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Abstract

This paper proposes a Hyperbolic Visual Embedding

Learning Network for zero-shot recognition. The network

learns image embeddings in hyperbolic space, which is ca-

pable of preserving the hierarchical structure of semantic

classes in low dimensions. Comparing with existing zero-

shot learning approaches, the network is more robust be-

cause the embedding feature in hyperbolic space better rep-

resents class hierarchy and thereby avoid misleading re-

sulted from unrelated siblings. Our network outperforms

exiting baselines under hierarchical evaluation with an ex-

tremely challenging setting, i.e., learning only from 1,000

categories to recognize 20,841 unseen categories. While

under flat evaluation, it has competitive performance as

state-of-the-art methods but with five times lower embed-

ding dimensions. Our code is publicly available ∗.

1. Introduction

Real-world image recognition applications are usually

faced with thousands of object classes. Collecting sufficient

training data for each class is time-consuming and some-

times infeasible. Therefore, Zero-Shot Learning (ZSL) [34,

35, 9], which aims to recognize the novel categories which

are unseen during the training phase, has become an impor-

tant research problem that needs to study.

Nevertheless, zero-shot learning is generally regarded

as a difficult problem. As reported in [17], for general-

ized large-scale zero-shot image recognition, the best per-

formance attained on the ImageNet dataset (with 2,2841

class) is less than 10% in terms of top-5 accuracy, which

is far away from real-world applications. On the one hand,

the class defined in the ImageNet is organized according

to the WordNet hierarchy, including both general and fine-

grained objects. For example, there are hundreds of species

of dogs; distinguishing them with sufficient labeled training

data is difficult, not mentioning the situation when the train-

ing sample is unavailable. Therefore, learning a model aim-
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Figure 1. Given an unseen image from “Arctic Squirrel” (bounded

in green), the proposed hyperbolic visual embedding learning net-

works will tend to predict to its immediate parent class “ground

squirrel”(bounded in blue) while existing methods will predict it

to its wrong sibling class “rock squirrel”.

ing to predict correct specific classes is not practical under

large-scale zero-shot settings. To make ZSL more applica-

ble in real-world applications, we notice that when the ZSL

system cannot make a specific prediction targeted to the leaf

class, users tend to tolerate a relative general but correct

predictions rather than a specific but wrong prediction. For

example, Figure 1 shows a part of the class hierarchy in the

ImageNet. Given an unseen image of “red squirrel”, users

may prefer to have the prediction “tree squirrel” rather than

“Kangaroo”. Besides, making a slightly general but correct

prediction makes it convenient to design the user interface

for improving the results. Therefore, in this paper, we argue

that a robust ZSL system should have the ability to output a

correct but less fine-grained label (e.g., the direct parent of

the ground-truth label).

Existing works, however, are not designed to optimize

the robustness of the zero-shot recognition systems. Gener-

ally, most of the existing works are implicit models that di-

rectly learn a mapping from visual space to semantic space

[9] [29]. The semantic space are usually represented by se-

mantic vectors, such as word vectors obtained from GloVe

[28] or Word2Vec [24] models. As hierarchical relations

among categories are not encoded in the semantic space,

these models are unlikely to fulfill the robust recognition.

More recent works propose to introduce class hierarchy by

modeling the hierarchical relation with graph neural net-
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Figure 2. The general model framework. For a given image, our model first extracts its visual features using deep ConvNet. The ex-

tracted features are then projected to the hyperbolic space via the exponential map and the Möbius transformation to align with the class

embeddings, which is learned by combining two kinds of embeddings in the hyperbolic space (Poincaré embeddings and Poincaré Glove).

work [34] [17]. With graph propagation, the classifier

weights of well-trained seen classes are propagated to the

unseen ones. Compared to the implicit methods, these mod-

els which explicitly utilize the hierarchy structure (explicit

models) are more robust and effective. However, as the hi-

erarchical relationship is reflected in the classifier learned

in the Euclidean space, it cannot guarantee that the class is

closer to its immediate parent node compared to its unre-

lated siblings. This becomes even harder when the number

of unseen classes increases.

In this paper, we find that hyperbolic space is well-suited

to address the aforementioned problems, leading to a more

robust ZSL model. Hyperbolic space is a kind of mani-

fold space studied in the Riemannian Geometry, in which

basic mathematical operations (e.g., distance measurement)

are defined differently from the Euclidean space. It has

been shown that Hyperbolic space is particularly suitable

for modeling hierarchical data [26, 13]. For example, we

can represent a tree with a branching factor of b with a

two-dimensional embedding in hyperbolic space such that

its structure is reflected in the embeddings. This property

enables us to encode the hierarchical structure of classes

in low dimensional space, resulting in a light-weight ZSL

model. More importantly, in hyperbolic space, a class is

closer to its immediate ancestors while distant from its sib-

lings, which perfectly meet our requirements on the robust-

ness. With the image embeddings learned in the hyperbolic

space, our model is naturally endowed with robustness.

Therefore, we propose a novel ZSL framework (shown

in Figure 2) that learns the hierarchy-aware image embed-

ding features in the hyperbolic space. In our framework,

image labels are projected into the hyperbolic space with

Poincaré hierarchy embedding model [26] and Poincaré

Glove [33]. Poincaré hierarchy embedding model [26]

learns the label embeddings that preserve the hierarchical

information, while Poincaré Glove [33] captures the se-

mantic information. Meanwhile, image features extracted

from DCNN in the Euclidean space are firstly projected

into hyperbolic space with the exponential map and then

aligned with the corresponding hyperbolic label embed-

dings through learning a Möbius version transformer net-

work. The objective of the Möbius version transformer net-

work is to minimize the Poincaré distance from image em-

beddings to their label embeddings in the hyperbolic space.

During testing, the label of an unseen image can be obtained

by searching the label embeddings that have the minimum

Poincaré distance with its image embeddings. The contri-

butions of this work are summarized as follows:

• We propose the Hyperbolic Visual Embedding Learn-

ing Network that learns hierarchical-aware image em-

beddings in hyperbolic space for ZSL. As far as

we know, this is the first attempt to introduce Non-

Euclidean Space for zero-shot learning problem.

• We conduct both empirical and analytic studies to

demonstrate that introducing hyperbolic space into

ZSL problem results in a model that produces more

robust predictions.

2. Related Work

As image recognition systems have achieved near-

human accuracy when training samples are ample [15], re-

cent research focus has shifted to the problem of zero-shot

image recognition [16, 38, 22, 8, 14, 12, 37], a challeng-

ing but more practical setting where the recognition is per-

formed on categories that were unseen during the training.

Early works on zero-shot learning mostly rely on seman-

tic attributes including both user-defined attributes [18, 19]

and data-driven attributes [10, 23], which are automatically
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discovered from visual data. These attributes are then used

as the intermediate representations for knowledge transfer

across classes, supporting zero-shot recognition of unseen

classes. Recent works on zero-shot learning are mostly

based on deep learning technologies and basically can be

grouped into two major paradigms. The first paradigm is

based on semantic embeddings (implicit knowledge) which

directly learn a mapping from visual space to semantic

space [4, 5, 11, 9, 36, 29, 31], represented by semantic vec-

tors such as word vectors. For example, Socher et al., [32]

proposed to learn a linear mapping to align the image em-

beddings and the label embeddings learned from two dif-

ferent neural networks. Motivated by this work, Frome et

al., [9] proposed the DeViSE model to train this mapping

using a ConvNet and a transformation layer, which showed

that this paradigm can be exploited to make predictions

about tens of thousands of unseen image labels. Instead

of training a ConvNet to match the image features and the

category embeddings, Norouzi et al. [27] proposed to map

image features into the semantic embedding space via con-

vex combination, which requires no additional training.

Instead of representing image categories as semantic em-

beddings, the second paradigm directly models the relations

between categories for zero-shot recognition. For example,

Salakhutdinov et al., [30] used WordNet hierarchy structure

to share knowledge among different classifiers so that the

knowledge of seen categories can be propagated to unseen

categories. Knowledge graph are found to be effective to

perform this knowledge propagation. Deng et al., [6] ap-

plied knowledge graph to organize the attributes relations

between objects and use it to propagate knowledge of seen

categories to unseen categories.

Recently, it has been demonstrated in [34] [17] that

combining both implicit knowledge and explicit knowl-

edge enables the model to achieve better recognition perfor-

mance. As illustrated in [34], by leveraging Graph Convo-

lutional Network (GCN) to combine semantic embedding

and class hierarchy, it achieves the state-of-the-art results

for zero-shot recognition on the ImageNet dataset (e.g. ”2-

hops”,”3-hops” and ”All”), which almost doubles the per-

formance of the model with only semantic embedding. Sim-

ilar to [34] and [17], our work also utilizes both semantic

embedding and class hierarchy, taking advantages of both

implicit knowledge and explicit knowledge for zero-shot

recognition. However, different to [34] and [17], our work

models the implicit knowledge and explicit knowledge in

the hyperbolic space. The explicit knowledge — the Word-

Net hierarchy is encoded with hierarchical-aware Poincaré

embeddings, which better captures the class hierarchy with

fewer dimensions. Meanwhile, the semantic embeddings

are learned in hyperbolic space with Poincaré GloVe. As

hyperbolic space is more suitable for modeling the hierar-

chical data, which endows our model with better robustness

than existing models working in the Euclidean Space.

3. Preliminary

Hyperbolic space is an important concept in hyperbolic

geometry, which is considered as a special case in the Rie-

mannian geometry. Before presenting our proposed model,

this section introduces the basic information of Riemannian

geometry and hyperbolic space.

3.1. Basics of Riemannian Geometry

Manifolds are the generalization of curved surfaces that

are studied in differential geometry. Riemannian geometry

is one of the branches of differential geometry that stud-

ies with a Riemannian metric. Each point on the manifold

can be assigned a curvature. When the curvature is a neg-

ative constant, the geometry becomes hyperbolic geometry.

For a point x in a manifold M, one can define the tan-

gent space TxM of M at x as a vector space that contains

all possible directions in which one can tangentially pass

through. An inner product can be defined on TxM. A Rie-

mannian metric g on M is a collection of inner products

gx : TxM× TxM → R, x ∈ M. A Riemannian manifold

(M, g) is a manifold M together with a Riemannian met-

ric g. Based on these concepts, we introduce the following

definitions:

• Geodesic is the shortest curve between two points, analo-

gous to a straight line in the Euclidean space.

• Parallel Transport is a way of transporting tangent vec-

tors along smooth curves, such as geodesic, in a manifold,

which can be formulated as Px−→y : TxM −→ TyM.

• Exponential Map is a map from a subset of a tangent

space TxM of a Riemannian manifold M at point x to

M itself, which provides a way to project a vector in Eu-

clidean space to hyperbolic space. For any tangent vector

v ∈ T0M\ {0}, the exponential map exp0 : T0M −→ M is

formally defined as follows:

exp0(v) = tanh(‖v‖)
v

‖v‖
, (1)

where we choose 0 as the reference point. We use ex-

ponential map to project image features learned in the

Euclidean space to the hyperbolic space, which will be

elaborated later. The reverse process of exponential map

is the logarithmic map log0(y) : M −→ T0M. Obviously,

log0(exp0(v)) = v.

3.2. Poincaré Ball.

There are 5 common models for hyperbolic space.

Among them, the Poincaré ball model and the Lorentz

model are most commonly used in machine learning. Sim-

ilar to [26], we choose Poincaré Ball as the embedding

model because its distance function is differentiable and

43239275



it has a relatively simple constraint on the representations.

Poincaré ball is a model in which the points are inside a

unit ball. It can be defined as a manifold (Dn, gD), where

D
n = {x ∈ R

n : ‖x‖ < 1} is the n-dimensional hyperbolic

space within the Poincaré ball. The Riemannian metric of a

Poincaré ball is given as:

gDx = λ2
xg

E , where λx =
1

1− ‖x‖2
(2)

where gE = In is the Euclidean metric tensor and x is a

point on Poincaré ball. The Poincaré distance between two

points (x, y) can be induced with the Riemannian metric as

follows:

dD(x, y) = cosh−1(1 + 2
‖x− y‖2

(1− ‖x‖)(1− ‖y‖)
) (3)

Because the Poincaré ball is conformal to the Euclidean

space, the definition of angle is the same for these two

spaces. Formally, the angle between two vectors (u, v) in

the Poincaré ball is defined as:

cos(∠(u, v)) =
gDx (u, v)

√

gDx (u, u)
√

gDx (v, v)
(4)

4. Approach

The proposed framework aims to learn the embeddings

of both images and labels in the hyperbolic space such that

the hierarchical information, as well as semantic informa-

tion, can be well preserved with a few dimensions for zero-

shot recognition. As shown in Figure 2, the proposed frame-

work consists of two modules: (1) Hyperbolic Label Em-

bedding Learning, which embeds image labels C into a

Hyperbolic space, denoted as H, encoding both hierarchical

information (via Poincaré Embedding) and semantic infor-

mation (via Poincaré Glove) among classes; (2) Poincaré

Image Feature Embedding learning, which learns the im-

age embeddings in hyperbolic space H that are nearest to

the corresponding poincaré label embeddings.

4.1. Hyperbolic Label Embedding Learning

For text labels, two hyperbolic embedding models are in-

vestigated for embedding learning: Poincaré hierarchy em-

bedding model [26] and Poincaré Glove [33]. The former

one learns the hyperbolic word embeddings with WordNet

hierarchy [25] while the latter one embeds labels with a hy-

perbolic version of the GloVe [28]. The final label embed-

dings are obtained by combining the embeddings learned

from both models.

Poincaré Embedding. Following [26], we embed the

WordNet Noun hierarchy into the Poincaré ball. Word-

Net Noun hierarchy includes 82,115 synsets (nodes) and

743,241 hypernymy relations (edges). We learn the em-

beddings for each synset such that the distances of synset

pairs are preserved in the Poincaré ball. To this end, we em-

ploy a training objective to ensure that the distance between

nodes with hypernymy relationship is minimized, while the

distance is maximized for nodes without a relationship. For-

mally, let E = {(u, v)} be the set of observed hypernymy

relations between two classes u, v ∈ C, we minimize the

following objective in the hyperbolic space.

L = −
∑

(u,v)∈E

log
e−dD(u,v)

∑

v′∈N (u) e
−dD(u,v′)

(5)

where N (u) = {v | (u, v) /∈ E}∪ {u} is the set of negative

examples for u (including u). Same to [26], we randomly

sample 10 negative examples per positive example during

the training. As we train in the hyperbolic space, the dis-

tance metric is replaced with the Poincaré distance defined

in Equation 3. After training, we obtain the embedding for

each WordNet synset that can be mapped to an image class.

Poincaré GloVe. Besides the hierarchy structure, seman-

tic relations between image classes also play a vital role

in ZSL. Semantic information for an image class is of-

ten obtained by learning the word embedding of the class

label. GloVe [28] is a commonly-used method to learn

word embeddings in the Euclidean space based on word

co-occurrences in a large text corpus. Semantic relations

between words are then reflected by their distances in the

embedding space. To capture the semantic relations among

image classes, we train a GloVe model in Poincaré ball fol-

lowing the method of [33]. In case when an image class

has multiple senses, we only select the first sense in the

WordNet synset to learn semantic embedding. The major

challenge of training the Poincaré GloVe is that there is no

clear definition for inner-product in hyperbolic space. Fol-

lowing [33], we replace the inner-product in the original

GloVe loss function with the Poincaré distance defined in

Equation 3, resulting in a hyperbolic version of GloVe loss

function J as follows.

J =

V
∑

i,j=1

f(Xij)(−
1

2
d2
D
(wi, w̃j)+bi+b̃j−logXij)

2, (6)

where V is the size of the text corpus, Xij is the number of

times that words i and j occur in the same window context,

wi is an embedding of word i, w̃j is an embedding of a con-

text word j, and dD is the Poincaré distance in Equation 3.

For the training corpus, we use the English Wikipedia dump

with 1.4 billion tokens provided by [21] and [20].

Feature Fusion. We concatenate Poincaré embedding pc
and Poincaré GloVe embedding qc to form the final class

embedding tc in the Poincaré ball. The embedding contains

both the structural and semantic information of the class.
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However, although the norms of pc and qc are both smaller

than 1 (the radius of Poincaré ball), the norm of the concate-

nated vector tc may be greater than one, which may move

it outside of the Poincaré ball. To address this problem, we

use the exponential map to project the vector back to the

ball. This gives the final representation of tc as follows.

tc = exp0([pc; qc]) (7)

where exp0 is the exponential map defined in Equation 1.

4.2. Hyperbolic Image Embedding Learning

ResNet [15] is employed to extract feature vI from un-

seen image I. vI is a 2,048-dimensional vector in the Eu-

clidean space. The hyperbolic visual feature transform net-

work is proposed to project vI to the hyperbolic space and

align with its class label. The transformation network con-

sists of an exponential map for projecting image features

into the hyperbolic space, and a Möbius transformation net-

work for aligning images to labels.

Exponential Map. Using the exponential map in Equa-

tion 1, we first project the image features vI into the

Poincaré Ball. By choosing the Euclidean space as the

tangent space of hyperbolic space, Exponential map can

project the image features in Euclidean space into the hy-

perbolic space, as shown below:

ṽI = exp0(vI) (8)

where ṽI is the projected image feature of image I.

Möbius Transformation. We then train a Möbius trans-

former to align the projected image features ṽI with the cor-

responding label embeddings tcI . Our Möbius transformer

is essentially a two-layer feed forward neural network im-

plemented in hyperbolic space. For an arbitrary function

f : Rn → R
m in the Euclidean space, the Möbius version

of f is a function that maps from D
n to D

m in the hyper-

bolic space:

f⊗(x) = exp0(f(log0(x))) (9)

where exp0 : T0mD
m → D

m and log0 : D
n → T0nD

n.

When M : Rn → R
m is a linear map and Mx 6= 0, substi-

tuting M into Equation 9 obtains the Möbius matrix-vector

multiplication M⊗(x) as follows.

M⊗(x) = tanh(
‖Mx‖

‖x‖
tanh−1(‖x‖))

Mx

‖Mx‖
(10)

Based on Equation 10, we can implement a feed forward

layer in hyperbolic space, and our Möbius Transformation

is a two-layer network constructed by stacking two feed for-

ward layers. After the Möbius transformation, the projected

image features ṽI are transformed to image embedding fea-

tures (denoted as hI), which have the same dimension with

the label embeddings in hyperbolic space. With this, a class

label that is nearest to the image feature is assigned.

Model Training. Rank loss is employed as the loss func-

tion for model training, with the objective of minimizing the

distance between the image embeddings hI learned from

Möbius transformer and its label embeddings tcI . As the

model is trained in hyperbolic space, we use the Poincaré

distance defined in Equation 3 as the distance metric. The

input of the loss function is a triplet
〈

hI , tcI , t
−
cI

〉

, in which

t−cI denote a random sample with negative label. Let the

margin as δ ∈ (0,+∞), the loss function is defined as

L = max[0, δ + dD(tcI , hI)− dD(tcI , t
−
cI
)]. (11)

For optimization, we adopt different optimization tools

in hyperbolic space. The training of Poincaré Glove is op-

timized by RADAGRAD [1]. For Poincaré embedding,

RADAGRAD is not suitable as it requires the hyperbolic

space to be a product of Riemannian manifolds. There-

fore, we train the Poincaré embedding using full Rieman-

nian stochastic gradient descent (RSGD) [2, 13] and set the

learning rate to 0.01.

5. Experiment

5.1. Datasets

The experiments are conducted on ImageNet [7], which

is a popular benchmark for ZSL [27, 9, 34, 17]. The

benchmark includes 1,000 known classes from the Ima-

geNet 2012 1K dataset. The unseen classes are distributed

into three datasets of “2-hops”, “3-hops” and “All” concepts

from the 1K known concepts based on WordNet hierarchy.

For example, the “2-hops” unseen concepts are within 2

hops of known concepts, totaling to 1,589 classes. The “3-

hops” dataset has 7,860 classes, while the “All” dataset in-

cludes all the 20,841 classes in ImageNet. Note that there is

no overlap between the seen and unseen classes in the three

datasets. The difficulty of a dataset is proportional to the

number of unseen classes.

We evaluate our model on these three datasets for both

the Zero-Shot Learning (ZSL) setting and the Generalized

Zero-Shot Learning (GZSL) setting. In ZSL, we only eval-

uate the model performance on the unseen classes, i.e., the

model recognizes which unseen class that a testing sample

belongs to. However, in GZSL, we use all classes (the union

of seen and unseen classes) as the candidate set to evalu-

ate the model. We name the GZSL setting of the above

3-datasets as: “2-hops + 1K”, “3-hops + 1K”, and “All +

1K”. GZSL is a more challenging setting. We adopt the

same train/test split settings as [9, 34].

5.2. Baselines

We compare our model against several state-of-the-art

ZSL baselines on both ZSL and GZSL settings. The base-
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lines are listed as follows. DeViSE [9]: It is a typical im-

plicit knowledge transfer method that linearly maps visual

features to the semantic word-embedding space by learning

a transformation using the hinge ranking loss. DeViSE∗:

We enhance the original DeViSE by concatenating hierar-

chical embeddings of texts with semantic embeddings dur-

ing joint space learning. The hierarchical embeddings are

with the same dimension with concatenating the same di-

mensional hierarchical embeddings with Poincaré embed-

dings for a fair comparison, and are learned by using the

loss function in [26] which encourages semantically simi-

lar objects to be close in the embedding space according to

their Euclidean distance.ConSE [27]: ConSE changes the

feature transformation of DeViSE to a convex combination

of the semantic embeddings from the T -closest seen classes,

weighted by the probabilities that the image belongs to the

seen classes. SYNC [3]: SYNC is another implicit knowl-

edge transfer method that aligns the semantic space with

the visual model by adding a set of phantom object classes,

based on which new embedding is derived as a convex com-

bination of these phantom classes. GCNZ [34]: GCNZ

leverages both implicit knowledge and explicit knowledge

by using Word2vec embeddings to represent class labels

and leveraging GCN to model the class relations for un-

seen class prediction. The Word2vec embeddings are used

as the inputs of GCN, and classifier weights of seen classes

are transferred to unseen classes during graph propagation.

DGP [17]: As an improved version of GCNZ, DGP pro-

poses a dense graph propagation module to alleviate the di-

lution of knowledge from distant nodes.

5.3. Experimental Settings

For Poincaré embedding, we use the 100-dimensional

vector trained on the transitive closure of the WordNet Noun

hierarchy by [26]. For Poincaré Glove, we train a 100-

dimensional vector for each image class based on the En-

glish Wikipedia dump (containing 1.4 billion tokens) pro-

vided by [21] and [20]. At last, we obtain a combined class

embedding of 200 dimension. The Möbius feature trans-

formation is trained for 2000 epochs with a learning rate

of 0.01 using RSGD [2, 13], with the input as a 2, 048-

dimensional projected image feature vector and output as a

200-dimensional vector. The margin δ in Equation 11 is set

as 1 through cross-validation. The model is implemented

by PyTorch, training on four GTX 1080Ti GPUs.

5.4. Hierarchical Evaluation

The standard evaluation metric for ZSL is the Top-k Hit

Ratio (Hit@k), which measures the percentage of hitting

the ground-truth labels among the top-k positions of predic-

tion. However, this metric does not reflect the robustness of

a ZSL model. Therefore, we propose a hierarchical evalu-

ation metric that expands the GT label with its immediate

Table 1. Top-k accuracy for different models on the ImageNet

dataset for hierarchical evaluation. The candidates become the

categories in “hops” test set and the parent of them. The base-

line models are re-implemented by us. For all models, the image

features are extracted with ResNet-101.

Data Set Model
Hierarchical precision@k(%)

1 2 5 10 20

2-hops &

Their Parents

DeViSE 3.2 5.3 9.5 15.6 21.2

DeViSE∗ 4.5 7.0 9.9 15.6 22.0

ConSE 4.2 6.8 12.3 18.5 25.1

GCNZ 9.2 15.6 27.5 36.8 44.5

Ours 16.6 24.3 43.8 58.6 70.3

3-hops &

Their Parents

DeViSE 1.3 2.1 3.3 4.9 7.3

DeViSE∗ 1.7 2.6 4.4 6.6 9.3

ConSE 1.9 2.6 4.4 7.2 9.7

GCNZ 2.7 4.6 8.2 12.5 15.1

Ours 7.9 12.5 21.4 28.7 37.5

All

DeViSE 0.9 1.5 2.9 4.4 6.5

DeViSE∗ 1.0 1.6 2.9 4.4 6.5

ConSE 1.5 2.4 4.2 6.5 9.7

GCNZ 2.2 3.8 7.2 10.5 13.9

Ours 5.1 6.9 12.9 16.5 19.3

parent class. The ability to predict the immediate parent

class accurately reflects the robustness of a ZSL model. To

illustrate this, Figure 1 shows a part of the class hierarchy

in ImageNet. Given an image of “red squirrel”, when the

model cannot make the correct prediction, a more robust

ZSL model should be able to output the second-best pre-

diction, i.e., classifying the image as its parent class “tree

squirrel”, which is more acceptable than assigning a wrong

label from another branch of the hierarchy, such as “Kan-

garoo”. A ZSL system equipped with this ability is more

applicable in real-world applications, as a simple UI can be

designed to help users select the correct leaf class.

Under the hierarchical evaluation, given a test image I
whose class label is c (e.g., red squirrel), we set both c and

the immediate parent class of c (e.g., tree squirrel) as the

ground-truth and evaluate the score of Hit@k. Table 1 lists

the performance comparison results. Compared to DeViSE,

DeViSE∗ achieves better performances, showing the advan-

tages of introducing hierarchical embedding in ZSL under

the hierarchical evaluation. Besides, it is obvious that our

model significantly outperforms all baselines, even triples

the performances of DeViSE∗ and doubles the performance

of another strong baseline - GCNZ. The results demonstrate

that hyperbolic space can better capture the class hierarchy,

resulting in a robust ZSL model that tends to assign a gen-

eral class (e.g., squirrel) to an unseen image even if it can-

not locate its exact specific class (in this case, red squirrel).

The superior performance of our method is due to the na-

ture of the class distribution in the hyperbolic space; a class

tends to be close to its parent while distant from its sibling in

the hyperbolic space. We believe this properly achieved by
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DeViSE:   teddy, orangutan, valley, langur, cliff

GCNZ:     phalanger, red squirrel, kangaroo, lemur, tree wallaby 

Ours:         red squirrel, tree squirrel*, squirrel, kangaroo, phalanger

DeViSE:   rugby ball, soccer ball, golf ball, basketball, cricket

GCNZ:     volleyball, basketball, golf ball, punching bag, rugby ball

Ours:        volleyball, ball*, basketball, rugby ball, soccer ball

DeViSE:   bullet train, freight car, school bus, police van, minibus

GCNZ:     mail train, express, passenger train, cargo ship, shuttle bus 

Ours:         passenger train, railroad train*, bus, school bus, trolleybus

Figure 3. Qualitative result comparison. The true category is high-

lighted in bold. The direct parent category of the true category is

highlighted in bold and with a “*”. We list the top-5 predictions.

hyperbolic embedding is well-suited for a real-world ZSL

system. We further show some prediction examples in Fig-

ure 3. For an image of “red squirrel”, although both GCNZ

and our model rank the true label into top-2, our model suc-

cessfully ranks the direct parent “tree squirrel” into the top-

2. For an image of “volleyball”, our model successfully

ranks the direct parent “ball” into top-2.

5.5. Performance Comparison

We then conduct the performance comparison on the

standard ZSL and GZSL settings, respectively. The results

are summarized in Table 2 and Table 3, based on which we

have four major observations.

First, the methods that consider both implicit knowledge

and explicit knowledge basically outperform the method

with implicit knowledge only. GCNZ, DGP and our method

outperform DeViSE, ConSE, and SYNC in terms of all eval-

uation metrics with a large margin on both ZSL and GZSL

settings. In the ZSL setting, when using ResNet-50 for

image feature extraction, our model outperforms DeViSE,

ConSE, and SYNC by 98.5%, 74.3% and 38.5% in terms of

Hit@1, respectively. It is worthwhile to note that compared

to DeViSE, DeViSE∗ that concatenates both hierarchical

embeddings and semantic embeddings for joint embedding

space learning preforms even worse, which suggests that di-

rectly concatenating different types of word embeddings in

Euclidean space for may not be the correct way to make use

of different types of knowledge.

Second, our method shows more stable results compared

with other implicit methods. For example, when using

ResNet-50 for image feature extraction, the performance

drop of Hit@1 for DeViSE, ConSE, and SYNC are 74.6%,

71.4%, and 75.9%, when changing the test set from “2-

hops” to “3-hops”. Our method only suffers from a 51.1%

drop in Hit@1. In Section 5.4, we have shown that in the

hyperbolic space, a class is close to its parent while distant

from its sibling. This makes it hard for our model to mis-

classify an image to its sibling. However, this error is easy

Table 2. Top-k accuracy of different methods on ZSL setting.

Test Set Model ConvNets
Flat Hit@k(%)

1 2 5 10 20

2-hops

DeViSE (us) ResNet-50 6.7 11.2 19.4 28.1 38.3

DeViSE∗ (us) ResNet-50 6.1 10.6 18.8 27.4 37.2

ConSE [3] Inception-v1 8.3 12.9 21.8 30.9 41.7

ConSE [3] ResNet-50 7.63 - - - -

SYNC [3] Inception-v1 10.5 16.7 28.6 40.1 52.0

SYNC[3] ResNet-50 9.6 - - - -

GCNZ [34] ResNet-50 19.8 33.3 53.2 65.4 74.6

DGP [17] ResNet-50 26.2 40.4 60.2 71.9 81.0

Ours ResNet-50 13.3 20.8 39.2 52.7 62.4

Ours ResNet-101 14.2 22.1 40.7 53.7 63.2

3-hops

DeViSE (us) ResNet-50 2.1 3.5 6.3 9.5 14.1

DeViSE∗ (us) ResNet-50 1.9 3.3 6.0 9.1 13.6

ConSE [3] Inception-v1 2.6 4.1 7.3 11.1 16.4

ConSE [3] ResNet-50 2.18 - - - -

SYNC [3] Inception-v1 2.9 4.9 9.2 14.2 20.9

SYNC [3] ResNet-50 2.31 - - - -

GCNZ [34] ResNet-50 4.1 7.5 14.2 20.2 27.7

DGP [17] ResNet-50 6.0 10.4 18.9 27.2 36.9

Ours ResNet-50 6.5 10.6 18.8 25.8 35.2

Ours ResNet-101 7.3 11.3 19.6 26.3 35.7

All

DeViSE (us) ResNet-50 1.0 1.8 3.0 4.6 7.1

DeViSE∗ (us) ResNet-50 0.9 1.7 2.9 4.3 6.8

ConSE [3] Inception-v1 1.3 2.1 3.8 5.8 8.7

ConSE [3] ResNet-50 0.95 - - - -

SYNC [3] Inception-v1 1.4 2.4 4.5 7.1 10.9

SYNC [3] ResNet-50 0.98 - - - -

GCNZ [34] ResNet-50 1.8 3.3 6.3 9.1 12.7

DGP [17] ResNet-50 2.8 4.9 9.1 13.5 19.3

Ours ResNet-50 3.7 5.9 10.3 13.0 16.4

Ours ResNet-101 4.2 6.3 10.8 13.3 16.6

Table 3. Top-k accuracy of different models on GZSL setting.

Test Set Model ConvNets
Flat Hit@k(%)

1 2 5 10 20

2-hops

(+1K)

DeViSE (us) ResNet-50 1.1 3.1 8.4 15 23.8

DeViSE∗(us) ResNet-50 1.0 2.9 8.2 14.7 23.4

ConSE [34] ResNet-50 0.1 11.2 24.3 29.1 32.7

GCNZ [34] ResNet-50 9.7 20.4 42.6 57.0 68.2

DGP [17] ResNet-50 11.9 27.0 50.8 65.1 75.9

Ours ResNet-50 6.4 11.9 27.2 35.3 45.2

Ours ResNet-101 6.8 12.2 27.4 35.4 45.2

3-hops

(+1K)

DeViSE (us) ResNet-50 0.6 1.6 3.8 6.5 10.5

DeViSE∗ (us) ResNet-50 0.5 1.5 3.6 6.3 10.2

ConSE [34] ResNet-50 0.2 3.2 7.3 10.0 12.2

GCNZ [34] ResNet-50 2.2 5.1 11.9 18.0 25.6

DGP [17] ResNet-50 3.2 7.1 16.1 24.6 34.6

Ours ResNet-50 3.6 8.7 15.3 20.5 29.1

Ours ResNet-101 3.7 8.8 15.3 20.5 29.1

All

(+1K)

DeViSE (us) ResNet-50 0.3 0.9 2.2 3.6 5.8

DeViSE∗ (us) ResNet-50 0.3 0.8 2.0 3.4 5.5

ConSE [34] ResNet-50 0.1 1.5 3.5 4.9 6.2

GCNZ [34] ResNet-50 1.0 2.3 5.3 8.1 11.7

DGP [17] ResNet-50 1.5 3.4 7.8 12.3 18.2

Ours ResNet-50 2.2 4.6 9.2 12.7 15.5

Ours ResNet-101 2.3 4.6 9.2 12.7 15.5

to happen in the Euclidean space, as classes sharing a com-

mon ancestor tend to be clustered together.

Third, compared with state-of-the-arts explicit knowl-

edge transfer methods based on GCN, including GCNZ and

DGP, our model has lower performance on “2-hops” test

set. However, on “3-hops” and “All”, our model achieves

comparable results with them, with better Hit@1, Hit@2,

and Hit@5 but slightly worse Hit@10 and Hit@20. As
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Table 4. Effect of different hyperbolic label embeddings. Image

features are extracted with ResNet-101. The testing is done on

unseen categories.

Test Set

(# Categories)
Model

Flat Hit@k(%)

1 2 5 10 20

2-hops

(1,589)

PH Only 12.1 18.5 34.4 46.5 53.6

PG Only 10.6 15.4 32.6 43.1 51.7

PH + PG 14.2 22.1 40.7 53.7 63.2

3-hops

(7,860)

PH Only 6.2 9.7 16.1 23.5 31.5

PG Only 3.7 7.3 13.1 18.8 26.3

PH + PG 7.3 11.3 19.6 26.3 35.7

All

(20,841)

PE Only 3.6 4.6 8.8 10.0 13.7

PG Only 2.4 3.3 6.5 8.6 10.7

PE + PG 4.2 6.3 10.8 13.3 16.6

classifier weights are directly shared among nearby classes,

knowledge transfer methods that base on graph propagation

tend to perform better when the seen classes and unseen

classes are similar. However, their performance is less ro-

bust when the unseen classes are dominant in number and

also distant from the seen classes (the cases of “3-hops”

and “All”). For example, the Hit@1 of DGP drops signifi-

cantly from 26.2 to 6.0 when changing the dataset from “2-

hops” to “3-hops”. The main reason could be the dilution of

knowledge in long-distance graph propagation. On the con-

trary, our model performs more stable when it comes to “3-

hops” and “All” as our model is based on feature mapping

rather than weight propagation within an explicit graph.

Lastly, the performance drops for all the methods in

GZSL as seen classes are mixed in the candidates. Similar

results can be observed in this setting. Our model outper-

forms DeViSE and ConSE on all test sets, while achieving

comparable performance with GCNZ and DGP on the “3-

hops+1K” and “All+1K” test sets.

5.6. Ablation Study

We further perform ablation studies to show the effec-

tiveness of combining structural information and semantic

information. As shown in Table 4, we evaluate three ver-

sions of our model: the model with only Poincaré Hierar-

chy Embedding (PH Only), the model with only Poincaré

GloVe (PG Only), and the model with both (PH + PG). It

shows that the performances of PH+PG are consistently bet-

ter than the model using only Poincaré Embedding or only

Poincaré GloVe across all test sets. This demonstrates the

complementary role of hierarchy information and seman-

tic information in ZSL. We use a specific example to ex-

plain how these two embeddings complement each other.

Take the images of Red Squirrel (Figure 1) for example, the

top-5 predicted labels for Poincaré Embedding are: “Red

Squirrel”, “Tree Squirrel”, “Squirrel”, “Tree Wallaby”, and

“Kangaroo”; while the top-5 predicted labels for Poincaré

GloVe are: “Red Squirrel”, “Kangaroo”, “Tree Wallaby”,

“Tree Squirrel”, and “Lemur”. We find that Poincaré Em-
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Figure 4. Performance comparison under different dimensions of

semantic embeddings. The testing is performed on “2-hops” set.

bedding tends to predict the general labels, such as “Tree

Squirrel” and “Squirrel”, as it mainly captures the class hi-

erarchy. Conversely, Poincaré Glove tends to predict sim-

ilar and specific labels (e.g., “Kangaroo”), since it models

the semantic similarity between different classes.

5.7. Dimension Analysis

As the volume of hyperbolic space increases exponen-

tially with the radius, the embedding dimension needed to

represent the feature embeddings can be much lower than

that in Euclidean space. To demonstrate this, we investigate

the performance of our model regarding different semantic

embedding dimensions. In Figure 4, we compare the perfor-

mance of our model with DeViSE and ConSE. The Hit@1

on the “2-hops” dataset is reported for different embedding

dimensions. As shown in the Figure, when the dimension

of the semantic embedding decreases to 10, our model still

achieves a satisfactory Hit@1 of 8.3. On the contrary, the

performance DeViSE and ConSE, which learns the embed-

dings in Euclidean space, decreases to 0 as both models

cannot converge in training with 10-dimensional semantic

embeddings. The results clearly show the advantages of

learning embeddings in hyperbolic space.

6. Conclusion

In this paper, we proposed the Hyperbolic Visual Em-

bedding Learning Networks. As far as we know, this is

the first attempt to introduce Non-Euclidean Space for ZSL

problem. Furthermore, we conducted both empirical and

analytic studies to demonstrate that introducing hyperbolic

space into ZSL problem results in a more robust model. Un-

der hierarchical evaluation, our framework outperforms ex-

isting baseline methods by a large margin.
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