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Abstract

Generative Adversarial Networks (GANs) can generate

realistic fake face images that can easily fool human beings.

On the contrary, a common Convolutional Neural Network

(CNN) discriminator can achieve more than 99.9% accuracy

in discerning fake/real images. In this paper, we conduct an

empirical study on fake/real faces, and have two important

observations: firstly, the texture of fake faces is substantially

different from real ones; secondly, global texture statistics

are more robust to image editing and transferable to fake

faces from different GANs and datasets. Motivated by the

above observations, we propose a new architecture coined

as Gram-Net, which leverages global image texture repre-

sentations for robust fake image detection. Experimental

results on several datasets demonstrate that our Gram-Net

outperforms existing approaches. Especially, our Gram-Net

is more robust to image editings, e.g. down-sampling, JPEG

compression, blur, and noise. More importantly, our Gram-

Net generalizes significantly better in detecting fake faces

from GAN models not seen in the training phase and can

perform decently in detecting fake natural images.

1. Introduction

With the development of GANs [9, 12, 13, 1], comput-

ers can generate vivid face images that can easily deceive

human beings as shown in Figure 1. (Can you guess which

images are generated from GANs?) These generated fake

faces will inevitably bring serious social risks, e.g. fake news

and evidence, and pose threats to security. Thus, powerful

techniques to detect these fake faces are highly desirable.

However, in contrast to the intensive studies in GANs, our

understanding of generated faces is fairly superficial and

how to detect fake faces is still an under-explored problem.

Moreover, fake faces in practical scenarios are from different

unknown sources, i.e. different GANs, and may undergo un-

known image distortions such as downsampling, blur, noise

and JPEG compression, which makes this task even more

challenging. In this paper, we aim to produce new insights on

understanding fake faces from GANs and propose a new ar-

1The first three are real and the last three are fake.

Figure 1. Can you determine which are real and which are fake?

(answer key below)1

chitecture to tackle the above challenges. Our contributions

are as follows.

Contribution 1. To facilitate the understanding of face im-

ages from GANs, we systematically study the behavior of

human beings and CNN models in discriminating fake/real

faces detailed in Section 3.1. In addition, we conduct exten-

sive ablation experiments to diagnose the CNN discriminator

and perform low-level statistics analysis as verification.

These empirical studies lead us to the following findings.

• Texture statistics of fake faces are substantially different

from natural faces.

• Human focus on visible shape/color artifacts to detect

fake face while CNNs focus more on texture regions.

• CNNs take textures as an important cue for fake face

detection. A ResNet model performs almost perfectly

in detecting untouched fake faces if the training data

and testing data are from the same source.

Contribution 2. Although a CNN based fake face detector

performs significantly better than human beings, it is still not

robust enough to handle real-world scenarios, where images

may be modified and/or from different unknown sources.

With further analysis of the relationship between texture and

fake face detection, we found large texture information is
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more robust to image distortions and more invariant for face

images from different GANs. However, CNNs cannot fully

capture long-range or global cues due to their limited ef-

fective receptive field as studied in [21]. Motivated by the

above observation, we further develop a novel architecture

– Gram-Net, which improves the robustness and generaliza-

tion ability of CNNs in detecting fake faces. The model

incorporates “Gram Block” into the CNN backbone shown

in Figure 5. The introduced Gram layer computes global

texture representations in multiple semantic levels, which

complements the backbone CNN.

Contribution 3 Experiments on fake faces from Style-

GAN [13], PGGAN [12], DRAGAN [15], DCGAN [29],

StarGAN [4], and real faces from CelebA-HQ [12], FFHQ

[13], CelebA [20], show that our Gram-Net achieves state-of-

the-art performance on fake face detection. Specifically, our

proposed Gram-Net is robust for detecting fake faces which

are edited by resizing (10% improvement), blurring (15%
improvement), adding noise (13% improvement) and JPEG

compressing (9% improvement). More importantly, Gram-

Net demonstrates significantly better generalization abilities.

It surpasses the compared approaches by a large margin

(more than 10% improvement) to detect fake faces generated

by GANs that are not seen in the training phase and GANs

trained for other tasks including image-to-image translation

GANs, e.g. StarGAN. Further, our experiments show that

Gram-Net (trained on StyleGAN) generalizes much better

with a 10% improvement to detect fake natural images from

GANs trained on ImageNet [16], e.g. BigGAN [3].

2. Related work

GANs for human face generation. Recently, GAN mod-

els [8, 29, 15, 1, 2, 12, 13, 19, 36, 4] have been actively

studied with applications for face image generation. One

stream of research is to design GANs [8, 29, 15, 1, 2] for

generating random face images from random vectors. Early

works [8, 29, 15, 1, 2] can generate high quality low res-

olution images but suffer from mode collapse issues for

generating high resolution images. The most advanced high

resolution (1024× 1024) GAN models – PGGAN [12] and

StyleGAN [13]– can generate high quality face images that

can even fool human beings. Another stream is to utilize

GAN models for image-to-image translation tasks [19, 36, 4],

e.g., Choi et al. proposed StarGAN model which can per-

form face image to face image translation. These generated

fake faces may cause negative social impact. In this work,

we aim to help the community gain more understanding

about GAN generated fake faces and introduce novel neural

network architecture for robust fake face image detection.

Fake GAN face detection. Recently, some researchers

have investigated the problem of fake face detection [17,

26, 27, 23, 24, 32, 34, 30]. Color information is exploited

in [17, 26]. In contrast, we found the performance of the

CNN models changes little even if color information is re-

moved. Marra et al. [23] showed that each GAN leaves

specific finger-prints on images, and proposed to identify the

source generating these images. However, the method can-

not generalize to detect fake faces from GAN models that do

not exist in the training data. Xuan et al. [32] adopted data

augmentation for improving generalization, nevertheless, fur-

ther improvements are limited by the detection algorithm.

Nataraj et al. [27] proposed to take a color co-occurrence

matrix as input for fake face detection. However, the hand-

craft feature input results in losing the information of raw

data. Zhang et al. [34] designed a model to capture the ar-

tifacts caused by the decoder. However, it failed to detect

fake images from GANs with drastically different decoder

architecture which is not seen in the training phase, while our

approach can handle this case effectively. Wang et al. [30]

proposed a neuron coverage based fake detector. However,

the algorithm is time-consuming, hard to be deployed in

real systems, and the performance is still far from satisfac-

tory. Marra et al. [25] detected fake images with incremental

learning. However, it only works when many GAN models

are accessible in the training phase. Other works [18, 33]

focused on the alignment of face landmarks to check whether

the face is edited by face-swapping tools like DeepFakes [19].

Unlike the above, we intensively analyze fake faces, and cor-

respondingly propose a novel simple framework which is

more robust and exhibits significantly better generalization

abilities.

Textures in CNNs. The texture response of CNNs has

attracted increasing attention in the last few years. Geirho

et al. [7] showed that CNN models are strongly biased on

textures rather than shapes. Our empirical study also reveals

that CNN can utilize texture for fake face detection which

is in line with the findings in [7]. Motivated by the above

observation, we further analyzed texture differences in terms

of low-level statistics. Gatys et al. [5] proposed that the

Gram matrix is a good description of texture, which is further

utilized for texture synthesis and image style transfer [6].

The above works exploit the Gram matrix for generating new

images by constructing Gram matrix based matching losses.

Our work is related to these methods by resorting to the Gram

matrix. However, different from [6, 5], our work adopts

the Gram matrix as a global texture descriptor to improve

discriminative models and demonstrates its effectiveness in

improving robustness and generalization.

3. Empirical Studies and Analysis

3.1. Human vs. CNN

To shed insights on understanding fake faces generated

form GANs, we systematically analyze the behavior of hu-
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man beings and CNNs in discerning fake/real faces by con-

ducting psychophysical experiments. Specifically, our exper-

iments are performed in in-domain setting, where the model

is trained and tested on fake images from the same GAN.

User study. For each participant, we firstly show him/her

all the fake/real faces in the training set (10K real and 10K

fake images). Then a randomly picked face image in our test

set is shown to him/her without a time limit. Finally, he/she

is required to click the “real” or “fake” button. On average, it

takes around 5.14 seconds to evaluate one image. The results

in this paper are based on a total of 20 participants, and each

participant is required to rate 1000 images. At the same

time, we also collected the user’s judgment basis if his/her

selection was “fake”. According to their votings, human

users typically take as evidence easily recognized shape and

color artifacts such as “asymmetrical eyes”, “irregular teeth”,

“irregular letters”, to name a few.

CNN study and results. Testing images are also evaluated

by CNN model – ResNet-18 [11]. The training and testing

follow the in-domain setup. Table 1 (row1 & row2) shows

that human beings are easily fooled by fake faces. In contrast,

the ResNet CNN model achieves more than 99.9% accuracy

in all experiments.

Analysis. To gain a deeper understanding about the ques-

tion “Why CNNs perform so well at fake/real face discrimi-

nation?” and “What’s the intrinsic difference between fake

and real faces?”, we further exploited CAM [35] to reveal

the regions that CNNs utilize as evidence for fake face detec-

tion. Representative classification activation maps are shown

in Figure 2. We can easily observe that the discriminative

regions (warm color regions in Figure 2) for CNNs mainly

lie in the texture regions, e.g. skin and hair, while the regions

with clear artifacts make little contribution (cold color, red

bounding box in Figure 2). The above observation motivates

us to further study whether texture is an important cue that

CNNs utilize for fake face detection and whether fake faces

are different from real ones regarding texture statistics.

3.2. Is texture an important cue utilized by CNNs
for fake face detection?

To validate the importance of textures for fake face detec-

tion, we conduct in-domain experiments on the skin regions

since they contain rich texture information and less structural

information such as shape. More specifically, we design the

following controlled experiments on skin regions.

• Original (skin): The input is the left cheek skin region

based on DLib [14] face alignment algorithm as shown

in Figure 3 (a – b). This is to verify whether the skin

region contains enough useful information for fake face

detection.

• Gray-scale (skin): The skin regions are converted to

gray-scale images. Typical examples are shown in Fig-

ure 3 (c – d). This experiment is to ablate the influence

of color.

• L0-filtered (skin): Small textures of the skin regions are

filtered with L0 filter [31].The L0 algorithm can keep

shape and color information while smoothing small

textures. Typical examples are shown in Figure 3 (e –

f).

Experimental results are shown in Table 1 (row 3 – row 5).

The results of full image, original skin region, gray-scale

skin region as inputs all indicate that skin regions already

contain enough information for in-domain fake face detec-

tion and that colors do not influence the result much. The

significant drop of performance (around 20%) of L0 filtered

inputs demonstrates the importance of texture for fake face

detection in CNN models. In summary, texture plays a cru-

cial role in CNN fake face detection and CNNs successfully

capture the texture differences for discrimination, since the

skin region performs on par with the full image in Table 1

(row 2 & row 3).

3.3. What are the differences between real & fake
faces in terms of texture?

Empirical findings in Sec. 3.2 further motivate us to in-

vestigate the differences between real/fake faces in terms of

texture. In the following, we adopt a texture analysis tool –

the gray-level co-occurrence matrix (GLCM) [10].

The GLCM P d
θ ∈ R256×256 is created from a gray-scale

texture image, and measures the co-occurrence of pixel val-

ues at a given offset parameterized by distance d and angle

θ. For example, P d
θ (i, j) indicates how often a pixel with

value i and a pixel at offset (d, θ) with pixel value j co-exist.

In our analysis, we calculate P θ
d across the whole dataset to

get the statistical results, where d ∈ {1, 2, 5, 10, 15, 20} and

θ ∈ {0, π/2, π, 3π/2} represents {right, down, left, upper},

d and θ can capture the property of textures with different

size and orientation respectively. From the GLCM, we com-

pute the texture contrast Cd at different distance offsets as

follows,

Cd =
1

N

255∑

i,j=0

3π/2∑

θ=0

|i− j|2P θ
d (i, j) (1)

where N = 256 × 256 × 4 is a normalization factor, i, j
represents pixel intensities, and d indicates pixel distances

which are adopted to compute Cd. Larger Cd reflects stronger

texture contrast, sharper and clearer visual effects. Inversely,

low value Cd means the texture is blurred and unclear.

The contrast component of GLCM is shown in Table 2.

Real faces retain stronger contrast than fake faces at all mea-

sured distances. One explanation for this phenomenon is that
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Input Human vs. CNNs StyleGAN vs. CelebA-HQ StyleGAN vs. FFHQ PGGAN vs. CelebA-HQ

Full image Human Beings 75.15% 63.90% 79.13%

Full image ResNet 99.99% 99.96% 99.99%

Original (skin) ResNet 99.93% 99.61% 99.96%

Gray-scale (skin) ResNet 99.76% 99.47% 99.94%

L0-filtered (skin) ResNet 78.64% 76.84% 72.02%

Table 1. Quantitative results on fake face detection of human beings and CNNs, and skin region ablation studies in the in-domain setting.

(a) Real (b) Real (c) Fake (d) Fake (e) Fake

Figure 2. Class activation maps from trained ResNet model (better viewed in color). The red bounding box shows the visible artifacts

indicated by human observers but activated weakly by CNN: (c) asymmetrical earrings; (d) irregular letter; (e) irregular teeth.

(a) Real (b) Fake (c) Real

(d) Fake (e) Real (f) Fake

Figure 3. Example images of Original (Skin) (a–b), Gray-scale

(Skin) (c–d) and L0 filtered (Skin) (e–f).(better viewed in color)

the CNN based generator typically correlates the values of

nearby pixels and cannot generate as strong texture contrast

as real data. In this section, we only provide an analysis of

texture contrast and admit that the differences between real

and fake faces are definitely beyond our analysis. We hope

this can stimulate future research in analyzing the texture

differences for fake face detection.

4. Improved Model: Better Generalization

Ability, More Robust

Until now, our analysis has been performed in the in-

domain setting. The next step is to investigate the cross-GAN

setting, where training and testing images are from different

GAN models. Besides, we also investigate the images which

are further modified by unintentional changes such as down-

Dataset

distance (d)
1 2 5 10 15 20

CelebA-HQ 8.68 12.37 61.52 117.94 181.30 237.30

StyleGAN(on CelebA-HQ) 4.92 8.84 47.40 93.79 146.33 193.49

PGGAN(on CelebA-HQ) 6.45 11.43 58.20 112.28 172.72 226.40

Table 2. Contrast property of GLCM calculated with all skin patches

in training set.

sampling, JPEG compression and/or even intentional editing

by adding blur or noise. Our following analysis remains to

focus on texture due to our findings in Sec. 3.1 – Sec. 3.3.

4.1. Generalization and Robustness Analysis

Our previous experimental finding is that the trained

model performs almost perfectly in in-domain tests. How-

ever, our further experiments show that the performance of

ResNet is reduced by 22% (worst case) if the images are

downsampled to 64 × 64 and JPEG compressed (Table 3:

“JPEG 8x ↓”). Moreover, the model suffers more in cross-

GAN setting, especially when the trained models are eval-

uated on low-resolution GANs, in which the performance

dropped to around 64%− 75% (Table 4: Second row). The

reduction of performance indicates that the CNN fake/real

image discriminator is not robust to image editing and can-

not generalize well to cross-GAN images, which limits its

practical application.

To tackle the above problem, we further analyzed the

issue. In image editing scenario, we studied the correlation

between the modified images and original ones. Specifically,

we calculate the Pearson Correlation Coefficient between the

original image and edited images in terms of texture contrast

Cd as shown in Figure 4. The coefficient value is closer to 1
as the pair distance d increases (i.e. larger image textures and
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(c) Gaussian noise

Figure 4. Pearson correlation coefficient of texture contrast between edited images and original images. Downsample ratio is 4, Gaussian

blur kernel is 3, and Guassian noise std is 3.

more global), which indicates a strong correlation in large

texture between edited and original images. In other words,

large image texture has shown to be more robust to image

editing. Moreover, in cross-GAN setting, large texture can

also provide valuable information since the real/fake differ-

ence in terms of texture contrast still hold in the large pair

distance d shown in Table 2. Thus a model that can capture

long-range information is desirable to improve the model

robustness and generalization ability. However, current CNN

models cannot incorporate long-range information due to its

small effective receptive field which is much smaller than

the calculated receptive field as presented in [21].

Inspired by [6], we propose to introduce “Gram Block”

into the CNN architecture and propose a novel architecture

coined as Gram-Net as shown in Figure 5. The “Gram

Block” captures the global texture feature and enable long-

range modeling by calculating the Gram matrix in different

semantic levels.

4.2. Gram­Net Architecture

The overview of Gram-Net is shown in Figure 5. Gram

Blocks are added to the ResNet architecture on the input

image and before every downsampling layer, incorporating

global image texture information in different semantic lev-

els. Each Gram Block contains a convolution layer to align

the feature dimension from different levels, a Gram matrix

calculation layer to extract global image texture feature, two

conv-bn-relu layers to refine the representation, and a global-

pooling layer to align the gram-style feature with ResNet

backbone. The Gram matrix is calculated as follows.

Gl
ij =

∑

k

F l
ikF

l
jk (2)

where F l represents the l-th feature map whose spatial

dimension is vectorized, and F l
ik represents the kth element

in the ith feature map of layer l. We show Gram matrix is a

good descriptor for global or long-range texture as follows.

Can Gram matrix capture global texture information?

In CNNs, each convolution layer l can be viewed as a filter

bank, and the feature map F l is a set of response images to

these filters.

Gl is the eccentric covariance matrix of channels in layer

l. Each element Gl
ij measures the covariance between the

ith and jth vectorised response map in the layer. Equation

3 is the covariance matrix Cl of feature maps, and Gram

matrix Gl in Equation 4 is actually the covariance matrix

without subtracting the mean value. The diagonal elements

of Gram matrix shows the response of the particular filter,

while other elements show the coherence of different filters.

In a word, Gram matrix is a summary of spatial statistics

which discards the spatial and content information in the

feature maps, and provides a stationary description of the

texture.

Cl = (cov(F l
i , F

l
j ))n×n = (E[(F

lT
i − F lT

i )(F l
j − F l

j )])n×n =

1

n− 1









(F lT
1

− F lT
1

)(F l
1
− F l

1
) · · · (F lT

1
− F lT

1
)(F l

n − F l
n)

.

.

.
. . .

(F lT
n − F lT

n )(F l
1
− F l

1
) · · · (F lT

n − F lT
n )(F l

n − F l
n)









(3)

Gl = (F lT
i F l

j )n×n =









F lT
1

F l
1

· · · F lT
1

F l
n

.

.

.
. . .

F lT
n F l

1
· · · F lT

n F l
n









(4)

In addition, Gl
ij is a descriptor for the whole feature

map, which is not limited by the receptive field of CNNs.

This property enables it to extract long-range texture feature

effectively, which complements the CNN backbone.

To further analyze the information captured by Gram-Net

and the CNN baseline, we adopt [22] to generate the recon-

structed input that can produce the approximate feature map

as the original input. The reconstructed inputs for reproduc-

ing the feature in “res-block 2” and “avg-pool” are shown
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Figure 5. Gram-Net architecture. We extract global image texture feature with 6 Gram Blocks in different semantic levels from ResNet. +©

means concatenation.

(a) Original (b) ResNet (c) Gram-Net (d) ResNet (e) Gram-Net

Figure 6. Visualization of reconstructed input. Reconstructed images are multiplied by a scale factor for clearer visualization. (a) is

the original image. (b)(c) are reconstructed inputs for reproducing ’res-block2’ feature in ResNet and Gram-Net respectively. (d)(e) are

reconstructed inputs for reproducing ’avg-pool’ in ResNet and Gram-Net respectively.

in Figure 6. The texture size of the reconstructed input im-

age from Gram-Net is larger than that of baseline ResNet,

which shows that our Gram-Net captures long-range texture

patterns for discrimination.

5. Experiments

Implementation details. We implement all the ap-

proaches with PyTorch [28]. Models are initialized with

pretrained ImageNet weights. We train all the models with

learning rate 1e−5 and select model on validation set. The

validation set contains totally 800 images from DCGAN,

StarGAN, CelebA, PGGAN, StyleGAN on CelebA-HQ,

StyleGAN on FFHQ, CelebA-HQ and FFHQ (100 for each).

In all the experiments, the models are trained on 10k real

and 10k fake images and evaluated on a holdout test set

containing 10k real and 10k fake images.

Experimental setup. We conduct experiments in in-

domain and cross-GAN settings, and further test the models

on GANs trained on other datasets (cross-dataset). All the

images are bilinear-resized to 512× 512 which serves our

baseline resolution, because we found that models on this

resolution already performs almost the same as 1024× 1024
and can accelerate the inference. All fake images are derived

by directly evaluating the author-released code and model

with default parameters. We compare the performance of our

Gram-Net with a recent fake face detectors Co-detect [27]

and ResNet. We choose ResNet-18 as baseline because it al-

ready achieves much better performance than human beings

described in Section 3.1. For a fair comparison, we imple-

ment Gram-Net and [27] with the same ResNet-18 back-

bone, which takes the hand-craft texture descriptor GLCM

of RGB channels as input. We train these three networks

with images randomly bilinear-resized into range 64 × 64
to 256× 256 as data augmentation, and evaluate the models

regarding accuracy and their robustness to image editing and

cross-GAN generalization ability. To minimize the influence

of randomness, we repeat each experiment five times by ran-

domly splitting training and testing sets and show the error

bar.

Robustness and cross-GAN generalization experiments

on high-resolution GANs. We edit the images with down-

sampling and JPEG compression, which often occur unin-

tentionally when the images are uploaded to the Internet, put

into slides or used as a video frame. Specifically, the models

are evaluated in the following settings. 1) Original inputs

with size 512× 512 (“Origin”), 2) Downsampled images to

resolution 64×64 (“8x ↓”), 3) JPEG Compressed 512×512
images (“JPEG”), 4) JPEG compressed and downsampled

images (“JPEG 8x ↓”). In addition, GAN and real images

can be edited by adding blur or noise intentionally. In table

3, Gaussian blur (“blur”) is with kernel size 25 (“blur”), and

Gaussian noise (“blur”) is with standard deviation 5.

The evaluation results are listed in Table 3. Our Gram-Net

outperforms the compared methods in all scenarios. On aver-
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Training set Testing set Method Original % 8x ↓ % JPEG % JPEG 8x ↓ Blur % Noise % Avg.

StyleGAN Co-detect 79.93 ± 1.34 71.80 ± 1.30 74.58 ± 3.25 71.25 ±1.18 71.39 ±1.42 54.09 ± 2.45 70.51

StyleGAN vs. ResNet 96.73 ± 3.60 85.10 ± 6.22 96.68 ± 3.50 83.33 ± 5.95 79.48 ± 8.70 87.92 ± 6.16 88.20

vs. CelebA-HQ Gram-Net 99.10 ± 1.36 95.84 ± 1.98 99.05 ± 1.37 92.39 ± 2.66 94.20 ± 5.57 92.47 ± 4.52 95.51

CelebA-HQ PGGAN Co-detect 71.22 ± 3.76 62.02 ± 2.86 64.08 ± 1.93 61.24 ± 2.28 62.46 ± 3.31 49.96 ± 0.28 61.83

vs. ResNet 93.74 ± 3.03 77.75 ± 4.82 89.35 ± 1.50 69.35 ± 3.25 78.06 ± 7.57 82.65 ± 2.37 81.82

CelebA-HQ Gram-Net 98.54 ± 1.27 82.40 ± 6.30 94.65 ± 3.28 79.77 ± 6.13 91.96 ± 4.78 88.29 ± 3.44 89.26

PGGAN Co-detect 91.14 ± 0.61 82.94 ± 1.03 86.00 ± 1.70 82.46 ± 1.06 84.24 ± 0.93 54.77 ± 2.42 80.26

PGGAN vs. ResNet 97.38 ± 0.52 90.87 ± 1.90 94.67 ± 1.15 89.93 ± 1.50 97.25 ± 0.87 66.60 ± 9.61 89.45

vs. CelebA-HQ Gram-Net 98.78 ± 0.49 94.66 ± 3.10 97.29 ± 1.05 94.08 ± 3.22 98.55 ± 0.92 70.32 ± 12.04 92.28

CelebA-HQ StyleGAN Co-detect 57.30 ± 1.62 57.41 ± 0.85 52.90 ± 1.67 82.46 ± 1.06 57.41 ± 0.93 50.08 ± 0.10 51.47

vs. ResNet 97.98 ± 1.90 87.91 ± 1.01 92.03 ± 4.14 82.23 ± 1.39 94.79 ± 1.32 60.89 ± 7.24 85.97

CelebA-HQ Gram-Net 98.55 ± 0.89 91.57 ± 2.95 94.28 ± 3.67 83.64 ± 3.43 97.05 ± 1.04 60.07 ± 7.32 87.52

StyleGAN StyleGAN Co-detect 69.73 ± 2.41 67.27 ± 1.68 67.48 ± 2.83 64.65 ± 1.67 64.55 ± 1.93 54.66 ± 3.97 64.74

vs. vs. ResNet 90.27 ± 3.05 70.99 ± 1.13 89.35 ± 3.42 67.96 ± 1.13 75.60 ± 10.75 81.32 ± 5.06 81.50

FFHQ FFHQ Gram-Net 98.96 ± 0.51 89.22 ± 4.44 98.69 ± 0.81 87.86 ± 3.42 70.99 ± 6.07 94.27 ± 2.12 90.00

Table 3. Performance on in-domain and cross to high-resolution GANs. In each training setting, the first half shows results in the in-domain

setting and the second half shows results in the cross-GAN setting. Column (Avg.) shows the averaged results across all settings. The

accuracy in “Original %” column is lower than the results in Table 1 because the models are selected to achieve best average performance in

all the settings with validation set. The average inference time for one image on RTX 2080 Ti are as follows. Gram-Net takes 2.40e−3s,

ResNet-18 takes 2.35e−3s, and Co-detect [27] takes 8.68e−3s, in which 6.57e
−3s for co-occurance matrix calculation.

age, it outperforms [27] by more than 20%. The results show

that our Gram-Net adaptively extracts robust texture repre-

sentation in feature space, which is much more powerful

than low-level texture representations such as GLCM. Our

model also improves the ResNet baseline by around 7% (on

average) in both in-domain and cross-GAN settings trained

on StyleGAN vs. CelebA-HQ. The reason why Gram-Net

improves less when trained on PGGAN vs. CelebA-HQ

can be partially explained according to the GLCM statistics

shown in Table 2. Images generated by PGGAN have larger

Cd than StyleGAN, which is closer to real images.

The above results manifest the effectiveness of Gram-

Net in extracting features more invariant to different GAN

models and more robust to image editing operations, such as

downsampling, JPEG compression, blur and noise.

Generalize to low-resolution GANs. To further evaluate

the models’ generalization capability, we directly apply the

models above to low-resolution GANs trained on CelebA.

We randomly choose 10k images from each set to evaluate

our model. The fake images are kept at their original sizes,

i.e., 64×64 for DCGAN and DRAGAN, 128×128 for Star-

GAN. CelebA images are of size 178×218, so we center

crop the 178×178 patch in the middle to make it square.

The results as listed in Table 4 show that our Gram-Net

better generalizes to low-resolution GANs. The performance

of baseline ResNet and [27] degrades to around 50% to 75%
in this setting. However, our method outperforms the ResNet

baseline by around 10% and [27] by around 15% regarding

accuracy in all settings. This further demonstrates global im-

age texture feature introduced by our “Gram Block” is more

invariant across different GANs, which can even generalize

to detect fake faces from image-to-image translation model –

StarGAN.

Method Accuracy

Co-detect 59.81 ± 10.82

ResNet 80.55 ± 6.37

Gram-Net 93.35 ± 2.25

Table 5. Performance of Gram-Net when StyleGAN discriminator

contains Gram-Block. The models are trained on StyleGAN (origin)

vs. CelebA-HQ and tested on StyleGAN (with Gram-Block in

discriminator) vs. CelebA-HQ.

Generalize to StyleGAN trained with Gram-Block in dis-

criminator. In this section, we evaluate the model on im-

ages from GAN models whose discriminator also contains

Gram Blocks. We fine-tune StyleGAN with extra Gram-

Blocks inserted in the discriminator, and further evaluate

whether Gram-Net still works in this setting. We add 8 iden-

tical Gram-Blocks as in Gram-Net to encode feature maps

(from feature map size 1024 to 4) in StyleGAN discriminator,

and concatenate the 8×32 dimension feature vector extracted

by Gram-Blocks with the original 512 dimension feature vec-

tor in original discriminator before the final classification.

We fine-tune the model for 8K epochs on CelebA-HQ ini-

tialized by the author released model. We evaluate 10K fake

images from StyleGAN with Gram-Block in discriminator

and 10K images from CelebA-HQ. The images are resized

to 512× 512 resolution. We directly apply the models used

in Table 3 and 4 in this setting.

The results in Table 5 show that our Gram-Net still out-

performs baseline methods even though the Gram-Block is

inserted in the GAN discriminator. This demonstrates that

our findings and analysis in section 3.3 are still valid.
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Train

Test
Method DCGAN vs. CelebA % DRAGAN vs. CelebA % StarGAN vs. CelebA % Avg.

StyleGAN Co-detect 68.83 ± 9.57 59.99 ± 8.81 58.60 ± 3.99 62.47

vs. ResNet 75.11 ± 8.10 65.53 ± 8.20 64.04 ± 7.69 68.22

CelebA-HQ Gram-Net 81.65 ± 3.51 76.40 ± 6.06 74.96 ± 4.90 77.67

Table 4. Performance of Gram-Net on generalization to low-resolution GANs.

Method
Train on StyleGAN vs. CelebA-HQ

Test on StyleGAN vs. FFHQ

Train on PGGAN vs. CelebA-HQ

Test on StyleGAN vs. FFHQ

Train on StyleGAN vs. FFHQ

Test on StyleGAN vs. CelebA-HQ

Co-detect 48.90 ± 3.95 48.71 ± 1.43 59.22 ± 1.30

ResNet 75.45 ± 7.01 54.44 ±3.64 80.14 ± 7.47

Gram-Net 77.69 ± 6.49 59.57 ± 8.07 80.72 ± 6.02

Table 6. Performance of Gram-Net in cross-dataset settings

distance 1 2 5 10 15 20

ImageNet 525.70 676.60 1551.85 2267.16 2892.90 3334.14

BigGAN 367.65 536.81 1426.66 2146.90 2771.96 3207.97

Table 7. Contrast property of GLCM calculated with BigGAN and

ImageNet images in training set with different pair distances.

Cross-dataset experiments. Cross-dataset generalization

is a challenging problem due to the inherent difference in

dataset construction. Our experiments show that the statistics

of CelebA-HQ and FFHQ are significantly different and can

easily be distinguished by a neural network. Specifically, we

built a real face image dataset consisting of 10K CelebA-HQ

images and 10K FFHQ images, and our further experiments

show that a ResNet network can achieve more than 99.9%

accuracy to discriminate CelebA-HQ and FFHQ images.

This experiment shows that real face datasets significantly

differ from each other.

Despite the fact above, we evaluate our Gram-Net and

baseline approaches in the cross-dataset setting as follows:

train on StyleGAN(PGGAN) vs. CelebA-HQ and test on

StyleGAN vs. FFHQ, train on StyleGAN vs. FFHQ and test

on StyleGAN vs. CelebA-HQ. We keep all of the images as

their original resolution in this experiment. The models are

the same with the ones in Table 3 and 4.

The result in Table 6 shows that fake image detectors

trained on more realistic dataset (FFHQ) and stronger GANs

(StyleGAN) have stronger ability to cross to less realistic

datasets (CelebA-HQ) and less strong GANs (PGGAN).

Also, Gram-Net still outperforms baselines methods.

Generalize to natural images. In this section, we extend

our analysis and apply Gram-Net to fake/real natural images.

Specifically, we analyze ImageNet [16] vs. BigGAN [3],

where the BigGAN model is trained on ImageNet.

To analyze fake/real natural images, we further employ

GLCM. We find that the difference in terms of texture con-

tract between fake and real face images also holds for natural

images. As Table 7 shows, real images retain stronger texture

contrast than GAN images for all the distances measured.

To evaluate the generalization ability of our model trained

on face images, we directly apply the model used in Table 3

and 4 to test 10K ImageNet and 10K BigGAN images (10

images each class), and the results are shown in Table 8.

Training set Testing set Method Accuracy % .

StyleGAN ImageNet Co-detect [27] 51.94 ± 2.31

vs. vs. ResNet 71.93 ± 2.09

CelebA-HQ BigGAN Gram-Net 80.29 ± 3.20

Table 8. Quantitative results on ImageNet vs BigGAN.

6. Conclusion

In this paper, we conduct empirical studies on human and

CNNs in discriminating fake/real faces and find that fake

faces attain different textures from the real ones. Then, we

perform low-level texture statistical analysis to further verify

our findings. The statistics also show that large texture infor-

mation is more robust to image editing and invariant among

different GANs. Motivated by these findings, we propose

a new architecture – Gram-Net, which leverages global tex-

ture features to improve the robustness and generalization

ability in fake face detection. Experimental results show

that Gram-Net significantly outperforms the most recent

approaches and baseline models in all settings including in-

domain, cross-GAN, and cross-dataset. Moreover, our model

exhibits better generalization ability in detecting fake natural

images. Our work shows a new and promising direction for

understanding fake images from GANs and improving fake

face detection in the real world.
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