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Abstract

As a serious infectious disease, tuberculosis (TB) is one

of the major threats to human health worldwide, leading

to millions of deaths every year. Although early diagno-

sis and treatment can greatly improve the chances of sur-

vival, it remains a major challenge, especially in developing

countries. Computer-aided tuberculosis diagnosis (CTD) is

a promising choice for TB diagnosis due to the great suc-

cesses of deep learning. However, when it comes to TB di-

agnosis, the lack of training data has hampered the progress

of CTD. To solve this problem, we establish a large-scale

TB dataset, namely Tuberculosis X-ray (TBX11K) dataset.

This dataset contains 11200 X-ray images with correspond-

ing bounding box annotations for TB areas, while the ex-

isting largest public TB dataset only has 662 X-ray images

with corresponding image-level annotations. The proposed

dataset enables the training of sophisticated detectors for

high-quality CTD. We reform the existing object detectors

to adapt them to simultaneous image classification and TB

area detection. These reformed detectors are trained and

evaluated on the proposed TBX11K dataset and served as

the baselines for future research.

1. Introduction

As the second leading cause of death by infectious

disease (after HIV), tuberculosis (TB) is one of the ma-

jor global health threats [33, 34]. Every year, there are

about 8,000,000 - 10,000,000 new TB patients, and about

2,000,000 - 3,000,000 people died of TB [34]. TB is

induced by Mycobacterium TB, which can be spread by

sneezing, coughing or other means of excreting infectious

bacteria. Hence TB typically occurs in the lungs through

the respiratory tract. Opportunistic infections in immuno-

compromised people such as HIV patients and malnour-

ished persons in developing countries have exacerbated this

problem.

If not treated, the mortality rate of TB is very high,

*Equal contribution.

but diagnosing TB in the early stage and imposing treat-

ment with antibiotics greatly improves the chances of sur-

vival [6,17,19]. Early diagnosis of TB also helps control the

spread of infection [6]. The increase in multidrug-resistant

TB also leads to the urgent need for a timely and accurate

method of TB diagnosis to track the process of clinical treat-

ment [11]. Unfortunately, TB diagnosis is still a major chal-

lenge [1,2,5,6,17,19,31]. The golden standard for TB diag-

nosis is microscopic examination of sputum and culture of

bacteria for the identification of Mycobacterium TB [1, 2].

Therefore, biosafety level-3 lab (BSL-3) is needed for the

culture of Mycobacterium TB. It requires several months

for this process [1, 2, 19]. What’s worse, hospitals in many

developing countries and resource-constrained communi-

ties cannot afford such conditions.

On the other hand, X-ray is the most common and data-

intensive screening method in current medical image ex-

amination, and X-ray is also one of most commonly used

way for TB screening. Early TB screening through X-ray

has great significance for the early detection, treatment, and

prevention of TB [5, 19, 21, 35, 40]. However, the results of

radiologists’ examination of X-rays often go wrong [21,35],

because it is often difficult for human eye to distinguish TB

areas from X-rays where human eye is not sensitive enough

to many details. In our human study, experienced radiol-

ogists from top hospitals only have an accuracy of 68.7%

when compared with the golden standard.

Motivation and Contributions Thanks to the powerful

representation ability of deep learning, especially convolu-

tional neural networks (CNNs) [12, 15, 37], machines have

outperformed human in many fields, such as face recogni-

tion [38], image classification [14], object detection [13],

and edge detection [29]. Deep learning can capture details

[16, 28, 29] and never feel tired like people. It is a natural

idea to adopt deep learning for computer-aided TB diagno-

sis/screening with X-ray images. However, deep learning is

always data-hungry, and it is difficult to collect large-scale

TB data because they are very expensive and private. The

lack of publicly available X-rays has prevented computer-

aided tuberculosis diagnosis (CTD) from successfully ap-
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plying deep learning for improving performance. For exam-

ple, the existing largest public X-ray dataset for TB diagno-

sis is Shenzhen chest X-ray set proposed in [18]. The Shen-

zhen dataset consists of 662 X-ray images, including 336 X-

rays with manifestations of TB and 326 normal X-rays, with

only binary image-level labels. Just using these several hun-

dreds of images is insufficient to train deep CNNs. There-

fore, many state-of-the-art CTD methods only adopt hand-

crafted features [5, 19, 20] or pretrained CNNs as feature

extractors without fine-tuning [31], while ignoring the pow-

erful ability of automatic feature learning of deep CNNs.

In order to actually deploy the CTD system to help

TB patients around the world, we must first solve the

problem of insufficient data. In this paper, we contribute

to the community with a large-scale Tuberculosis X-ray

(TBX11K) dataset, through the long-term cooperation with

major hospitals. This new dataset is superior to previous

CTD datasets in the following aspects: i) Unlike previous

datasets [6, 18] that only contain several tens/hundreds of

X-ray images, TBX11K has 11,200 images that are about

17× larger than the existing largest dataset, i.e., Shenzhen

dataset [18], so that TBX11K makes it possible to train very

deep CNNs; ii) Instead of only having image-level annota-

tions as previous datasets, TBX11K annotates TB areas us-

ing bounding boxes, so that the future CTD methods can

not only recognize the manifestations of TB but also detect

the TB areas to help radiologists for the definitive diagnosis;

iii) TBX11K includes four categories of healthy, active TB,

latent TB, and unhealthy but non-TB, rather than the binary

classification for TB or not in previous datasets, so that fu-

ture CTD systems can adapt to more complex real-world

scenarios and provide people with more detailed disease

analyses. Each X-ray image in TBX11K is tested using the

golden standard (i.e., diagnostic microbiology) and then

annotated by experienced radiologists from major hospi-

tals. TBX11K dataset has been de-identified by the data

providers and exempted by relevant institutions, so it can be

made publicly available to promote future CTD research.

Moreover, we reform the existing object detectors, in-

cluding SSD [27], RetinaNet [25], Faster R-CNN [36], and

FCOS [39], for simultaneous image classification and TB

area detection. Specifically, we introduce a classification

branch onto these detectors and propose an alternative train-

ing strategy. These reformed methods can be viewed as

baselines for future CTD research. We also adapt the met-

rics for image classification and object detection to TB di-

agnosis on the proposed TBX11K dataset. The baselines

are evaluated in terms of these metrics to build the initial

benchmarks.

In summary, our contributions are twofold:

• We build a large-scale CTD dataset that is much larger,

better annotated, and more realistic than existing TB

datasets, enabling the training of deep CNNs.

Datasets Year Class Label Sample

MC [18] 2014 2 Image-level 138

Shenzhen [18] 2014 2 Image-level 662

DA [6] 2014 2 Image-level 156

DB [6] 2014 2 Image-level 150

TBX11K 2020 4 Bounding box 11200

Table 1. Summary of publicly available TB datasets.

• We establish the CTD benchmark by i) reforming the

existing object detectors for CTD; ii) adapting classifi-

cation and detection metrics to CTD, which is expected

to set a good start for future CTD research.

2. Related Work

2.1. Tuberculosis Datasets

Since TB data is very private and it is difficult to diag-

nose TB with golden standard, the publicly available TB

datasets are very limited. We provide a summary for the

publicly available TB datasets in Tab. 1. Jaeger et al. [18]

proposed two chest X-ray datasets for TB diagnosis. The

Montgomery County chest X-ray set (MC) [18] is collected

through the cooperation with Department of Health and

Human Services, Montgomery County, Maryland, USA.

MC dataset consists of 138 X-ray images, 80 of which

are healthy cases and 58 are cases with manifestations of

TB. Shenzhen chest X-ray set (Shenzhen) [18] is collected

through the cooperation with Shenzhen No.3 People’s Hos-

pital, Guangdong Medical College, Shenzhen, China. Shen-

zhen dataset is composed of 326 norm cases and 336 cases

with manifestations of TB, leading to 662 X-ray images in

total. Chauhan et al. [6] proposed two datasets, namely DA

and DB, which are obtained from two different X-ray ma-

chines at the National Institute of Tuberculosis and Respi-

ratory Diseases, New Delhi. DA is composed of training

set (52 TB and 52 non-TB X-rays) and the independent test

set (26 TB and 26 non-TB X-rays). DB contains 100 train-

ing X-rays (50 TB and 50 non-TB) and 50 test X-rays (25

TB and 25 non-TB). Note that all these four datasets are

annotated with image-level labels for binary image classifi-

cation.

These datasets are too small to train deep neural net-

works, so recent research on CTD has been hindered al-

though CNNs have achieved numerous successful stories in

the computer vision community. On the other hand, the ex-

isting datasets only have image-level annotations, and thus

we cannot train TB detectors with previous data. To help

radiologists make accurate judgements, we are expected to

detect the TB areas, not only an image-level classification.

Therefore, the lack of TB data has prevented deep learning

from bringing success to practical CTD systems that have

potential to save millions of TB patients every year. In this
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paper, we build a large-scale dataset with bounding box an-

notations for training TB detectors. The presentation of this

new dataset is expected to promote the future research for

CTD and promote more practical CTD systems.

2.2. Computeraided Tuberculosis Diagnosis

Owing to the lack of data, traditional CTD methods can-

not train deep CNNs. Most traditional methods mainly use

hand-crafted features and train binary classifiers. Jaeger et

al. [19] first segmented the lung region using a graph cut

segmentation method [4]. Then, they extracted hand-crafted

texture and shape features from this lung region. Finally,

they apply a binary classifier, i.e., support vector machine

(SVM), to classify X-rays as normal and abnormal. Can-

demir et al. [5] adopted image retrieval-based patient spe-

cific adaptive lung models to a nonrigid registration-driven

robust lung segmentation method, which would be helpful

for traditional lung feature extraction [19]. Chauhan et al.

[6] implemented a MATLAB toolbox, TB-Xpredict, which

adopted Gist [32] and PHOG [3] features for the discrim-

ination between TB and non-TB X-rays without requiring

segmentation [8, 30]. Karargyris et al. [20] extracted shape

features to describe the overall geometrical characteristics

of lungs and texture features to represent image character-

istics.

Instead of using hand-crafted features, Lopes et al. [31]

adopted the fixed CNNs pretrained on ImageNet [10] as the

feature extractors to compute deep features for X-ray im-

ages. Then, they train SVM to classify these deep features.

Hwang et al. [17] trained an AlexNet [22] for binary classi-

fication (TB and non-TB) using a private dataset. Other pri-

vate datasets are also used in [23] for image classification

networks. However, our proposed dataset, i.e., TBX11K,

will be made publicly available to promote research in this

field.

3. The Tuberculosis X-ray (TBX11K) Dataset

3.1. Data Collection and Annotation

For the data collection and annotation, we follow three

steps: i) taxonomy establishment, ii) X-ray Collection, iii)

professional data annotation, which are introduced below.

3.1.1 Taxonomy Establishment

The existing TB datasets only contain two categories: TB

and non-TB. The non-TB refers to healthy cases. In prac-

tice, the abnormalities in chest X-rays, such as TB, atelecta-

sis, cardiomegaly, effusion, infiltration, mass, nodule, etc.,

share similar abnormal patterns (e.g., blurry and irregular

lesions), while being significantly different from healthy X-

rays that have almost the same clear patterns. Therefore,

only using healthy X-rays as the negative category has the

bias to lead to large false positives in the model prediction

for clinical scenarios where there are many sick but non-

TB patients. To promote CTD to practical applications, we

consider a new category, sick but non-TB, in our dataset.

Moreover, besides the recognition of TB, it is also very im-

portant to differentiate the active TB and latent TB. Active

TB is caused by Mycobacterium TB infection or as a re-

activation of latent TB, while people with latent TB are nei-

ther sick nor contagious. The differentiation between active

TB and latent TB can help doctors provide patients with

proper treatment. Considering this, we divide the TB into

two categories of active TB and latent TB in our dataset.

With the above analyses, we include four categories in the

proposed TBX11K dataset: healthy, sick but non-TB, active

TB, and latent TB.

3.1.2 X-ray Collection

The collection of TB X-rays faces two difficulties: i) The

chest X-rays, especially TB X-rays, are of high privacy and

leaking these data will expose people to risk of breaking the

law, so that it is almost impossible for individuals to access

the raw data; ii) Although there are millions of TB patients

worldwide, the TB X-rays that are definitively tested by the

golden standard are scarce, due to the complex and lengthy

(i.e., several months [1, 2]) process of examination of My-

cobacterium TB. In order to overcome these difficulties, we

cooperate with top hospitals to collect X-rays. The result-

ing TBX11K dataset consists of 11200 X-rays, including

5000 healthy cases, 5000 sick but non-TB cases, and 1200

cases with manifestations of TB. Here, each X-ray belongs

to a unique person. The 1200 TB X-rays are composed of

924 active TB cases, 212 latent TB cases, 54 cases that con-

tain active and latent TB simultaneously, and 10 uncertain

cases whose TB types cannot be recognized under today’s

medical conditions. The 5000 sick but non-TB cases are

collected to cover as many of the types of radiograph dis-

eases as possible in the clinical scenarios. All X-rays are

in the resolution of about 3000 × 3000. We also include

the corresponding sex and age for each X-ray to provide

more comprehensive clinical information for TB diagnosis.

The data have been de-identified by data providers and ex-

empted by relevant government institutions, so we can make

this dataset publicly available legally.

3.1.3 Professional Data Annotation

Every X-ray image in our dataset has been definitively

tested using the golden standard, but the golden standard

can only provide the image-level labels. For example, if the

sputum of one patient has manifestations of TB, we would

know the corresponding X-ray falls into the category of TB,

but we do not know the exact location and area of TB in this
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Figure 1. Distribution of the areas of TB bounding boxes. The left

and right values of each bin define its corresponding area range,

and the height of each bin denotes the number of TB bounding

boxes with an area within this range. Note that X-rays are in the

resolution of about 3000× 3000.

X-ray. On the other hand, detecting TB areas is of vital im-

portance to help radiologists make the final decision. With

only image-level predictions, it is still hard for human eye

to find the TB areas, which can be proved by the low ac-

curacy of radiologists in the clinical examination as shown

in Sec. 3.3. If CTD systems could simultaneously provide

image classification and TB localization results, radiolo-

gists will make decisions more accurately and efficiently by

watching the detected TB areas.

In order to achieve the above objectives, we pro-

vide bounding box annotations for TB X-rays in

TBX11K dataset. To the best of our knowledge, this is the

first dataset for TB detection. The bounding box annota-

tions are performed by experienced radiologists from top

hospitals. Specifically, each TB X-ray is first labeled by

a radiologist who has 5-10 years of experience in TB di-

agnosis. Then, his box annotations are further checked by

another radiologist who has >10 years of experience in TB

diagnosis. They not only label bounding boxes for TB areas

but also recognize the TB type (active or latent TB) for each

box. The labeled TB types are double-checked to make sure

that they are consistent with the image-level labels produced

by the golden standard. If a mismatch happens, this X-ray

will be put into the unlabeled data for re-annotation, and the

annotators do not know which X-ray was labeled wrong be-

fore. If an X-ray is incorrectly labeled twice, we will tell

the annotators the gold standard of this X-ray and ask them

to discuss how to re-annotate it. This double-checked pro-

cess makes the annotated bounding boxes are highly reliable

for TB area detection. Moreover, non-TB X-rays are only

with image-level labels produced by the golden standard.

We show some examples of the proposed TBX11K dataset

in Fig. 3. We display the distribution of the areas of TB

bounding boxes in Fig. 1. The areas of most TB bounding

boxes are in the range of (3842, 9602].

Class Train Val Test Total

Non-TB
Healthy 3000 800 1200 5000

Sick & Non-TB 3000 800 1200 5000

TB

Active TB 473 157 294 924

Latent TB 104 36 72 212

Active & Latent TB 23 7 24 54

Uncertain TB 0 0 10 10

Total 6600 1800 2800 11200

Table 2. Split for the proposed TBX11K dataset. “Active & Latent

TB” refers to X-rays that contain active and latent TB simulta-

neously. “Active TB” and “Latent TB” refers to X-rays that only

contain active TB or latent TB, respectively. “Uncertain TB” refers

to TB X-rays whose TB types cannot be recognized under today’s

medical conditions.

3.2. Dataset Split

We divide the data into three subsets for training, val-

idation, and testing, respectively. The details of our split

are summarized in Tab. 2. For more representative, we con-

sider four different cases of TB: i) only active TB appears;

ii) only latent TB appears; iii) both active and latent TB

appear in an X-ray; iv) uncertain TB whose TB type can-

not be recognized. For various TB cases, the ratio of the

number of TB X-rays for training, validation, and test sets

is 3 : 1 : 2. Note that the uncertain TB X-rays are put

into the test set, and researchers can perform the evaluation

for class-agnostic TB detection using these 10 uncertain X-

rays. Consistent with the scientific experiment settings, we

suggest researchers training their models on the training set

and evaluating on the validation set when they tune hyper-

parameters. Once their models are fixed, they can retrain

using the union of the training set and validation set, and

then report the performance of their models on the test set.

3.3. Human Study by Radiologists

The human study of radiologists is important for us to

understand the role of CTD in clinical TB diagnosis. We

first randomly choose 400 X-rays from the test set of the

proposed TBX11K dataset, including 140 healthy X-rays,

140 sick but non-TB X-rays, and 120 TB X-rays. The 120

TB X-rays consist of 63 active TB, 41 latent TB, 15 active

& latent TB, and 1 uncertain TB. Then, we invite an experi-

enced radiologist with >10 years of work experience from

a major hospital to label these X-rays with image-level la-

bels from four categories, i.e., health, sick but non-TB, ac-

tive TB, and latent TB. He assigned both active TB and la-

tent TB to an X-ray if both active TB and latent TB appear.

Note that this radiologist is different from radiologists who

labeled our dataset.

Compared with the ground truth produced by the golden

standard, the radiologist only achieves an accuracy of

68.7%. If ignoring the differentiation between the active TB
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and latent TB, the accuracy is 84.8%, but the recognition of

TB types is important for clinical treatment. This low per-

formance is one of the major challenges in TB diagnosis,

treatment, and prevention. Different from natural color im-

ages, chest X-rays are in grayscale and usually have fuzzy

and blurry patterns, which causes significant difficulty for

recognition. However, the TB diagnosis with golden stan-

dard takes several months [1, 2] and there is no such con-

dition in many parts of the world. The challenge in TB di-

agnosis is one of the main reasons why TB becomes the

second leading infectious disease worldwide (after HIV).

In the following study, we will show that deep learning

CTD methods trained on the proposed TBX11K dataset can

significantly outperform the experienced radiologists.

3.4. Potential Research Topics

With the proposed TBX11K dataset, we can conduct re-

search on X-ray image classification and TB area detection.

With many health and sick but non-TB data, our test set

can simulate the clinical data distribution to evaluate the

CTD systems. We think the simultaneous X-ray image clas-

sification and TB area detection systems would be a chal-

lenging and interesting research topic. It is convenient to

deploy such systems to help radiologists for TB diagnosis.

Besides the simultaneous detection and image classifi-

cation, another challenge of our dataset is the imbalanced

data distribution across different categories. However, this

data imbalance is in line with actual clinical scenarios. Intu-

itively, when a person goes to the hospital for a chest exami-

nation, he is likely to feel uncomfortable, so the probability

of getting sick is higher than usual, but TB is only one of

many chest diseases. In the proposed TBX11K dataset, we

assume only 44.6% examination takers are healthy, 44.6%

are sick but non-TB, and only 10.7% takers are infected by

TB. The latent TB can be caused by two ways: i) exposure

to active TB and ii) conversion from active TB after treat-

ment. Most people with latent TB are caused by the first

way. The people with latent TB in the hospital are usu-

ally the above second case, because people with latent TB

are neither sick nor contagious and they are unlikely to go

to the hospital for examination. Therefore, our dataset has

much more active TB cases than latent TB. Therefore, fu-

ture CTD methods should be designed to overcome the data

imbalance problem in practice, e.g., how to train models on

our imbalanced TBX11K training set.

4. Experimental Setup

In this section, we first build some baselines for the si-

multaneous X-ray image classification and TB area detec-

tion. Then, we elaborate on the evaluation metrics.

4.1. Baselines

Existing object detectors do not consider the background

images. More specifically, they usually ignore these images

that have no bounding-box objects [9,25,27,36,39,41]. Di-

rectly applying existing object detectors into CTD task will

lead to many false positives, because of the large number

of non-TB X-rays in practice. To solve this problem, we

propose to conduct simultaneous X-ray image classification

and TB area detection, so that the image classification re-

sults can filter out the false positives of detection.

We reform several well-known object detectors, includ-

ing SSD [27], RetinaNet [25], Faster R-CNN [36], and

FCOS [39], for simultaneous X-ray classification and TB

area detection. The image classification branch learns to

classify X-rays into three categories, i.e., healthy, sick but

non-TB, and TB using a Softmax function. The TB detec-

tion branch learns to detect TB with two categories, i.e.,

active TB and latent TB. In the clinical diagnosis, the image

classification results can help radiologists judge whether TB

appears in an X-ray. Then, the TB detection results provide

radiologists with TB areas that help radiologists make the

final decision. With the above definitions, we add an im-

age classification branch to the existing object detectors af-

ter the final convolution layer of their backbone networks,

i.e., conv5 3 and res5c for VGG16 [37] and ResNet-50 [15],

respectively. For the classification branch, we use five se-

quential convolution layers, each of which has 512 output

channels and ReLU activation. The first convolution layer

has a stride of 2 only for SSD and 1 for other methods.

A max pooling layer with a stride of 2 is connected after

the third convolution layer. After these convolutions, we

use a global average pooling layer and a fully connected

layer with 3 output neurons for classification into 3 classes.

Since we focus on providing some workable baselines for

the analyses of the proposed dataset, we do not make care-

ful parameter tuning.

We introduce a two-stage strategy to train such networks.

First, we omit the image classification branch and train the

object detector with default settings. Then, we freeze the

backbone network and object detection branch, and only

train the image classification branch to adapt the detection

features for image classification. The first-stage training

only uses the TB X-rays in the TBX11K trainval (train +

validation) set. The second-stage training not only uses all

(i.e., TB and Non-TB) TBX11K trainval X-rays but also the

random half of the MC [18] and Shenzhen [18] datasets as

well as the training sets of the DA [6] and DB [6] datasets.

The other half of the MC [18] and Shenzhen [18] datasets

as well as the test sets of the TBX11K, DA [6] and DB [6]

datasets are used to evaluate the performance of image clas-

sification. TB detection evaluation has two modes: i) using

all (i.e., TB and Non-TB) TBX11K test X-rays and ii) using

only the TB X-rays in the TBX11K test set.

2650



All experiments are based on the open-source mmdetec-

tion toolbox [7] with 4 RTX 2080Ti GPUs. The batch size

is always 16. The first-stage training runs 38400 and 76800

iterations for training with ImageNet pretraining [10] and

training from scratch, respectively. The initial learning rate

is 0.005 except that SSD [27] uses 0.0005. The learning

rate is divided by 10 after 25600 and 32000 iterations when

with ImageNet pretraining or after 51200 and 64000 itera-

tions when training from scratch. We train the second stage

for 24 epochs with the initial learning of 1e-3 that is divided

by 10 after 12 and 18 epochs. The X-ray images are resized

to 512× 512 when inputting to networks.

4.2. Evaluation Metrics

In this section, we introduce the metrics for the evalu-

ation of CTD task. For X-ray classification, CTD aims at

classifying each X-ray into three categories, which is eval-

uated using six metrics:

• Accuracy that measures the percentage of X-rays that

are correctly classified as one of the three classes;

• Area Under Curve (AUC) that computes the area un-

der the Receiver Operating Characteristic (ROC) curve

that plots the true positive rate against the false positive

rate for TB class;

• Sensitivity that measures the percentage of TB cases

that are correctly identified as TB, i.e., the recall for

TB class;

• Specificity that measures the percentage of non-TB

cases that are correctly identified as non-TB, i.e.,

the recall for non-TB class, where non-TB includes

healthy and sick but non-TB classes;

• Average Precision (AP) that computes the precision of

each class and takes the average across all classes;

• Average Recall (AR) that computes the recall of each

class and averages over all classes.

For the evaluation of TB detection, we adopt the av-

erage precision of bounding box (APbb) proposed by the

COCO dataset [26]. The default APbb refers to the APbb

averaged over IoU (intersection-over-union) thresholds of

[0.5 : 0.05 : 0.95]. APbb
50 refers to APbb at the IoU thresh-

olds of 0.5. In order to facilitate the observation of the de-

tection of each TB type, we report the evaluation results for

active TB and latent TB separately. Here, the uncertain TB

X-rays are ignored. We also report category-agnostic TB

detection results, where the TB categories are ignored, to

describe the detection for all TB areas. Here, the uncer-

tain TB X-rays are included. Moreover, we introduce two

evaluation modes by using i) all test X-rays or ii) only TB

X-rays in the test set. With these metrics, we can analyze

the performance of CTD systems in more useful aspects.

5. Experiments and Analyses

5.1. Image Classification

We summarize the evaluation results for image classifi-

cation in Tab. 3. When ImageNet pretraining [10] is en-

abled, Faster R-CNN [36] achieves the best performance.

When there is no ImageNet pretraining [10], SSD [27] per-

forms best. We also observe that ImageNet pretraining

can significantly improve performance except for SSD that

achieves better performance without pretraining. Maybe

this is because SSD adopts a shallower backbone, VGGNet-

16 [37], which is easier to be trained than ResNet-50 [15]

with FPN [24] used by other methods. Note that FCOS [39]

crashes if without ImageNet pretraining, so we do not in-

clude the results of this setting in Tab. 3.

Faster R-CNN [36] achieves a high sensitivity rate of

91.2%, which suggests deep learning can recognize most

of the TB X-rays. The specificity is 89.9%, which means

10.1 of 100 non-TB X-rays will be classified as TB. More-

over, in terms of accuracy, all methods (i.e. SSD without

pretraining and ResNet-50 based methods with pretraining)

can outperform radiologists as shown in Sec. 3.3, so deep

learning based CTD is a promising research field. The fu-

ture progress in this direction has the potential to promote

practical CTD systems to help millions of TB patients.

5.2. TB Area Detection

Here, we report not only the performance on the whole

TBX11K test set but also the performance evaluated using

only TB X-rays in the test set. Since there is no target TB

areas in non-TB X-rays, evaluating using only TB X-rays

could provide precise detection analyses, while evaluating

using all X-rays includes the influence of false positives

in non-TB X-rays. When evaluating using all X-rays, we

abandon all predicted boxes in those X-rays that are pre-

dicted as non-TB by the image classification branch. This

filtering process is useless for evaluating using only TB X-

rays. Since the training of image classification for FCOS

[39] without ImageNet pretraining crashes, we do not re-

port the evaluation results using all X-rays in this case.

Except for SSD [27], ImageNet pretraining [10] can im-

prove the detection performance. SSD achieves similar per-

formance with or without pretraining. SSD achieves the

overall best performances in most cases except for the eval-

uation using all X-rays with ImageNet pretraining where

Faster R-CNN [36] achieves the best performance. All

methods fail to accurately detect latent TB areas, but the

evaluation results of category-agnostic TB are better than

that of active TB, which means many latent TB targets are

correctly located but wrongly classified as active TB. We

guess that this is caused by the limited number of latent TB

X-rays in TBX11K where there are only 212 latent TB X-

rays but 924 active TB X-rays. Therefore, future research
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Method Pretrained Backbone Accuracy AUC (TB) Sensitivity Specificity Ave. Prec. Ave. Rec.

SSD [27]

Yes

VGGNet-16 84.7 93.0 78.1 89.4 82.1 83.8

RetinaNet [25] ResNet-50 w/ FPN 87.4 91.8 81.6 89.8 84.8 86.8

Faster R-CNN [36] ResNet-50 w/ FPN 89.7 93.6 91.2 89.9 87.7 90.5

FCOS [39] ResNet-50 w/ FPN 88.9 92.4 87.3 89.9 86.6 89.2

SSD [27]

No

VGGNet-16 88.2 93.8 88.4 89.5 86.0 88.6

RetinaNet [25] ResNet-50 w/ FPN 79.0 87.4 60.0 90.7 75.9 75.8

Faster R-CNN [36] ResNet-50 w/ FPN 81.3 89.7 72.5 87.3 78.5 79.9

Table 3. X-ray image classification results on the proposed TBX11K test data. “Pretrained” indicates whether to pretrain the backbone

networks on ImageNet [10]. “Backbone” refers to the backbone networks of each baseline, where FPN denotes the feature pyramid

network [24] for object detection.

Method Data Pretrained Backbone
CA TB Active TB Latent TB

APbb
50 APbb APbb

50 APbb APbb
50 APbb

SSD [27]

ALL

Yes

VGGNet-16 52.3 22.6 50.5 22.8 8.1 3.2

RetinaNet [25] ResNet-50 w/ FPN 52.1 22.2 45.4 19.6 6.2 2.4

Faster R-CNN [36] ResNet-50 w/ FPN 57.3 22.7 53.3 21.9 9.6 2.9

FCOS [39] ResNet-50 w/ FPN 46.6 18.9 40.3 16.8 6.2 2.1

SSD [27]

No

VGGNet-16 61.5 26.1 60.0 26.2 8.2 2.9

RetinaNet [25] ResNet-50 w/ FPN 20.7 7.2 19.1 6.4 1.6 0.6

Faster R-CNN [36] ResNet-50 w/ FPN 21.9 7.4 21.2 7.1 2.7 0.8

SSD [27]

TB

Yes

VGGNet-16 68.3 28.7 63.7 28.0 10.7 4.0

RetinaNet [25] ResNet-50 w/ FPN 69.4 28.3 61.5 25.3 10.2 4.1

Faster R-CNN [36] ResNet-50 w/ FPN 63.4 24.6 58.7 23.7 9.6 2.8

FCOS [39] ResNet-50 w/ FPN 56.3 22.5 47.9 19.8 7.4 2.4

SSD [27]

No

VGGNet-16 69.6 29.1 67.0 29.0 9.9 3.5

RetinaNet [25] ResNet-50 w/ FPN 40.5 13.8 37.8 12.7 3.2 1.1

Faster R-CNN [36] ResNet-50 w/ FPN 37.4 11.8 35.3 11.3 3.9 1.1

FCOS [39] ResNet-50 w/ FPN 42.1 14.4 38.5 13.6 4.3 1.1

Table 4. TB area detection results on the proposed TBX11K test set. “Data” indicates whether to use all test X-rays for evaluation or only

TB X-rays in the test set. “Pretrained” and “Backbone” refer to the same meaning as in Tab. 3. “CA TB” denotes class-agnostic TB.

should pay more attention to this data imbalance problem.

We also find that the performance in terms of APbb
50 is usu-

ally much better than that in terms of APbb. This means that

although the detection could find the target region, the local-

ization is usually not very accurate. We argue that locating

TB bounding box regions is quite different from locating

nature object regions. Even experienced radiologists can-

not easily locate the precise TB regions. Therefore, APbb
50 is

more important than APbb because the predicted boxes hav-

ing an IoU of 0.5 with TB targets are enough for helping

radiologists to find TB areas.

In Fig. 2, we plot PR curves for detection error analy-

ses. All methods are tested with ImageNet pretraining for

category-agnostic TB detection. We can clearly see that all

methods have very large improvement from IoU threshold

0.75 to 0.5. This shows that these methods struggle at high

IoU thresholds due to its poor object localization. The re-

gion of “FN” when using all X-rays is larger than that when

using only TB X-rays, indicating that the filtering of im-

age classification ignores many correctly detected TB areas,

but we claim that this filtering is useful for improving over-

all detection performance. When evaluating using all X-

rays, Faster R-CNN [36] achieves the state-of-the-art per-

formance. When evaluating using only TB X-rays, Reti-

naNet [25] seems to achieve better performance. Combined

image classification and TB area detection, we can conclude

that these baselines show their strengths in different aspects.

5.3. Visualization

To understand what CNNs have learned from different

X-rays, we visualize the feature map at the 1/32 scale of

the backbone of RetinaNet [25]. Specifically, we use prin-

cipal component analysis (PCA) to reduce the channels of

the feature map into a single channel. This single-channel

map is converted to heat map for visualization. We display

the results in Fig. 3. The visualization of healthy cases is

irregular, while the visualization of sick but non-TB cases

has some highlights, maybe the lesion. For TB cases, the
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Figure 2. Error analyses of category-agnostic TB detection with ImageNet pretraining [10]. The first row is evaluated using all X-rays,

while the second row only uses TB X-rays. C50/C75: PR curves under IoU thresholds of 0.5/0.75. Loc: the PR curve under the IoU of 0.1.

BG: removing background false positives (FP). FN: removing other errors caused by undetected targets.

Healthy Sick but Non-TB Active TB Latent TB Active & Latent TB Uncertain TB

Figure 3. Visualization of the learned deep features from X-rays. All X-rays are randomly selected from the TBX11K test set. For each

class listed in Tab. 2, we present one example. The green, red, and blue boxes cover the regions of active TB, latent TB, and uncertain TB,

respectively. Boxes with thick and thin lines denote ground-truth boxes and detected boxes, respectively.

highlights in the visualization map is consistent with the an-

notated TB region.

6. Conclusion

Early diagnosis is important for the treatment and pre-

vention of TB, a leading infectious disease. Unfortunately,

TB diagnosis remains a major challenge. The definitive test

of TB using the golden standard takes several months and

is impossible in many developing countries and resource-

constrained communities. Inspired by the successes of deep

learning, deep learning based CTD is a promising research

direction. However, the lack of data has prevented deep

learning from bringing progress for CTD. In this paper, we

build a large-scale TB dataset TBX11K with bounding-box

annotations, enabling the training of deep CNNs for TB

diagnosis. TBX11K is also the first dataset for TB detec-

tion. We build an initial benchmark for CTD by further

proposing some baselines and evaluation metrics. This new

TBX11K dataset and benchmark are expected to promote

the research in CTD, and better CTD systems are expected

to be designed with new powerful deep networks [12].
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Szilárd Vajda, Sameer Antani, Les Folio, et al. Combination

of texture and shape features to detect pulmonary abnormal-

ities in digital chest X-rays. International Journal of Com-

puter Assisted Radiology and Surgery, 11(1):99–106, 2016.

2, 3

[21] Anastasios Konstantinos. Testing for tuberculosis. Aus-

tralian Prescriber, 33(1):12–18, 2010. 1

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

ImageNet classification with deep convolutional neural net-

works. In Advances in Neural Information Processing Sys-

tems, pages 1097–1105, 2012. 3

[23] Paras Lakhani and Baskaran Sundaram. Deep learning at

chest radiography: automated classification of pulmonary tu-

berculosis by using convolutional neural networks. Radiol-

ogy, 284(2):574–582, 2017. 3

[24] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 2117–2125,

2017. 6, 7

[25] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In IEEE

International Conference on Computer Vision, pages 2980–

2988, 2017. 2, 5, 7

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

European Conference on Computer Vision, pages 740–755,

2014. 6

2654



[27] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In European Con-

ference on Computer Vision, pages 21–37, 2016. 2, 5, 6, 7

[28] Yun Liu, Ming-Ming Cheng, Deng-Ping Fan, Le Zhang,

JiaWang Bian, and Dacheng Tao. Semantic edge de-

tection with diverse deep supervision. arXiv preprint

arXiv:1804.02864, 2018. 1

[29] Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Jia-Wang Bian,

Le Zhang, Xiang Bai, and Jinhui Tang. Richer convolutional

features for edge detection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 41(8):1939–1946, 2019.

1

[30] Yun Liu, Peng-Tao Jiang, Vahan Petrosyan, Shi-Jie Li, Ji-

awang Bian, Le Zhang, and Ming-Ming Cheng. DEL: Deep

embedding learning for efficient image segmentation. In In-

ternational Joint Conference on Artificial Intelligence, pages

864–870, 2018. 3

[31] UK Lopes and João Francisco Valiati. Pre-trained convolu-

tional neural networks as feature extractors for tuberculosis

detection. Computers in Biology and Medicine, 89:135–143,

2017. 1, 2, 3

[32] Aude Oliva and Antonio Torralba. Building the gist of a

scene: The role of global image features in recognition.

Progress in Brain Research, 155:23–36, 2006. 3

[33] World Health Organization. Global tuberculosis re-

port 2015. http : / / apps . who . int / iris /

bitstream/10665/191102/1/9789241565059_

eng.pdf, 2015. 1

[34] World Health Organization. Global tuberculosis report

2017. https://www.who.int/tb/publications/

global _ report / gtbr2017 _ main _ text . pdf,

2017. 1

[35] World Health Organization et al. Chest radiography in tu-

berculosis detection: summary of current who recommenda-

tions and guidance on programmatic approaches. Technical

report, World Health Organization, 2016. 1

[36] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In Advances in Neural Information

Processing Systems, pages 91–99, 2015. 2, 5, 6, 7

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In Inter-

national Conference on Learning Representations, 2015. 1,

5, 6

[38] Yi Sun, Yuheng Chen, Xiaogang Wang, and Xiaoou Tang.

Deep learning face representation by joint identification-

verification. In Advances in Neural Information Processing

Systems, pages 1988–1996, 2014. 1

[39] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS:

Fully convolutional one-stage object detection. In IEEE In-

ternational Conference on Computer Vision, pages 9627–

9636, 2019. 2, 5, 6, 7

[40] MRA Van Cleeff, LE Kivihya-Ndugga, H Meme, JA Odhi-

ambo, and PR Klatser. The role and performance of chest

x-ray for the diagnosis of tuberculosis: A cost-effectiveness

analysis in nairobi, kenya. BMC Infectious Diseases,

5(1):111, 2005. 1

[41] Ziming Zhang, Yun Liu, Xi Chen, Yanjun Zhu, Ming-Ming

Cheng, Venkatesh Saligrama, and Philip HS Torr. Sequential

optimization for efficient high-quality object proposal gener-

ation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(5):1209–1223, 2018. 5

2655


