

scriptors on a sinus endoscopy dataset and outperforms re-

cent dense descriptors in a dense optical flow public dataset.

The extensive comparison study helps to gain more insights

on the difference between local and dense descriptors, and

the effects of different loss designs on the overall perfor-

mance of a dense descriptor. Because SfM is an offline

method, it is not able to support real-time localization and

mapping. We plan to extend this work to incorporate a

learning-based dense descriptor into an existing SLAM sys-

tem in the future to make it more accurate and robust for

surgical navigation in endoscopy. We also plan to adopt a

bootstrapping training method to train the dense descriptor

because of the observation that a descriptor model trained

with sparse SfM results helps the SfM estimate denser re-

constructions from both testing and training sequences.
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