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Abstract

A typical domain adaptation approach is to adapt mod-

els trained on the annotated data in a source domain (e.g.,

sunny weather) for achieving high performance on the test

data in a target domain (e.g., rainy weather). Whether the

target contains a single homogeneous domain or multiple

heterogeneous domains, existing works always assume that

there exist clear distinctions between the domains, which

is often not true in practice (e.g., changes in weather).

We study an open compound domain adaptation (OCDA)

problem, in which the target is a compound of multiple

homogeneous domains without domain labels, reflecting

realistic data collection from mixed and novel situations.

We propose a new approach based on two technical insights

into OCDA: 1) a curriculum domain adaptation strategy

to bootstrap generalization across domains in a data-

driven self-organizing fashion and 2) a memory module to

increase the model’s agility towards novel domains. Our

experiments on digit classification, facial expression recog-

nition, semantic segmentation, and reinforcement learning

demonstrate the effectiveness of our approach.

1. Introduction

Supervised learning can achieve competitive perfor-

mance for a visual task when the test data is drawn from

the same underlying distribution as the training data. This

assumption, unfortunately, often does not hold in reality,

e.g., the test data may contain the same class of objects

as the training data but different backgrounds, poses, and

appearances [39, 44].

The goal of domain adaptation is to adapt the model

learned on the training data to the test data of a different

distribution [39, 32, 11]. Such a distributional gap is

often formulated as a shift between discrete concepts of

well defined data domains, e.g., images collected in sunny

weather versus those in rainy weather. Though domain

generalization [22, 20] and latent domain adaptation [15,

∗Equal contribution.

Figure 1: Open compound domain adaptation. Unlike

existing domain adaptation which assumes clear distinc-

tions between discrete domains (cf. the examples in gray

frames), our compound target domain is a combination of

multiple traditionally homogeneous domains without any

domain labels. We also allow novel domains to show up

at the inference time.

10] have attempted to tackle complex target domains, most

existing works usually assume that there is a known clear

distinction between domains [11, 7, 46, 28, 40].

Such a known and clear distinction between domains

is hard to define in practice, e.g., test images could be

collected in mixed, continually varying, and sometimes

never seen weather conditions. With numerous factors

jointly contributing to data variance, it becomes implausible

to separate data into discrete domains.

We propose to study open compound domain adaptation

(OCDA), a continuous and more realistic setting for domain
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Table 1: Comparison of domain adaptation settings. Domain Labels tell to which domain each instance belongs. Open

Classes refer to novel classes showing up during testing but not training. Open Domains are the domains of which no

instances are seen during training.

Domain Adaptation Setting # Target Domains Domain Labels Open Classes Open Domains

Unsupervised Domain Adaptation single known × ×
Multi-Target Domain Adaptation multiple known × ×
Open/Partial Set Domain Adaptation single known X ×
Open Compound Domain Adaptation multiple unknown × X

adaptation (cf. Figure 1 and Table 1). The task is to learn

a model from labeled source domain data and adapt it to

unlabeled compound target domain data which could differ

from the source domain on various factors. Our target

domain can be regarded as a combination of multiple tra-

ditionally homogeneous domains where each is distinctive

on one or two major factors, and yet none of the domain

labels are given. For example, the five well-known datasets

on digits recognition (SVHN [31], MNIST [19], MNIST-

M [6], USPS [18], and SynNum [6]) mainly differ from

each other by the backgrounds and text fonts. It is not

necessarily the best practice, and not feasible under some

scenarios, to consider them as distinct domains. Instead, our

compound target domain pools them together. Furthermore,

at the inference stage, OCDA tests the model not only in the

compound target domain but also in open domains that have

previously unseen during training.

In our OCDA setting, the target domain no longer has

a predominantly uni-modal distribution, posing challenges

to existing domain adaptation methods. We propose a

novel approach based on two technical insights into OCDA:

1) a curriculum domain adaptation strategy to bootstrap

generalization across domain distinction in a data-driven

self-organizing fashion and 2) a memory module to increase

the model’s agility towards novel domains.

Unlike existing curriculum adaptation methods [54,

5, 27, 23, 56, 55] that rely on some holistic measure of

instance difficulty, we schedule the learning of unlabeled

instances in the compound target domain according to their

individual gaps to the labeled source domain, so that we

solve an incrementally harder domain adaptation problem

till we cover the entire target domain.

Specifically, we first train a neural network to 1) discrim-

inate between classes in the labeled source domain and to

2) capture domain invariance from the easy target instances

which differ the least from labeled source domain data.

Once the network can no longer differentiate between the

source domain and the easy target domain data, we feed

the network harder target instances, which are further away

from the source domain. The network learns to remain

discriminative to the classification task and yet grow more

robust to the entire compound target domain.

Technically, we must address the challenge of charac-

terizing each instance’s gap to the source domain. We

first extract domain-specific feature representations from

the data and then rank the target instances according to

their distances to the source domain in that feature space,

assuming that such features do not contribute to and even

distract the network from learning discriminative features

for classification. We use a class-confusion loss to distill the

domain-specific factors and formulate it as a conventional

cross-entropy loss with a randomized class label twist.

Our second technical insight is to prepare our model

for open domains during inference with a memory module

that effectively augments the representations of an input

for classification. Intuitively, if the input is close enough

to the source domain, the feature extracted from itself

can most likely already result in accurate classification.

Otherwise, the input-activated memory features can step

in and play a more important role. Consequently, this

memory-augmented network is more agile at handling open

domains than its vanilla counterpart.

To summarize, we make the following contributions.

1) We extend the traditional discrete domain adaptation

to OCDA, a more realistic continuous domain adaptation

setting. 2) We develop an OCDA solution with two key

technical insights: instance-specific curriculum domain

adaptation for handling the target of mixed domains and

memory augmented features for handling open domains. 3)

We design several benchmarks on classification, recogni-

tion, segmentation, and reinforcement learning, and con-

duct comprehensive experiments to evaluate our approach

under the OCDA setting.

2. Related Works

We review literature according to Table 1.

Unsupervised Domain Adaptation. The goal is to retain

recognition accuracies in new domains without ground

truth annotations [39, 44, 47, 36]. Representative tech-

niques include latent distribution alignment [11], back-

propagation [6], gradient reversal [7], adversarial discrim-

ination [46], joint maximum mean discrepancy [28], cycle

consistency [16] and maximum classifier discrepancy [40].

While their results are promising, this traditional domain

adaptation setting focuses on “one source domain, one

target domain”, and cannot deal with more complicated

scenarios where multiple target domains are present.

12407



𝐸𝑐𝑙𝑎𝑠𝑠 .

𝐸𝑑𝑜𝑚𝑎𝑖𝑛 .

Class Encoder

Domain Encoder

Class-Discriminative Factors

Domain-Focused FactorsCompound Target Domain

Domain Images 𝒙𝒔𝒊
Class Labels 𝒚𝒊

Source Domain

Domain Images 𝒙𝒕𝒋

Class “1” 
Class “2” 

Class “4” 

Domain 

“USPS” 

Domain

“MNIST” 

Domain 

“MNIST-M” 

Class Centroids Class Memory

Domain Curriculum

{𝒄𝒊}𝒊=𝟏𝑲
𝑴Domain 

“SVHN” 

Class-Confusion Learning

Figure 2: Overview of disentangling domain characteristics and curriculum domain adaptation. We separate

characteristics specific to domains from those discriminative between classes. It is achieved by a class-confusion algorithm

in an unsupervised manner. The teased out domain feature is used to construct a curriculum for domain-robust learning.

Latent & Multi-Target Domain Adaptation. The goal is

to extend unsupervised domain adaptation to latent [15, 49,

30] or multiple [10, 8, 52] or continuous [2, 12, 29, 48] tar-

get domains, when only the source domain has class labels.

These methods usually assume clear domain distinction or

require domain labels (e.g. test instance i belongs to the

target domain j), but this assumption rarely holds in the

real-world scenario. Here we take one step further towards

compound domain adaptation, where both category labels

and domain labels in the test set are unavailable.

Open/Partial Set Domain Adaptation. Another route

of research aims to tackle the category sharing/unsharing

issues between source and target domain, namely open

set [35, 41] and partial set [53, 3] domain adaptation.

They assume that the target domain contains either 1) new

categories that don’t appear in source domain; or 2) only

a subset of categories that appear in source domain. Both

settings concern the “openness” of categories. Instead, here

we investigate the “openness” of domains, i.e. there are

novel domains existing that are absent in the training phase.

Domain Generalized/Agnostic Learning. Domain gener-

alization [50, 21, 20] and domain agnostic learning [37, 4]

aim to learn universal representations that can be applied

in a domain-invariant manner. Since these methods focus

on learning semantic representations that are invariant to

the domain shift, they largely neglect the latent structures

inside the target domains. In this work, we explicitly

model the latent structures inside the compound target

domain by leveraging the learned domain-focused factors

for curriculum scheduling and dynamic adaptation.

3. Our Approach to OCDA

Figures 2 and 3 present our overall workflows. There

are three major components: 1) disentangling domain

characteristics with only class labels in the source domain,

2) scheduling data for curriculum domain adaptation, and

3) a memory module for handling new domains.

3.1. Disentangling Domain Characteristics

We separate characteristics specific to domains from

those discriminative between classes. They allow us to

construct a curriculum for increment domain adaptation.

We first train a neural network classifier using the labeled

source domain data {xi, yi}i. Let Eclass(·) denote the

encoder up to the second-to-the-last layer and Φ(Eclass(·))
the classifier. The encoder captures primarily the class-

discriminative representation of the data.

We assume that all the factors not covered by

this class-discriminative encoder reflect domain charac-

teristics. They can be extracted by another encoder

Edomain(·) that satisfies two properties: 1) Completeness:

Decoder(Eclass(x), Edomain(x)) ≈ x, i.e., the outputs of

the two encoders shall provide sufficient information for

a decoder to reconstruct the input, and 2) Orthogonality:

the domain encoder Edomain(x) shall have little mutual

information with the class encoder Eclass(x). We leave

the algorithmic details for meeting the first property to the

appendices as they are not our novelty.

For the orthogonality between Edomain(x) and

Eclass(x), we propose a class-confusion algorithm, which
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Figure 3: Overview of the memory-enhanced deep neural network. We enhance our network with a memory module

that facilitates knowledge transfer from the source domain to target domain instances, so that the network can dynamically

balance the input information and the memory-transferred knowledge for more agility towards previously unseen domains.

alternates between the two sub-problems below:

min
Edomain

−
∑

i

zirandom logD(Edomain(x
i)), (1)

min
D

−
∑

i

yi logD(Edomain(x
i)), (2)

where superscript i is the instance index, and D(·) is

a discriminator the domain-encoder Edomain(·) tries to

confuse. We first train the discriminator D(·) with the

labeled data in the source domain. For the data in the target

domain, we assign them pseudo-labels by the classifier

Φ(Eclass(·)) we have trained earlier. The learned domain

encoder Edomain(·) is class-confusing due to zirandom, a

random label uniformly chosen in the label space. As the

classifier D(·) is trained, the first sub-problem essentially

learns the domain-encoder such that it classifies the input

xi into a random class zirandom. Algorithm 1 details our

domain disentanglement process.

Figure 4 (a) and (b) visualize the examples embed-

ded by the class encoder Eclass(·) and domain encoder

Edomain(·), respectively. The class encoder places in-

stances in the same class in a cluster, while the domain

encoder places instances according to their common appear-

ances, regardless of their classes.

3.2. Curriculum Domain Adaptation

We rank all the instances in the compound target domain

according to their distances to the source domain, to be

used for curriculum domain adaptation [54]. We compute

the domain gap between a target instance xt and the source

domain {xms } as their mean distance in the domain feature

space: meanm(‖Edomain(xt)− Edomain(x
m
s )‖2).

We train the network in stages, a few epochs at a time,

gradually recruiting more instances that are increasingly far

from the source domain. At each stage of the curriculum

Algorithm 1 Domain Disentanglement.

Input: The class encoder Eclass(·) and classifier Φ have

been trained using source-domain data,Deccoder(·): the

decoder, C: the number of classes, γ: a constant.

for k iterations do

Sample mini-batch {xi}.
Compute pseudo labels yipseudo ← Φ

(

Eclass

(

xi
))

.

Update the discriminator D.

Prepare random labels zirandom ∼
uniform{0, 1, ..., C − 1}.

Compute adversarial loss: Ladv ←
∑

i−z
i
random log

(

D
(

Edomain(x
i)
))

.

Compute reconstruction loss: Lrec ←
∑

i ‖Decoder
(

Eclass

(

xi
)

, Edomain

(

xi
))

− xi‖2.

Update the domain encoder Edomain with:

∇θEdomain
(Ladv + γLrec).

end for

learning, we minimize two losses: One is the cross-entropy

loss defined over the labeled source domain, and the other

is the domain-confusion loss [46] computed between the

source domain and the currently covered target instances.

Figure 4 (c) illustrates a curriculum in our experiments.

3.3. Memory Module for Open Domains

Existing domain adaptation methods often use the fea-

tures vdirect extracted directly from the input for adaptation.

When the input comes from a new domain that significantly

differs from the seen domains during training, this repre-

sentation becomes inadequate and could fool the classifier.

We propose a memory module to enhance our model; It

allows knowledge transfer from the source domain so that

the network can dynamically balance the input-conveyed in-

formation and the memory-transferred knowledge for more

classification agility towards previously unseen domains.
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Figure 4: t-SNE Visualization of our (a) class-discriminative features, (b) domain features, and (c) curriculum. Our

framework disentangles the mixed-domain data into class-discriminative factors and domain-focused factors. We use the

domain-focused factors to construct a learning curriculum for domain adaptation.

Class Memory M . We design a memory module M

to store the class information from the source domain.

Inspired by [43, 34, 26] on prototype analysis, we also use

class centroids {ck}
K
k=1

to construct our memoryM , where

K is the number of object classes.

Enhancer venhance. For each input instance, we build

an enhancer to augment its direct representation vdirect
with knowledge in the memory about the source domain:

venhance = (Ψ(vdirect))
TM =

∑K

k=1
ψkck, where Ψ(·)

is a softmax function. We add this enhancer to the direct

representation vdirect, weighted by a domain indicator.

Domain Indicator edomain. With open domains, the

network must dynamically calibrate how much knowledge

to transfer from the source domain and how much to rely

on the direct representation vdirect of the input. Intuitively,

the larger domain gap between an input x and the source

domain, the more weight on the memory feature. We design

a domain indicator for such domain awareness: edomain =
T (Edomain(x)), where T (·) is a lightweight network with

the tanh activation functions andEdomain(·) is the domain

encoder we have learned earlier.

Source-Enhanced Representation vtransfer. Our final

representation of the input is a dynamically balanced ver-

sion between the direct image feature and the memory

enhanced feature:

vtransfer = vdirect + edomain ⊗ venhance, (3)

which transfers class-discriminative knowledge from the la-

beled source domain to the input in a domain-aware manner.

Operator ⊗ is element-wise multiplication. Adopting co-

sine classifiers [25, 9], we ℓ2-normalize this representation

before sending it to the softmax classification layer. All of

these choices help cope with domain mismatch when the

input is significantly different from the source domain.

4. Experiments

Datasets. To facilitate a comprehensive evaluation on vari-

ous tasks (i.e., classification, segmentation, and navigation),

we carefully design four open compound domain adaptation

(OCDA) benchmarks: C-Digits, C-Faces, C-Driving, and

C-Mazes, respectively.

1. C-Digits: This benchmark aims to evaluate the classifi-

cation adaptation ability under different appearances and

backgrounds. It is built upon five classic digits datasets

(SVHN [31], MNIST [19], MNIST-M [6], USPS [18]

and SynNum [6]), where SVHN is used as the source

domain, MNIST, MNIST-M, and USPS are mixed as

the compound target domain, and SynNum is the open

domain. We employ SWIT [1] as an additional open

domain for further analysis.

2. C-Faces: This benchmark aims to evaluate the classifi-

cation adaptation ability under different camera poses.

It is built upon the Multi-PIE dataset [13], where C05

(frontal view) is used as source domain, C08-C14 (left

side view) are combined as the compound target domain,

and C19 (right side view) is kept out as the open domain.

3. C-Driving: This benchmark aims to evaluate the seg-

mentation adaptation ability from simulation to different

real driving scenarios. The GTA-5 [38] dataset is

adopted as the source domain, while the BDD100K

dataset [51] (with different scenarios including “rainy”,

“snowy”, “cloudy”, and “overcast”) is taken for the

compound and open domains.

4. C-Mazes: This benchmark aims to evaluate the navi-

gation adaptation ability under different environmental

appearances. It is built upon the GridWorld environ-

ment [17], where mazes with different colors are used
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Figure 5: Results of ablation studies about (a) the memory-enhanced embeddings and curriculum domain adaptation, (b)

the domain-focused factors disentanglement, and (c) the memory-induced domain indicator vs. gaps to the source.

Table 2: Performance on the C-Digits benchmark. The methods in gray are especially designed for multi-target domain

adaptation. †MTDA uses domain labels, while ‡BTDA and DADA use the open domain images during training.

SVHN SymNum

MNIST MNIST-M USPS

S

C

O

Src. Domain Compound Domains (C) Open (O) Avg.

SVHN → MNIST MNIST-M USPS SynNum C C+O

ADDA [46] 80.1±0.4 56.8±0.7 64.8±0.3 72.5±1.2 67.2±0.5 68.6±0.7

JAN [28] 65.1±0.1 43.0±0.1 63.5±0.2 85.6±0.0 57.2±0.1 64.3±0.1

MCD [40] 69.6±1.4 48.6±0.5 70.6±0.2 89.8±2.9 62.9±1.0 69.9±1.3

MTDA† [8] 84.6±0.3 65.3±0.2 70.0±0.2 - 73.3±0.2 -

BTDA‡ [4] 85.2±1.6 65.7±1.3 74.3±0.9 84.4±2.2 75.1±1.3 77.4±1.5

DADA‡ [37] - - - - - 80.1±0.4

Ours 90.9±0.2 65.7±0.5 83.4±0.3 88.2±0.8 80.0±0.3 82.1±0.5

as the source and open domains. Since reinforcement

learning often assumes no prior access to the environ-

ments, there are no compound target domains here.

Network Architectures. To make a fair comparison with

previous works [46, 8, 37], the modified LeNet-5 [19] and

ResNet-18 [14] are used as the backbone networks for C-

Digits and C-Faces, respectively. Following [45, 56, 33],

a pre-trained VGG-16 [42] is the backbone network for C-

Driving. We additionally test our approach on reinforce-

ment learning using ResNet-18 following [17].

Evaluation Metrics. The C-digits performance is mea-

sured by the digit classification accuracy, and the C-Faces

performance is measured by the facial expression classifi-

cation accuracy. The C-Driving performance is measured

by the standard mIOU, and the C-Mazes performance is

measured by the average successful rate in 300 steps. We

evaluate the performance of each method with five runs and

report both the mean and standard deviation. Moreover, we

report both results of individual domains and the averaged

results for a comprehensive analysis.

Comparison Methods. For classification tasks, we

choose for comparison state-of-the-art methods in both

conventional unsupervised domain adaptation (ADDA [46],

JAN [28], MCD [40]) and the recent multi-target domain

adaptation methods (MTDA [8], BTDA [4], DADA [37]).

Since MTDA [8], BTDA [4] and DADA [37] are the most

related to our work, we directly contrast our results to

the numbers reported in their papers. For the segmenta-

tion task, we compare with three state-of-the-art methods,

AdaptSeg [45], CBST [56], IBN-Net [33] and PyCDA [24].

For the reinforcement learning task, we benchmark with

MTL, MLP [17] and SynPo [17], a representative work for

adaptation across environments. We apply these methods to

the same backbone networks as ours for a fair comparison.

4.1. Ablation Study

Effectiveness of the Domain-Focused Factors Disentan-

glement. Here we verify that the domain-focused factors

disentanglement helps discover the latent structures in the

compound target domain. It is probed by the domain

identification rate within the k-nearest neighbors found

by different encodings. Figure 5 (b) shows that features

produced by our disentanglement have a much higher

identification rate (∼95%) than the counterparts without

disentanglement (∼65%).

Effectiveness of the Curriculum Domain Adaptation.

Figure 5 (a) also reveals that, in the compound domain, the

curriculum training contributes to the performance on USPS

more than MNIST and MNITS-M. On the other hand, we

can observe from Figure 4 and Table 2 that USPS is the

furthest target domain from the source domain SVHN. It

implies that curriculum domain adaptation makes it easy to

adapt to the distant target domains through an easy-to-hard

adaptation schedule.
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Table 3: Performance on the C-Faces benchmark. The methods in gray are especially designed for multi-target domain

adaptation. †MTDA uses domain labels during training.

C05 C19

C08 C09 C13 C14

S O

C

Src. Domain Compound Domains (C) Open (O) Avg.

C05 → C08 C09 C13 C14 C19 C C+O

ADDA [46] 46.9±0.2 36.4±0.5 39.1±0.3 65.4±0.4 71.8±0.8 47.0±0.4 51.9±0.4

JAN [28] 63.5±0.3 40.6±1.0 83.5±0.4 92.0±0.8 52.5±1.5 69.7±0.6 66.2±0.8

MCD [40] 50.4±0.5 45.8±0.2 77.8±0.1 88.0±0.1 60.4±0.9 65.7±0.2 64.6±0.4

MTDA† [8] 49.0±0.2 48.2±0.1 53.1±0.2 84.3±0.1 - 58.7±0.2 -

Ours 73.3±0.2 55.1±0.4 84.1±0.1 88.9±0.3 72.7±0.6 75.4±0.3 74.8±0.3

Table 4: Performance on the C-Driving (left) and C-Mazes benchmarks (right). “SynPo+Aug.” indicates that we equip

SynPo with proper color augmentation/randomization during training. Visual illustrations of both datasets are in Figure 6.

Source Compound (C) Open (O) Avg.

GTA-5 → Rainy Snowy Cloudy Overcast C C+O

Source Only 16.2 18.0 20.9 21.2 18.9 19.1

AdaptSeg [45] 20.2 21.2 23.8 25.1 22.1 22.5

CBST [56] 21.3 20.6 23.9 24.7 22.2 22.6

IBN-Net [33] 20.6 21.9 26.1 25.5 22.8 23.5

PyCDA [24] 21.7 22.3 25.9 25.4 23.3 23.8

Ours 22.0 22.9 27.0 27.9 24.5 25.0

Source Open(O) Avg.

M0 → M1 M2 M3 M4 O

Source Only 0±0 0±0 0±0 0±0 0±0

MTL 0±0 30±5 75±0 65±5 42.5±2.5

MLP [17] 5±5 45±10 75±5 80±10 51.2±7.5

SynPo [17] 5±5 30±20 80±5 30±5 36.3±8.8

SynPo+Aug. 0±5 40±10 95±5 45±5 45.0±6.3

Ours 80±2.5 75±10 85±5 90±5 82.5±5.6

Effectiveness of Memory-Enhanced Representations.

Recall that the memory-enhanced representations consist

of two main components: the enhancer coming from the

memory and the domain indicator. From Figure 5 (a), we

observe that the class enhancer leads to large improvements

on all target domains. It is because the enhancer from the

memory transfers useful semantic concepts to the input of

any domain. Another observation is that the domain indica-

tor is the most effective on the open domain (“SynNum”),

because it helps dynamically calibrate the representations

by leveraging domain relations (Figure 5 (c)).

4.2. Comparison Results

C-Digits. Table 2 shows the comparison performances of

different methods. We have the following observations.

Firstly, ADDA [46] and JAN [28] boost the performance

on the compound domain by enforcing global distribution

alignment. However, they also sacrifice the performance

on the open domain since there is no built-in mechanism

for handling any new domains, “overfitting” the model

to the seen domains. Secondly, MCD [40] improves the

results on the open domain, but its accuracy degrades on

the compound target domain. Maximizing the classifier

discrepancy increases the robustness to the open domain;

however, it also fails to capture the fine-grained latent struc-

ture in the compound target domain. Lastly, compared to

other multi-target domain adaptation methods (MTDA [8]

and DADA [37]), our approach discovers domain structures

and performs domain-aware knowledge transfer, achieving

substantial advantages on all the test domains.

C-Faces. Similar observations can be made on the C-Faces

benchmark as shown in Table 3. Since face representations

are inherently hierarchical, JAN [28] demonstrates com-

petitive results on C14 due to its layer-wise transferring

strategy. Under the domain shift with different camera

poses, our approach still consistently outperforms other

alternatives for both the compound and open domains.

C-Driving. We compare with the state-of-the-art semantic

segmentation adaptation methods such as AdaptSeg [45],

CBST [56], and IBN-Net [33]. All methods are tested under

real-world driving scenarios in the BDD100K dataset [51].

We can see that our approach has clear advantages on both

the compound domain (1.1% gains) and the open domain

(2.4% gains) as shown in Table 4 (left). We show detailed

per-class accuracies in the appendices. The qualitative

comparisions are shown in Figure 6 (a).

C-Mazes. To directly compare with SynPo [17], we also

evaluate on the GridWorld environments they provided.

The task in this benchmark is to learn navigation policies

that can successfully collect all the treasures in the given

mazes. Existing reinforcement learning methods suffer

from environmental changes, which we simulate as the

appearances of the mazes here. The final results are listed

in Table 4 (right). Our approach transfers visual knowledge

among navigation experiences and achieves more than 30%
improvements over the prior arts.

4.3. Further Analysis

Robustness to the Complexity of the Compound Target

Domain. We control the complexity of the compound target

domain by varying the number of traditional target domains

/ datasets in it. Here we gradually increase constituting

domains from a single target domain (i.e., MNIST) to two,

and eventually three (i.e., MNIST + MNIST-M + USPS).

From Figure 7 (a), we observe that as the number of

datasets increase, our approach only undergoes a moderate
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Figure 6: (a) Qualitative results comparison of semantic segmentation on the source domain (S), the compound target

domain (C), and the open domain (O). (b) Illustrations of the 5 different domains in the C-Mazes benchmark. Our approach

consistently outperforms existing domain adaptation methods across all compound and open target domains.
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Figure 7: Further analysis on the (a) robustness to the

complexity of the compound target domain and (b) robust-

ness to the number of open domains. “M”, “MM” and “U”

stand for MNIST, MNIST-M, and USPS, respectively, while

“SN”, “UM” and “SW” stand for SynNum, USPS-M, and

SWIT, respectively.

performance drop. The learned curriculum enables gradual

knowledge transfer that is capable of coping with complex

structures in the compound target domain.

Robustness to the Number of Open Domains. The

performance change w.r.t. the number of open domains

is demonstrated in Figure 7 (b). Here we include two

new digits datasets, USPS-M (crafted in a similar way as

MNIST-M) and SWIT [1], as the additional open domains.

Compared to JAN [28] and MCD [40], our approach is

more resilient to the various numbers of open domains.

The domain indicator module in our framework helps

dynamically calibrate the embedding, thus enhancing the

robustness to open domains. Figure 8 presents the t-SNE

visualization comparison between the obtained embeddings

of JAN [28], MCD [40], and our approach.

JAN MCD Ours

U
S
P
S

(C
o
m
p
o
u
n
d
)

S
y
m
N
u
m

(O
p
en
)

Figure 8: t-SNE visualization of the obtained embeddings.

Compared to other methods, our approach is capable of

producing class-discriminative features on both compound

and open target domains.

5. Summary

We formalize a more realistic topic called open com-

pound domain adaptation for domain-robust learning. We

propose a novel model which includes a self-organizing cur-

riculum domain adaptation to bootstrap generalization and

a memory enhanced feature representation to build agility

towards open domains. We develop several benchmarks on

classification, recognition, segmentation, and reinforcement

learning and demonstrate the effectiveness of our model.
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