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Abstract

Saliency detection on RGB-D images is receiving more

and more research interests recently. Previous models

adopt the early fusion or the result fusion scheme to fuse

the input RGB and depth data or their saliency maps, which

incur the problem of distribution gap or information loss.

Some other models use the feature fusion scheme but are

limited by the linear feature fusion methods. In this pa-

per, we propose to fuse attention learned in both modal-

ities. Inspired by the Non-local model, we integrate the

self-attention and each other’s attention to propagate long-

range contextual dependencies, thus incorporating multi-

modal information to learn attention and propagate con-

texts more accurately. Considering the reliability of the

other modality’s attention, we further propose a selection

attention to weight the newly added attention term. We

embed the proposed attention module in a two-stream C-

NN for RGB-D saliency detection. Furthermore, we al-

so propose a residual fusion module to fuse the depth de-

coder features into the RGB stream. Experimental results

on seven benchmark datasets demonstrate the effectiveness

of the proposed model components and our final salien-

cy model. Our code and saliency maps are available at

https://github.com/nnizhang/S2MA.

1. Introduction

Saliency detection is the task to distinguish the most

salient object from complex background in a visual scene.

It mimics the human visual attention mechanism to find out

what catch people’s eyes when free viewing scenes. This

task can be used as a pre-processing technique or a model

component for many other vision tasks, such as semantic

segmentation [52, 2], and image editing [43, 50].

Researchers have proposed many saliency models in

decades, and most of them work on RGB images. Although

recent RGB saliency models have achieved very promising

performance, e.g., [32, 33, 17, 31], they can only leverage
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Figure 1. Comparison of the RGB and RGB-D saliency detection

results and the learned attention. In (a) we give a challenging im-

age and its corresponding depth map. (b) shows the saliency maps

of a RGB-based deep model (top) and our RGB-D-based model

(bottom). (c) illustrates the learned attention maps at the same po-

sition (the red point) in a RGB-based Non-local model [51] (top)

and our proposed attention fusion model (bottom).

appearance cues from the input RGB data, which are of-

ten severely limited in many challenging scenarios, e.g.,

cluttered background or salient object having similar ap-

pearance with the background. Nevertheless, we human

beings actually live in a 3D environment, in which depth

cues can supply sufficient complementary information for

the appearance cues. Thus, it is quite necessary to study

the saliency detection problem on RGB-D data. In Figure 1

we show a challenging image with complex appearance. In

column (b), we can see that its RGB-based saliency detec-

tion result is easily disturbed and has severe false positive

highlights. However, its foreground object is quite different

from the background in terms of depth. Thus the depth in-

formation can be used to easily distinguish the foreground

object and obtain an accurate saliency map.

To combine the appearance information and the depth

cues for RGB-D salient object detection, some previous

methods adopt the early fusion strategy [46, 41, 34, 14], in

which case both RGB and depth data are taken as inputs and

processed in a unified model. However, it is not easy for one

model to fit the data from two modalities well due to their

distribution gap. Some other models use the result fusion

strategy [11, 22, 49], where the RGB image and the depth
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map are used in two models to generate their own saliency

maps separately, and then a fusion method is adopted to fuse

the two saliency maps. This scheme is also suboptimal since

rich modality information is gradually compressed and lost

in the two separate saliency modeling processes. Thus, the

final interaction between the two saliency maps is highly

limited.

As a better choice, many models utilize the middle fu-

sion strategy, i.e., fusing the intermediate information of

the two modalities, and then generating the final saliency

map. Most typically, many recently proposed deep RGB-D

saliency models [40, 5, 44, 23, 3, 4, 19] first use two-stream

CNNs to extract RGB and depth features separately, and

then fuse them via summation or concatenation. We refer

these methods as the feature fusion strategy. This strategy

avoids the distribution gap problem and fuses rich multi-

modal features with plentiful interaction. However, simple

feature summation or concatenation only learns to linearly

fuse RGB and depth features, being unable to explore more

complex multi-modal interaction.

In this paper, we present a novel middle fusion strate-

gy. Inspired by the Non-local (NL) model [51], we pro-

pose to fuse multi-modal attention. The NL model com-

putes each position a set of spatial attention and then us-

es them to aggregate the features at all positions, thus be-

ing able to incorporate long-range global context. Since the

attention and the propagated features in the NL model are

based on the same feature map, this kind of attention mech-

anism is usually referred as the self-attention. Considering

the complementary information between the RGB and the

depth data, we propose to further propagate global context

using each other’s attention, as which we refer the mutual-

attention mechanism. Since the original self-attention may

be highly limited by the single modality information, the

proposed mutual attention can supply extra complementary

cues about where should attend based on the information

of the other modality when propagating the contextual fea-

tures. In Figure 1(c), we show two attention maps of the

same position (the red point) in the image. We can see that

RGB-based attention is highly biased due to the complex

appearance, while the fused attention can accurately locate

the main body of the salient object by fusing the depth at-

tention.

Furthermore, since the complementary information from

the other modality may be not always reliable for all posi-

tions, we propose another selection attention to decide how

much mutual attention should be involved at each position.

We adopt this novel selective self-mutual attention mech-

anism in a two-stream CNN network to fuse multi-modal

cues for RGB-D saliency detection. Additionally, we also

present a novel residual fusion module to transfer the depth

cues to the RGB features in the decoder part. Experimen-

tal results demonstrate that our proposed model components

are all helpful for improving the saliency detection perfor-

mance. Finally, our saliency model outperforms all other

state-of-the-art methods.

2. Related Work

Saliency detection on RGB-D images. Early RGB-D

salient object detection methods usually borrow common

priors (e.g., contrast [8] and compactness [10]) from RGB

saliency models to design RGB and depth features. Ad-

ditionally, some researchers exploit depth-specific priors,

e.g., shape and 3D layout priors [9], and anisotropic center-

surround difference [28, 22].

Recent work introduce CNNs to RGB-D salient object

detection and have achieved promising results. Qu et al.

[41] adopt the early fusion strategy to serialize hand-crafted

RGB and depth features together as the CNN inputs. Fan et

al. [14] and Liu et al. [34] concatenate each depth map as

the 4th channel with the corresponding RGB image as the

CNN input. Wang et al. [49] adopt the result fusion strategy

and learn a switch map to adaptively fuse RGB and depth

saliency maps. Many recent work adopt the middle fusion

strategy to fuse intermediate depth and appearance features.

Han et al. [23] fuse the representation layers of the RGB and

the depth modality with a joint representation layer. Chen

et al. [3] propose a complementarity-aware fusion module

to capture cross-modal and cross-level features. In contrast,

our model focuses on fusing multi-modal attention.

Some other existing models also leverage the attention

mechanism to fuse the two modalities, e.g., [55] and [40].

However, they only generate channel [40] or spatial [55]

attention from the depth view and adopt it to filter the ap-

pearance features. Nevertheless, we generate non-local at-

tention from both views and then fuse them to propagate

long-range contexts.

Non-local networks. Vaswani et al. [47] propose a self-

attention network for language modeling. Given a query

and a set of key-value pairs, they first compute the atten-

tion weight between the query and each key. Then they

use the attention weights to aggregate the values by weight-

ed sum as the output. Similarly, Wang et al. [51] propose

the NL model for learning self-attention in 2D or 3D vision

modeling. Huang et al. [26] propose to replace the dense-

ly connected attention path with the criss-cross path to im-

prove the model efficiency. Cao et al. [1] propose to unify

the NL model with SENet [24] to learn query-independent

global context with a lightweight network structure. In

[18], Fu et al. apply the NL model to capture both spatial

and channel long-range dependencies. Some other models

[7, 30, 57, 54] propose to improve both model performance

and efficiency by learning representative key-value pairs. In

this paper, we propose to improve the NL module by fusing

attention from multi-modalities, thus greatly promoting the
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accuracy of attention generation and context propagation.

Multi-modal attention learning. In [36] and [48], the au-

thors also propose to learn multi-modal attention. Nam et

al. [36] propose to learn visual and textual attention mech-

anisms for both multi-modal reasoning and matching. Wan

et al. [48] apply three attention models in three modalities

of source code for the code retrieval task. However, both

of them learn and adopt attention for each modality sepa-

rately, and then fuse the obtained attended features. On the

contrary, we propose to directly fuse multi-modal attention.

3. From Non-local to Selective Self-Mutual At-

tention

In this section, we elaborate on the proposed Selective

Self-Mutual Attention (S2MA) module for fusing multi-

modal information. It is built on the basis of the NL module

[51], additionally with the proposed attention fusion and se-

lective attention added. We first briefly review the NL mod-

ule and then go into our S2MA module.

3.1. Reviewing the NL module

Here we briefly review the NL module, whose network

architecture is shown in Figure 2(a). Imaging we have a

feature map X ∈ R
H×W×C , where H , W , and C represent

its height, width, and channel number, respectively, the NL

module first embeds X into three spaces with C1 channels:

θ(X) = XWθ, φ(X) = XWφ, g(X) = XWg, (1)

where Wθ, Wφ, and Wg ∈ R
C×C1 are embedding weights,

and the embeddings can be implemented by 1× 1 convolu-

tion as shown in Figure 2(a).

Next, a similarity (or affinity) function f is computed

within θ and φ embeddings. In [51], several forms of the

function f are proposed. Here we introduce the most widely

used embedded Gaussian function, where

f(X) = θ(X)φ(X)⊤, (2)

and f(X) ∈ R
HW×HW . In f(X), each element fi,j repre-

sents the affinity between the ith and the jth spatial location

in X .

Subsequently, the NL module generates the attention

weight by using normalization along the second dimension:

A(X) = softmax(f(X)), (3)

where each row Ai indicates the normalized attention of all

positions respect to the ith position. Then the features in g

are aggregated by weighted sum:

Y = A(X)g(X), (4)

where Y ∈ R
HW×C1 is an attentive feature, and it is further

reshaped to the shape H ×W × C1.

Finally, the NL module learns a residual signal based on

Y to improve the original feature X and obtain the final

output Z:

Z = Y WZ +X, (5)

where WZ ∈ R
C1×C is the weight of a 1×1 Conv layer for

projecting the attentive feature back to the original feature

space.

3.2. Self­Mutual Attention

The obtaining of the attention A(X) in the NL module

can be rewritten as:

A(X) = softmax(XWθW
⊤

φ X
⊤). (6)

We can see that it is a bilinear projection of the original

feature X itself, thus the NL module belongs to the self-

attention category. We argue that using a further projec-

tion of the same feature can only bring limited information

and performance gain (see the experimental results in Sec-

tion 5.4). For multi-modal tasks, such as RGB-D salient

object detection, we can leverage the features from multiple

modalities to integrate information complementarity.

In this paper, we first propose fusing Self-Mutual At-

tention (SMA) to improve the NL module for multi-modal

data. Considering we have two feature maps X
r,Xd ∈

R
H×W×C from the RGB and the depth modality, respec-

tively, we follow the NL module to embed them into the θ,

φ, g spaces and obtain their affinity matrixes respectively:

fr(Xr) = θr(Xr)φr(Xr)⊤,

fd(Xd) = θd(Xd)φd(Xd)⊤.
(7)

Since the two affinity matrixes are computed by their own

modality-specific feature, we fuse them via simple summa-

tion and then obtain the fused attention:

Af (Xr,Xd) = softmax(fr(Xr) + fd(Xd)). (8)

Then we use Af to propagate long-range contextual depen-

dencies in the two modalities, respectively:

Y
r = Af (Xr,Xd)gr(Xr),

Y
d = Af (Xr,Xd)gd(Xd).

(9)

Finally, we use (5) to obtain modality-specific outputs Z
r

and Z
d, respectively.

Note that in Af , the affinity of two modalities are both

included, thus the attention generation and context propa-

gation can become more accurate. Experimental results in

Section 5.4 demonstrate that the SMA module can bring

significant performance gain for the RGB-D saliency detec-

tion task.
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Figure 2. Network architecture of the original Non-local module [51] (a) and the proposed selective self-mutual attention module (b).

3.3. Selective Self­Mutual Attention

The SMA model considers self-mutual attention equally.

However, the mutual attention from the other modality is

not always reliable for all positions since the information

from one modality may be inaccurate or useless for some

positions. A typical example is that some depth maps are

noisy and inaccurate in some datasets. Based on the widely

validated effectiveness of the self-attention mechanism and

the experimental results, we choose to reweight the mutual

attention by computing a selection attention weight at each

position. Specifically, we first concatenate X
r and X

d and

then use a 1 × 1 Conv layer with the softmax activation

function to compute the selection attention:

α = softmax(Conv([Xr,Xd])), (10)

where α ∈ R
H×W×2 and [·] indicates the concatenation

operation. We further split it into two maps αr, αd ∈

R
H×W×1. Each of them represents the reliability at all po-

sitions of the corresponding modality.

Then, we can obtain the selective self-mutual attention

by changing (8) with a weighted sum of the two affinities:

Ar(Xr,Xd)=softmax(fr(Xr)+αd⊙fd(Xd)),

Ad(Xr,Xd)=softmax(fd(Xd)+αr⊙fr(Xr)),
(11)

where ⊙ is the channel-wise Hadamard matrix product. Fi-

nally, we use Ar and Ad to aggregate contextual features

for the two views, respectively, similar with (9).

The whole network architecture of the S2MA module is

shown in Figure 2(b). Experimental results in Section 5.4

indicate that using the proposed selection attention can fur-

ther improve the model performance on the basis of the S-

MA module.

4. RGB-D Saliency Detection Network

Based on the proposed S2MA module, we propose a

novel deep model for RGB-D saliency detection. As shown

in Figure 3(a), our model is based on a two-stream CNN,

and each of them is based on a UNet [42] architecture.

Specifically, we take the VGG-16 network [45] as the

backbones of the UNets and share the same network struc-

ture for the two encoder parts. We follow [33] to slightly

change the VGG-16 network structure as follows. First, we

change the pooling strides of the pool4 and pool5 layers to

1 and the dilation rates [6] of the conv5 block to 2. Second,

we turn the fc6 layer into a 3×3 Conv layer with 1024 chan-

nels and the dilation rate of 12. Third, we transform the fc7

layer to a 1 × 1 Conv layer with 1024 channels. As such,

the encoder network becomes a fully convolutional network

[35] with the output stride of 8.

Next, to further enhance the capability of the encoder

network, we adopt a DenseASPP [53] module, which in-

troduces dense connections [25] to the ASPP [6] module

to cover dense feature scales. We first adopt a 1 × 1 Conv

layer to compress the fc7 feature map to 512 channels and

then deploy the DenseASPP module on it. Considering our

specific training image size, we design three dilated Conv

branches, which have 3 × 3 Conv layers with 176 chan-

nels and the dilation rates of 2, 4, and 8, respectively. At

the same time, we follow [53] to densely connect the three

branches. To capture the global feature, we also design an-

other branch to average pool the input feature map and then
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Figure 3. Architecture of our proposed RGB-D saliency detection network. (a) shows the main two-stream network. The skip-connected

VGG layers are marked in the first stream by “C* *” and “fc*”. The channel numbers of the feature maps are also marked in the second

stream. (b) shows our used DenseASPP module. Some key channel numbers are also given. (c) shows the two proposed decoder modules

of the RGB and the depth CNN streams, respectively. Here “UP” means upsampling with bilinear interpolation.

upsample it to the original size. Finally, we concatenate the

input feature map and the features of all the four branches,

and then compress them to 512 channels. The whole mod-

ule architecture can be found in Figure 3(b).

After the DenseASPP module, we take the features of the

RGB and the depth CNN streams as the inputs and adopt the

proposed S2MA module to fuse multi-modal attention and

propagate global contexts for both views. Whereafter, we

go into the decoding part. In the first decoder module, we

use two Conv layers with 512 channels. Then we follow the

UNet [42] architecture to progressively skip connect inter-

mediate encoder features with decoder features. The used

intermediate VGG features are the last Conv feature map-

s of the five blocks, which are marked in Figure 3(a). For

each depth decoder module, we use a naive fusion model F©
by simply concatenating the VGG feature and the previous

decoder feature, and then adopting two Conv layers to fuse

them. For the RGB decoder modules, we design a residual

fusion model R© to further fuse depth decoder features with

a residual connection. Specifically, after concatenating the

two input features and adopt the first Conv layer, we con-

catenate this feature with the first Conv feature of the cor-

responding depth decoder module as the pre-activation of

the fused feature. Then we use another Conv layer to learn

a residual fusion signal to ease the network training. The

detailed network structure is shown in Figure 3(c). Please

note that we do not further adopt the S2MA module in the

decoding part since it is computational prohibitive for large

feature maps.

Each Conv layer in our decoder part has 3 × 3 kernels,

and is followed by a BN [27] layer and the ReLU activation

function. The output channel number in each decoder mod-

ule is set to be the same as that of the next skip-connected

VGG feature, which is also marked in Figure 3(a). For each

of the last three decoder modules, since the previous de-

coder feature map has a smaller spatial size than the skip-

connected VGG feature map, we upsample it by bilinear in-

terpolation to progressively enlarge the spatial size. Finally,

we adopt a 3 × 3 Conv layer with 1 channel on the last de-

coder feature map and use the sigmoid activation function

to obtain the saliency map for each CNN stream.

5. Experiments

5.1. Datasets

For model training and evaluation, we use seven RGB-

D saliency benchmark datasets as follows. NJUD [28] has

1,985 images collected from the Internet, 3D movies, and
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Table 1. Ablation study on the effectiveness of the DenseASPP (DA) module, the NL module, the SMA module, the S
2MA module, and

the residual fusion module R©. Blue indicates the best performance.

Settings NJUD [28] NLPR [39] RGBD135 [8] LFSD [29]

DA NL SMA S2MA R© Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE Sm maxF Eξ MAE

0.865 0.852 0.902 0.072 0.897 0.873 0.941 0.039 0.875 0.834 0.927 0.046 0.786 0.775 0.836 0.131

X 0.877 0.865 0.913 0.057 0.911 0.892 0.945 0.030 0.889 0.861 0.925 0.032 0.787 0.768 0.836 0.118

X X 0.877 0.865 0.916 0.057 0.908 0.888 0.945 0.032 0.892 0.868 0.922 0.034 0.793 0.784 0.838 0.123

X X 0.890 0.882 0.927 0.058 0.907 0.886 0.947 0.035 0.918 0.903 0.956 0.028 0.821 0.812 0.857 0.108

X X 0.889 0.884 0.929 0.056 0.915 0.898 0.950 0.031 0.929 0.918 0.972 0.025 0.829 0.819 0.865 0.101

X X X 0.894 0.889 0.930 0.053 0.915 0.902 0.953 0.030 0.941 0.935 0.973 0.021 0.837 0.835 0.873 0.094

Image Depth Depth SA RGB SA αd Ar

Figure 4. Visualization of the learned attention maps. We show

the learned depth-based self-attention (Depth SA), the RGB-based

self-attention (RGB SA), the selection attention α
d, and the fused

attention A
r in three images. In each image, the red point indicates

the query position.

stereo photos. NLPR [39] and RGBD135 [8] contain 1,000

and 135 images collected by the Microsoft Kinect, respec-

tively. LFSD [29] contains 100 images captured by a Lytro

light field camera. STERE [37] contains 1,000 pairs of

binocular images downloaded from the Internet. SSD [56]

has 80 stereo movie frames. DUT-RGBD [40] contains

1,200 real life images captured by a Lytro2 camera.

5.2. Evaluation Metrics

Following recent work, we adopt four evaluation met-

rics. The first one is the maximum F-measure (maxF). F-

measure comprehensively considers both precision and re-

call for binarized saliency maps and we report the maxF

score under an optimal threshold. The second metric is the

Structure-measure Sm [12] which evaluates both region-

aware and object-aware structural similarities between the

saliency maps and the ground truth. We use the third metric

as the Enhanced-alignment measure Eξ [13] to capture both

global statistics and local pixel matching information of the

saliency maps. The fourth metric is the Mean Absolute Er-

ror (MAE). It measures the average of the per-pixel absolute

difference between the saliency maps and the ground truth.

5.3. Implementation Details

For fair comparisons, we adopt the same training set as in

[23, 3, 55], which consists of 1,400 images from the NJUD

dataset and 650 images from the NLPR dataset. For da-

ta augmentation, we first resize training images and corre-

sponding depth maps to 288×288 pixels and then randomly

crop 256×256 image regions to train the network. Random

horizontal flipping is also used. For the depth stream CNN,

we simply replicate each single depth map to three chan-

nels to fit the network input layer. Since the depth maps of

different datasets have different presentations, we process

them to a unified presentation, where small depth values

represent the object is close to the camera and vice verse.

We also normalize the depth map of each image to the val-

ue range of [0,255] to ease the network training. Finally,

each image and the three-channel depth map are subtracted

by their mean pixel values as the inputs of the two-stream

network.

We use the cross-entropy loss between the predicted

saliency maps and the ground truth masks as the training

losses of both streams. To facilitate the network training, we

also use deep supervision for each decoder module, where

we first adopt a 3 × 3 Conv layer with the sigmoid acti-

vation function on each decoder feature map to generate a

saliency map and then compute the cross entropy loss to

train this decoder module. Following [33], we empirically

use 0.5, 0.5, 0.5, 0.8, and 0.8 to weight the first five decoder

losses of each stream. The stochastic gradient descent (S-

GD) with momentum algorithm is adopted to optimize our

saliency network with totally 40,000 iterations. Weight de-

cay, momentum, and batchsize are set to 0.0005, 0.9, and

8, respectively. The initial learning rate is set to 0.01 and

divided by 10 at the 20, 000th and the 30, 000th iteration,

respectively.

We implement the proposed network using the Pytorch

[38] package and use a GTX 1080 Ti GPU for computing

acceleration. During testing, we directly resize each image

and its depth map to 256× 256 pixels as the network input-

s and obtain the saliency map from the network output of

the RGB stream without any post-processing method. The

testing process takes 0.107 seconds for each image.

5.4. Ablation Study

To evaluate the effectiveness of the proposed model com-

ponents, we conduct the ablation study on four datasets,
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Table 2. Quantitative comparison of our proposed model with other 11 state-of-the-art RGB-D saliency models on 7 benchmark datasets in

terms of 4 evaluation metrics. Red and blue indicate the best and the second best performance, respectively.

Dataset Metric
LBE DCMC SE DF AFNet CTMF MMCI PCF TANet CPFP DMRA S2MA

[16] [10] [22] [41] [49] [23] [5] [3] [4] [55] [40] (Ours)

NJUD Sm ↑ 0.695 0.686 0.664 0.763 0.772 0.849 0.858 0.877 0.878 0.878 0.886 0.894

maxF ↑ 0.748 0.715 0.748 0.804 0.775 0.845 0.852 0.872 0.874 0.877 0.886 0.889

Eξ ↑ 0.803 0.799 0.813 0.864 0.853 0.913 0.915 0.924 0.925 0.923 0.927 0.930

[28] MAE ↓ 0.153 0.172 0.169 0.141 0.100 0.085 0.079 0.059 0.060 0.053 0.051 0.053

NLPR Sm ↑ 0.762 0.724 0.756 0.802 0.799 0.860 0.856 0.874 0.886 0.888 0.899 0.915

maxF ↑ 0.745 0.648 0.713 0.778 0.771 0.825 0.815 0.841 0.863 0.867 0.879 0.902

Eξ ↑ 0.855 0.793 0.847 0.880 0.879 0.929 0.913 0.925 0.941 0.932 0.947 0.953

[39] MAE ↓ 0.081 0.117 0.091 0.085 0.058 0.056 0.059 0.044 0.041 0.036 0.031 0.030

RGBD135 Sm ↑ 0.703 0.707 0.741 0.752 0.770 0.863 0.848 0.842 0.858 0.872 0.900 0.941

maxF ↑ 0.788 0.666 0.741 0.766 0.729 0.844 0.822 0.804 0.827 0.846 0.888 0.935

Eξ ↑ 0.890 0.773 0.856 0.870 0.881 0.932 0.928 0.893 0.910 0.923 0.943 0.973

[8] MAE ↓ 0.208 0.111 0.090 0.093 0.068 0.055 0.065 0.049 0.046 0.038 0.030 0.021

LFSD Sm ↑ 0.736 0.753 0.698 0.791 0.738 0.796 0.787 0.794 0.801 0.828 0.847 0.837

maxF ↑ 0.726 0.817 0.791 0.817 0.744 0.791 0.771 0.779 0.796 0.826 0.856 0.835

Eξ ↑ 0.804 0.856 0.840 0.865 0.815 0.865 0.839 0.835 0.847 0.872 0.900 0.873

[29] MAE ↓ 0.208 0.155 0.167 0.138 0.133 0.119 0.132 0.112 0.111 0.088 0.075 0.094

STERE Sm ↑ 0.660 0.731 0.708 0.757 0.825 0.848 0.873 0.875 0.871 0.879 0.886 0.890

maxF ↑ 0.633 0.740 0.755 0.757 0.823 0.831 0.863 0.860 0.861 0.874 0.886 0.882

Eξ ↑ 0.787 0.819 0.846 0.847 0.887 0.912 0.927 0.925 0.923 0.925 0.938 0.932

[37] MAE ↓ 0.250 0.148 0.143 0.141 0.075 0.086 0.068 0.064 0.060 0.051 0.047 0.051

SSD Sm ↑ 0.621 0.704 0.675 0.747 0.714 0.776 0.813 0.841 0.839 0.807 0.857 0.868

maxF ↑ 0.619 0.711 0.710 0.735 0.687 0.729 0.781 0.807 0.810 0.766 0.844 0.848

Eξ ↑ 0.736 0.786 0.800 0.828 0.807 0.865 0.882 0.894 0.897 0.852 0.906 0.909

[56] MAE ↓ 0.278 0.169 0.165 0.142 0.118 0.099 0.082 0.062 0.063 0.082 0.058 0.052

DUT- Sm ↑ 0.695 0.499 0.526 0.736 0.702 0.831 0.791 0.801 0.808 0.818 0.889 0.903

RGBD maxF ↑ 0.692 0.411 0.458 0.740 0.659 0.823 0.767 0.771 0.790 0.795 0.898 0.901

Eξ ↑ 0.800 0.654 0.709 0.823 0.796 0.899 0.859 0.856 0.861 0.859 0.933 0.937

[40] MAE ↓ 0.220 0.243 0.201 0.144 0.122 0.097 0.113 0.100 0.093 0.076 0.048 0.043

i.e., NJUD, NLPR, RGBD135, and LFSD. The basic UNet

model with the naive fusion decoder modules trained only

on RGB images is used as the baseline model. The experi-

mental results are shown in Table 1.

Effectiveness of the DenseASPP module. The first row

in Table 1 denotes the baseline UNet, while the second row

means we adopt the DenseASPP module. The comparison

results show that using the DenseASPP module can moder-

ately improve the saliency detection performance, offering

us a more powerful baseline model for evaluating our pro-

posed attention module and the residual fusion module.

Effectiveness of the S2MA module. We show the mod-

el performance of further adding the NL module, the pro-

posed SMA module, and the proposed S2MA module in the

3rd to 5th rows in Table 1. We can see that adding the N-

L [51] module can only slightly improve (or even degrade)

the model performance on the basis of a powerful baseline

model (UNet+DenseASPP). Whereas using our proposed

SMA module brings significant performance gain on the N-

JUD, RGBD135, and LFSD datasets, which demonstrates

the effectiveness of the proposed self-mutual attention fu-

sion scheme. Finally, using the proposed S2MA module

can further moderately improve the model performance,

especially on the NLPR, RGBD135, and LFSD datasets.

These results indicate that using the proposed selection at-

tention to weight the mutual attention in attention fusion is

beneficial. We also tried to use αr and αd to weight both

self-attention and mutual attention but got worse results.

To thoroughly understand the effectiveness of our pro-

posed attention fusion scheme, we show some visualiza-

tion examples of the learned RGB-based self-attention, the

depth-based self-attention, the selection attention αd, and

the fused attention Ar in Figure 4. We can see that usually

the self-attention learned in each single modality is imper-

fect or even noisy, while Ar learned in the proposed S2MA

module can locate related positions of the query position

more accurately by fusing the information from both modal-

ities. For αd, we find it tends to be small for pixels with

large depth values. This is because large depth is usual-

ly coarse-grained, thus being less discriminative. On the

contrary, αd tends to be large for close pixels since their

depth are more accurate and discriminative. Moreover, αd

are around 0.5 for pixels inside salient objects, which mean-

s RGB and depth attention are equally important for salient

13762



Image Depth GT S2MA DMRA
[40]

CPFP
[55]

TANet
[4]

PCF
[3]

MMCI
[5]

CTMF
[23]

AFNet
[49]

DF
[41]

SE
[22]

DCMC
[10]

LBE
[16]

Figure 5. Qualitative comparison against 11 state-of-the-art RGB-D saliency detection methods. (GT: ground truth)

regions.

Effectiveness of the residual fusion module. In the last

row of Table 1, we further adopt the residual fusion module

R© in our saliency model. The results indicate that using

this module to further fuse the depth decoder features into

the RGB stream with a residual path can further improve

the model performance, especially on the RGBD135 and

the LFSD datasets.

5.5. Comparison with State­of­the­Art Methods

To evaluate the effectiveness of our proposed saliency

model, we compare it with other 11 recently published

RGB-D saliency methods, which include LBE [16], DCM-

C [10], SE [22], DF [41], AFNet [49], CTMF [23], MMCI

[5], PCF [3], TANet [4], CPFP [55], and DMRA [40]. The

first three methods are based on traditional models while

the last eight ones are deep models. Since the training set

of the DMRA [40] model further includes 800 images from

the DUT-RGBD dataset, we further finetune our model on

these images for a fair comparison on this dataset.

In Table 2 we show the quantitative comparison results.

We can see that our model achieves the best performance

on the NJUD, NLPR, RGBD135, SSD, and DUT-RGBD

datasets. Especially on the RGBD135 dataset, the proposed

S2MA model outperforms the second-best model by a large

margin. On the other two datasets, our model achieves the

second-best performance but is close to the best model.

We also give qualitative comparison results in Figure 5.

It shows that our model can handle various challenging sce-

narios, e.g., the first two images have complex backgrounds,

the salient objects in the 3rd and the 4th images have similar

appearance with the backgrounds, the 5th to the 7th images

have multiple objects. Generally, our model can accurately

localize salient objects and segment them precisely, while

other models are heavily disturbed in these complex scenes.

6. Conclusion

In this paper, we propose to fuse the self-attention and

the other modality’s attention in the Non-local model as a

novel way for fusing multi-modal information. The fused

attention is more accurate thus can propagate better global

contexts. We also develop a selection attention mechanism

to reweight the mutual attention term for filtering out unre-

liable modality information. The proposed S2MA module

is embedded into a two-stream CNN to solve the RGB-D

saliency detection problem. Experimental results show that

S2MA significantly improves the model performance on the

basis of a powerful baseline model. As a result, our salien-

cy model performs favorably against state-of-the-art RGB-

D saliency detection methods. In the future, our proposed

S2MA module can also be used for other multi-modal tasks,

such as video saliency detection [15], visual questions and

segmentation answers [20], and audio-visual tasks [21].
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