
Severity-Aware Semantic Segmentation with Reinforced Wasserstein Training

Xiaofeng Liu1,2∗, Wenxuan Ji1,3, Jane You4, Georges El Fakhri5, Jonghye Woo5

1Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
2Carnegie Mellon University, Pittsburgh, PA, USA.

3School of Artificial Intelligence, Nankai University, Tianjin, China.
4Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.

5Massachusetts General Hospital, Harvard University, Boston, MA, USA.

*liuxiaofengcmu@gmail.com

Abstract

Semantic segmentation is a class of methods to classify

each pixel in an image into semantic classes, which is crit-

ical for autonomous vehicles and surgery systems. Cross-

entropy (CE) loss-based deep neural networks (DNN)

achieved great success w.r.t. the accuracy-based metrics,

e.g., mean Intersection-over Union. However, the CE loss

has a limitation in that it ignores varying degrees of severity

of pair-wise misclassified results. For instance, classifying

a car into the road is much more terrible than recognizing it

as a bus. To sidestep this, in this work, we propose to incor-

porate the severity-aware inter-class correlation into our

Wasserstein training framework by configuring its ground

distance matrix. In addition, our method can adaptively

learn the ground metric in a high-fidelity simulator, follow-

ing a reinforcement alternative optimization scheme. We

evaluate our method using the CARLA simulator with the

Deeplab backbone, demonstraing that our method signifi-

cantly improves the survival time in the CARLA simulator.

In addition, our method can be readily applied to existing

DNN architectures and algorithms while yielding superior

performance. We report results from experiments carried

out with the CamVid and Cityscapes datasets.

1. Introduction

Semantic segmentation (SS) has been a critical vision-

based task aiming to classify each pixel of an image into

different semantic classes. For autonomous driving, auto-

matic surgery system, robotics, and augmented reality and

generation [47, 46, 42], it is an important way to precisely

understand the visual scene. Benefited by the recent ad-

vances of deep learning [22, 35], a significant amount of ef-

fort has been devoted to this topic [48] in the past decades,
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Figure 1. The cross-entropy loss has the same punishment for

two softmax predictions (i.e., the same probability at i∗ position),

while these two segmentors can result in different severity conse-

quences for real-world autonomous driving system.

leading to considerable progress on major open benchmark

datasets [11]. Recently, the segmentation problem has been

successfully tackled by pixel-wise classification based on

the cross-entropy (CE) loss.

However, the application of segmentors in many real-

world tasks is still challenging, e.g., self-driving car, since

they can have varying degrees of severity w.r.t. different

misclassification cases. For example, an accident of Tesla

is caused by wrongly perceiving a white truck as the sky,

arousing intense discussion of autonomous vehicle safety1.

However, the result may be different if the system had just

misclassified the truck as car or bus class.

As shown in Fig. 1, compared with the bottom segmenta-

tion prediction (Car→Road), the top one is more preferable

(Car→Bus), while the cross-entropy loss does not discrim-

inate these two softmax probability histograms. We note

that with one-hot ground-truth label, the cross-entropy loss

is only related to the prediction probability of the true class

1https://www.nytimes.com/2017/01/19/business/

tesla-model-s-autopilot-fatal-crash.html
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pi∗ , where i∗ is the index of the true class. More formally,

LCE = −logpi∗ .

Actually, there are severity correlations of each label

class, e, g., severity(Car→Bus)>severity(Car→road) and

severity(Person→Road)>severity(Sky→Road). When us-

ing the cross-entropy loss, the segmentation classes are con-

sidered independently [36], and the pair-wise inter-class

correlations are not taken into account.

Our claim is also closely related to the importance-aware

segmentation/classification [7, 10, 26]. These methods pro-

pose to define some class groups based on the pre-defined

importance of each class. For example, the person and car

are the most important classes, while the road and sidewalks

are the less important classes, and the sky is the least im-

portant group. [7] simply assign a larger weight to the more

important pre-defined group to calculate the weighted sum

loss. Therefore, the system that misclassifies a pixel of a

person into any other classes will get larger loss than mis-

classifying a pixel of the sky into any other classes. This

is a nice property, but not sufficient for safe driving as it

cannot discriminate the pair-wise severity of different pre-

dictions in misclassification cases as illustrated in Fig. 1.

To sidestep the aforementioned difficulties, in this work,

we resort to the Wasserstein distance as an alternative for

cross-entropy loss. The 1st Wasserstein distance can be

the optimal transport for transferring the probability masses

from a source distribution to a target distribution [41]. For

each pixel, we can calculate the Wasserstein distance be-

tween a softmax output histogram and the corresponding

one-hot label, and we configure the ground metric as the

severity misclassification. Therefore, it is possible to eval-

uate the softmax prediction of each pixel that is sensitive

to the different misclassifications. The closed form solu-

tion of our Wasserstein loss with one-hot label follows the

soft-attention setting as in [23] and could be fast computed

using [26]. For semantic segmentation with unsupervised

domain adaptation using constrained non-one-hot pseudo-

label [48], we can also resort to the fast approximate solu-

tion of the Wasserstein distance.

In addition, instead of pre-defining the ground distance

based on expert knowledge, we further propose to learn

the optimal ground metric and a driving policy simultane-

ously in a high-fidelity autonomous driving simulator (e.g.,

CARLA) following an alternative optimization scheme.

Our actor makes the decision based on the latent represen-

tation of the segmenter which is a partial observation of the

front camera view. It can largely compress the state space

for fast and stable training.

We summarize our contributions of this work as follows:

1) We point out a principled severity-aware seman-

tic segmentation objective that has not been noticed by

a trillion-dollar industry, i.e., autonomous driving. In-

stead of the importance-aware setting, it is necessary

to discriminate the pair-wise misclassification severity

(car→person �=car→bus), and the importance-aware meth-

ods can be a particular case by designing a specific ground

metric. We believe our insights shed a light on the objec-

tive design of semantic segmentation tasks in the context of

autonomous driving and surgery systems.

2) The pair-wise misclassification severity can be ex-

plored as a priori in our learned ground matrix in our

Wasserstein training framework.

3) The ground metric can also be adaptively learned with

a partially observable reinforcement learning (RL) frame-

work based on a high-fidelity autonomous driving simulator

following an alternative optimization scheme.

We demonstrate its effectiveness and generality on mul-

tiple challenging benchmarks with different backbone mod-

els and achieve promising performance on the high fidelity

CARLA simulator.

2. Related Works

Semantic segmentation aims to describe the category, lo-

cation, and shape [3]. With the development of deep neu-

ral networks [29, 20, 6], [37] propose to use the fully

convolutional network (FCN) for the pixel-wise classifica-

tion. The widely adopted cross-entropy loss in deep learn-

ing frameworks assign the same the loss for different error

[21, 28, 32], which however does not consider the different

severity results of different pair-wise mistakes.

Recently, [8, 26] propose that the different importance

between classes (i.e., the importance-aware settings) should

be taken into account. The categories in Cityscapes can be

grouped based on their manually defined importance. The

loss of each pixel in more important classes (e.g., in groups

3 and 4) will be given larger weights to compute the sum

of loss in all pixels. Therefore, the misclassification of a

pixel with a ground truth label in group 4 will result in a

larger loss than misclassifying the sky to the other classes.

However, its class-correlation is only defined in the ground

truth perspective rather than prediction classes. Receiving

the same loss by recognizing a car to bus or road is not

sufficient for reliable autonomous driving. Essentially, they

simply use a larger weight for the more important group’s

pixel when calculating the sum of loss in an image. Our

more general severity-aware setting can explicitly discrim-

inate the pair-wise mistake. In fact, the recently developed

importance-aware segmentation methods [8, 26] are a spe-

cial but inferior setting.

Besides, the grouping manipulation is only based on ex-

pert knowledge, which may differ from the way that a ma-

chine perceives the world [30, 27]. Our ground metric can

be adaptively learned in an RL framework with an alterna-

tive training scheme.

Moreover, LRENT [48] is a method to overcome the un-

reliable pseudo label in self-training based domain adapta-
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tion. That work proposes to smooth the one-hot label of

each pixel. We further systematically investigate the possi-

ble fast solution with the conservative label.

Recently several advanced deep segmentation networks

[9] and the pose-processing solutions have been developed

[19]. Please note that these works are orthogonal with our

framework and can be simply added following a plug-and-

play fashion.

Wasserstein distance is used to measure the discrepancy

of two distributions [26]. It has attracted much attention in

the area of generative learning in particular [2]. [14] pro-

pose to use the Wasserstein distance for multi-label classifi-

cation. Our previous works [25, 33] adopt the Wasserstein

loss for ordinal classification (i.e., multi-level medical diag-

nosis) and the modulo classification (i.e., pose estimation).

The ground matrix follows a specific ordinal/modulo con-

straint and can be solved with the fast exact solution. Re-

cently, we further apply it as an alternative of importance-

aware semantic segmentation [26]. Noticing that the tree

structure used in [14, 26] follows the simple symmetric ma-

trices, while D is asymmetric in our scenario as shown in

Fig 2.

Based on the above fundamental methods, we propose to

apply it to the severity-aware SS, and to ecode the severity

of pair-wise misclassification with the ground matrix.

Reinforcement learning considers how the agent should

take into account a specific environment state to maximize

its cumulative reward [31]. The dynamic environment is

usually stated with the Markov decision process. Recently,

the advanced deep RL achieved human-level performance

in many tasks, e.g., Atari Games [39] and Go.

End-to-end vision-based autonomous driving models

[12] trained by RL usually have a high computational cost.

To sidestep this issue, [38] propose to use variational infer-

ence to estimate policy parameters, while simultaneously

uncovering a low-dimensional latent space of actors. Simi-

larly, [15] analyze the utility of hierarchical representations

for reuse in related tasks while learning latent space policies

for RL.

We propose that the bottleneck of segmenter can be a

natural representative lower-dimensional latent space which

can efficiently shrink the state space and which requires

fewer actor parameters. Besides, we incorporate RL in

an alternative optimization framework to learn the optimal

ground matrix in a simulator with a certain reward rule.

3. Methodology

In this section, we elaborate on our proposed approach,

and target to render reliable segmentation results for au-

tonomous driving by considering the different severity of

pair-wise misclassification.

In the semantic segmentation task, we propose to learn

a segmenter hw, parameterized by w, with an autoencoder
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Figure 2. Left: a possible ground matrix for severity-aware seg-

mentation. Right: the ground matrix as an alternative for the

importance-aware setting [26].

structure. Let s = {si}
N

i=1
be the prediction of a pixel

in hw(X), t = {tj}
N

j=1
be the target label, and N be

classes probability normalized by the softmax function. Let

i ∈ {1, · · · , N} be the index of segmentation class. The

learning is performed on the hypothesis space H of hw.

For the training example X and the corresponding target la-

bel T ∈ R
Ms×Ms×N , learning is achieved by minimizing

min
hw∈H L(hw(X),T). The loss function L(·, ·) is used as an

alternative for the performance measure. Typically, loss in

SS is the sum of pixel-wise error.

Unfortunately, cross-entropy loss simply treats each

class probability independently [14], ignoring the different

severity of pair-wise misclassification.

Assuming the elements Di,j indicate the pair-wise sever-

ity of misclassifying i-th class pixel into j-th class. In the

classification setting, s and t are the histogram distributions.

The closed form solution of the Wasserstein loss [26] can be

formulated as

LDi,j
(s, t) = inf

M

N−1
∑

j=0

N−1
∑

i=0

Di,jMi,j , (1)

where M is the moving weights matrix, and its elements

Mi,j is the to be moved masses from the ith position in

one histogram (e.g., softmax normalized output) to the

jth position in another histogram (e.g., target label). A

valid moving weights matrix, i.e., M should subject to:

Mi,j ≥ 0;
∑N−1

j=0
Mi,j ≤ si;

∑N−1

i=0
Mi,j ≤ tj ;

∑N−1

j=0

∑N−1

i=0
Mi,j = min(

∑N−1

i=0
si,

∑N−1

j=0
tj) [26].

The elements of ground distance matrix Di,j for our ap-

plication are illustrated in Fig. 2. For instance, classifying

a car into the road (d2,5) has a larger ground distance than a

car into a bus (d2,4).

Eq. 1 can be the optimal transportation distance if

the two histograms with the identical probabilities sum,
∑N−1

i=0
si =

∑N−1

j=0
tj , the ground metric di,j should be

symmetrical w.r.t. the main diagonal as Di,j . This is sat-

isfied in [34, 25, 14]. However, this is not true for the

severity-aware setting. For example, classifying a person

into the road can be much severe than classifying the road

into a person. Therefore, in Fig. 2 left, d1,4 should have a
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Figure 3. Left: There is only one transportation route in the one-

hot setting [26]. Right: the transportation plan with conservative

pseudo labels is more complicated, e.g., car→bus.

larger value than d4,1. Noticing that the importance-aware

setting can be achieved by configuring the ground matrix

as Fig. 2 right, which does not discriminate the different

mistakes, e.g., classifying the car into any other classes has

the same punishment. The groups are also manually pre-

defined, which however may not necessarily be appropriate

for the practical driving system.

3.1. Wasserstein loss

With the one-hot label, the target histogram can be t =
δj,j∗ , and j∗ indicates the segmentation category. δj,j∗ is

a delta function, and δj,j∗ = 1 for j = j∗ and δj,j∗ = 0

otherwise. Assuming
∑N−1

j=0
tj =

∑N−1

i=0
si, and t with

tj∗ = 1(or
∑N−1

i=0
si)

2, we have the only possible moving

route as illustrated in Fig. 3 [26].

Therefore, the Wasserstein loss in Eq. 1 can be simpli-

fied to

L
D

f
i,j

(s, t) =

N−1
∑

i=0

sif(di,j∗). (2)

[26] propose to extend Di,j to f(di,j), where f can be a

monotonic increasing mapping function [34].

The complexity of its closed form solution is O(N). Ac-

tually, our ground metric f(di,j∗) can be regard as weights

of si, and follows a soft attention scheme [31]. The cross-

entropy loss −1logsj∗ can be regarded as the hard predic-

tion scheme [23], meaning that the other class’s predictions

are simply discarded, which results in a large information

loss [31].

When we use the conservative target label, Eq. (2) does

not apply. The exact solution has complexity higher than

O(N3). Therefore, a possible way is to resort to its approx-

imation solution with complexity O(N2) [26, 34].

2Noticing that with the rounding operation, the softmax normalization

outputs cannot strictly be the sum of 1. However, setting tj∗ to 1 or
∑N−1

i=0
si) does not result in significant difference when we accurate to 8

decimal places.

3.2. Learn severity-aware ground matrix

Other than the pre-defined D, this section proposes to

adaptively adjust ground matrix in a simulator using the au-

tonomous driving agent with a self-learning algorithm.

We design a novel alternative training framework to

adaptively learn the ground matrix D. It is possible to go

beyond the expert knowledge following the recent advances

in convolution neural networks. Its combination with RL

with the ISO standard can further open the way to the end-

to-end training without the need to design neither an evalua-

tion metric (e.g., mIoU) nor D, finally, achieving the “meta”

learning.

The overall framework of the proposed system is il-

lustrated in Fig. 4. We choose a high-reality simulator,

CARLA [12], as our environment. The view of a monoc-

ular camera placed at the front of the car is rendered as

X. Segmenter takes X as input and predicts the segmen-

tation image S which is compared with the target T with the

Wasserstein loss.

An RL agent learns to interact with the environment

following a partially observable Markov decision process

(POMDP) [31, 24]. For every time step t, it takes a state st
in a state space S as input and predict the action at from the

action space A, according to the RL policy π(at|st) (i.e.,

the behavior of the agent) [31]. Then the action will result in

the next environment state st+1 in the dynamic system, and

receive a reward rt(st, at) ∈ R ⊆ R. The objective of RL

is to find the optimal policy π∗ to maximize the expectation

of the weighted sum of rewards Rt =
∑T

i≥0
γirt+i(st, at),

where γ ∈ [0, 1) indicates the discount parameter. It is used

to balance the current and the long-term returns [18, 31].

Instead of using X as our state [12], we propose to utilize

the latent representation of our segmenter. It can be either

feature vector or feature maps according to the backbone. A

recent work [12] takes 12 days for the training on CARLA

with only 84×84 size raw image. As a partial observation,

the latent representation compresses the state space drasti-

cally. Compared to the raw image, the segmentation map

or its latent representation has sufficient information (e.g.,

each object and precise location) to guide the driving, and is

robust to appearance variation (e.g., weather, lighting, etc.).

Since a high proportion of pixels have the same label as

their neighbors in S, there is a large room to reduce its re-

dundancy.

The input to the network is the concatenation of two la-

tent representations from the two recent frames at this time

step, as well as a vector of measurements (e.g., sensor read-

ings). They are inputted into two separate networks, i.e., the

fully-convolutional network for feature maps, and a fully-

connected network for the measurements. After these two

branches are fed in, their processed results are concatenated

and fed into the latter networks.

In the context of autonomous driving, we define the ac-
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Figure 4. The reinforced alternative optimization framework to learn actor-critic agent and ground matrix simultaneously.

tion as a three-dimensional vector for steering ast ∈ [−1, 1],
throttle att ∈ [0, 1], and brake abt ∈ [0, 1]. We define the re-

ward rt = 1−αol−βor−ψc, where ol and or ∈ [0, 1] mea-

sure the degree of off-line and off-road, respectively, and

c ∈
{

0, 1

4
, 1

2
, 3

4
, 1
}

indicates that there is no/S0/S1/S2/S3

level crash, where S0, S1, S2, and S3 denotes the severity

of negligible/minor, major, hazardous, and catastrophic, re-

spectively, defined in [ISO26262] [16]. α, β, and ψ are a

set of positive weights to balance the punishments, and we

empirically set α = 1, β = 1, and ψ = 10 in all of our

experiments. The agent will receive the reward of 1 when

the vehicle drives smoothly and keep in line and road. The

driving will be terminated when there is a crash / completely

(100%) off-line / 50% off-road / reaches 500 time steps.

Since our action space is continuous, we choose actor

critic solution. Noticing that the value-based RL, e.g., Q-

Learning is not applicable here. The actor critic network is

essentially a policy-based method, which is trained to find

a parameterized policy πθ(at|st) to maximize the expected

long-term reward J(θ) [31]. According to the Theorem of

Policy Gradient [43], the gradient of the parameters given

the objective function can be:

∇θJ(θ) = E[∇θlogπθ(at|st)(Q(st, at)− b(st))], (3)

where Q(st, at) = E[Rt|st, at] is the state-action value

function. The initial action at is given in order to compute

the expected return when starting in the state st. We typ-

ically subtract a baseline function b(st) to reduce the vari-

ance without changing the estimated gradient [45, 1]. A

candidate for this baseline function is the state only value

function V (st) = E[Rt|st], which is similar to Q(st, at),
except at is not given here. The advantage function can be

expressed as A(st, at) = Q(st, at) − V (st) [18]. Eq.(4)

then becomes:

∇θJ(θ) = E[∇θlogπθ(at|st)A(st, at)]. (4)

This can be a specific setting of the actor critic model

in that πθ(at|st) is the actor and the A(st, at) is the critic.

To reduce the number of required parameters, the parame-

terized temporal difference error δω = rt + γVω(Ss+1) −
Vω(Ss) is used to approximate the advantage function. We

denote the parameter of actor and critic function with θ and

ω, respectively. Noticing that most of the network parame-

ters are shared in a mainstream neural network, followed by

being separated into two branches for policy and value pre-

dictions, respectively. We further adapt the A3C to its off-

policy version to stabilize and speed up our training [31].

After configuring our RL module, we propose the adap-

tive adjusting scheme of D for the training of the RL agent

using an alternative optimization framework [48, 34].

Step A: Maintaining the elements in D and calculate the

loss LDi,j
(s, t) to update the networks of the actor-critic

module via back-propagation.

Step B: Maintaining the networks and post-processing

ground matrix D with ℓ1 distances in the feature level w.r.t.

the segmentation classes.

In step B, the normalized activation map of the last con-

volutional layer is used at each point as a vector as it does

not have subsequent non-linear units. Thus, averaging the

feature vectors in each position that corresponds to the pixel

on image-level with the same class label is appropriate to

calculate the center and re-compute the Di,j with the ℓ1
distances of the centers di,j . Targeting on stabilizing the

training, we calculate Di,j =
1

1+κ

{

f(di,j) + κf(di,j)
}

for

every iterations. We linearly change the hyper-parameter κ

from 10 to 0 in the training stage.

4. Implementation details

We configure the structure of our A3C agent following

[31, 44]. The information encoded in our measurement vec-

tor incorporates the present state’s vechle speed, remaining

distance, collision damages, and the present high-level or-
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Figure 5. The feed-forward neural network architecture of the ad-

vantage actor-critic. The two input features are the processed fea-

ture map and the vector of measurements, respectively.

der given by the topological planner [12]. All of these vec-

tors are in one-hot encoding. Our A3C is shown in Figure

8. It is trained using ten actor-thread parallelly. Totally

10,000,000 dynamic environment steps are implemented

[12]. Besides, we also apply the 20-step roll-outs as the

implementation of [17].

According to the CARLA simulator [12], the measure-

ments used in our state are defined as the related informa-

tion of the player’s state and the simulator environment,

e.g., position if the player, player speed, collision, opposite

lane intersection, sidewalk intersection, the current in-game

time, player acceleration, player orientation, sensor read-

ings, non-client-controlled agents information, traffic lights

information, and the speed limit signs information.

We adopt two fully connected (FC) layers (64, 64) to

process the vector of measurements. We apply two con-

volutional layers with 3×3×32 and 3×3×16 kernels, fol-

lowed by two fully connected layers (1024, 512). Since the

latent feature map of different segmentation backbone has

a different size, the trained network of this part cannot be

shared among different backbones. As shown in Fig. 8, our

actor-critic uses two FC layers (256, 128) alongside cascad-

ing branches which use the two FC layers (64, 16). The

number of the output unit is set as 3, which indicates the

steering, throttle, and brake.

The initial learning rate is set to 0.0007 and the entropy

regularization to 0.01. Besides, the learning rate is gradu-

ally drop to 0 in the end. The evaluation details using the

third-party reinforcement framework on CARLA including

experiment settings, network structures, and hyperparame-

ter settings are based on [13]3.

5. Experiments

Our framework is evaluated on the CARLA simulator

[12] and two typical autonomous driving benchmarks (i.e.,

Cityscapes [11] and CamVid [4]). To demonstrate the effec-

tiveness of the learned ground matrix, we give a series of ex-

3https://gitlab.com/grant.fennessy/rl-carla

Town 1 Map Town 2 Map

Figure 6. The two owns in CARLA simulator [5], where the left

is the views and a map of CARLA Town 1 used for training. The

right is the views and a map of CARLA Town 2 used for new town

testing.

periments with different backbones. All of the experiments

are pre-trained with the CE loss as their vanilla version.

We use the conventional intersection-over-union (IoU)

IoU = TP

TP+FP+FN
for the more important group that de-

fined in [26, 7], where TP, FP, and FN denote the numbers

of true positive, false positive, and false negative pixels, re-

spectively. Moreover, the mean IoU is the average of IoU

among all classes. However, these metrics cannot discrimi-

nate the different severity of pair-wise misclassifications.

We further adapt the third-party evaluations used in

CARLA [13, 12]: Drive%: The drive% measures the num-

ber of steps that took place during the evaluation divided by

720,000. A value of 100% implies that the agent never had

an early termination (due to stagnation, off-road, or colli-

sion), while a lower value implies some degree of failures.

Km: Total kilometers driven across all steps in the eval-

uation. This is ultimately a function of mean speed and

drive%. Km/Hr: Mean speed taken across all steps in the

evaluation. Target speed is the pre-set maximum speed in

CARLA 25km/hr. Km/OOL: How many kilometers are

driven on average between each out of lane (OOL) infrac-

tion. An OOL infraction occurs any time the vehicle exits

the lane in any way. A 2-second timer (100 steps) is kicked

off after the infraction is detected, during which time no ad-

ditional infractions can occur. Once the timer completes, a

new infraction occurs if the vehicle is still in any way out

of the lane. Wrapping up the out of lane infractions into

these events helps to filter out instances where the vehicle

just barely nudges out of the lane several times in rapid suc-

cession. Ideally, this value is infinite if no OOL instances
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Figure 7. Illustration of adaptively normalized ground matrix

learned in the CARLA simulator with the ENet backbone.

occur. Km/Collision: How many kilometers are driven on

average between each collision with an object in the envi-

ronment. Ideally, this value is infinite if no collisions occur.

5.1. Severity-aware SS with the learned ground ma-
trix

As discussed in our introduction, the importance-aware

setting does not consider the different severity w.r.t. the

predictions. Instead of pre-defining a severity-aware ground

matrix with human knowledge, we propose to learn it in the

CARLA simulator (as shown in Figure 6)4 and show our

result with the ENet backbone. We train our actor critic

with ten threads parallelly as in [12]. The joint learning of

our actor-critic module and the ground matrix only takes

10.5 hours, which is much faster than using the images as

the state. We note that in [12], it takes 12 days to train

an RL framework. The time cost will be intractable when

we incorporate a ground matrix simultaneously. Besides,

the Wasserstein training outperforms the IAL and vanilla

ENet baseline w.r.t. the episode rewards by a large margin

consistently. Higher episode rewards are expected for good

learning algorithms.

CARLA offers a fine-grained evaluation of driving po-

lices which characterizes the approaches by the average dis-

tance between different collisions and more than 30% off-

line or off-road as follows:

Off-line: if over 30% of the car’s footprint is over wrong-

way lanes.

Off-road: if over 30% of the car’s footprint is over the side-

walk.

Collision-static/car/person: if a car makes contact with a

static object, another car and pedestrian respectively.

4https://carla.org

Task
Training condition New town New weather

wo/ w/ wo/ w/ wo/ w/

collision-person 12.61 30.43 2.53 7.82 9.24 28.25

collision-car 0.84 4.59 0.40 2.79 0.75 4.33

collision-static 0.45 1.36 0.26 1.02 0.28 1.29

off-line 0.18 0.85 0.21 0.78 0.14 0.81

off-road 0.76 1.47 0.43 1.22 0.71 1.35

Table 1. Average distance (in kilometers) traveled between two

infractions of using the ENet trained only with the CE loss (wo/)

or fine-tuned with the Wasserstein loss (w/) in our RL framework.

The higher values indicate superior performance.

Method Drive% Km Km/Hr Km/Off-line Km/Collision

Deeplab wo/ 82.2 31.9 9.3 0.04 12.4

Deeplab w/ IAL 85.8 35.2 12.4 0.08 15.7

Deeplab w/ A-Ldi,j
91.6 47.5 20.4 0.14 20.7

Table 2. Results of different training methods using the Deeplab

backbone [13] evaluation on the CARLA simulator. The higher

values indicate superior performance.

Of note, the duration of each violation is limited to 2

seconds. The results are reported in Table 1. Rather than

testing on the same town environment, we also test at a new

town or new weather condition following the standard eval-

uation of CARLA. As expected, our method can largely im-

prove these metrics and lead to a more safe driving system.

By emphasizing the severity of the misclassification of a

person, the average distance between two collisions with a

person almost doubled in all of the testing cases.

Other than using our RL framework to make the driv-

ing decision, we also evaluate our segmented results using

an independent autonomous driving system. [13] propose to

process the front view image in CARLA with Deeplab [9] to

get a segmentation and then combine it with the depth cam-

era and vehicle stats as state. We replace its vanilla Deeplab

module with a fine-tuned one using the Wasserstein loss or

IAL. Following the experiment setting and evaluation met-

rics, we give the comparison in Table 2. The “A-” indecates

the adaptive ground matrix adjusting and the learned ma-

trix is shown in 7. The improvements over Deeplab and

IAL trained Deeplab indicate that our segmenter can offer

more reliable and safe segmentation results for the driving

system.

5.2. Importance-aware SS with learned D

We can also apply our adaptively learned ground matrix

to the importance-aware SS task. Following the standard

IAL testing protocol [8, 7, 26], we apply the SegNet [3] and

ENet [40] as our backbones.

For the Cityscapes dataset, Table 3 shows that the seg-

mentation result of pixel in the categories in group 4 has

higher IoU when considering the importance of each class.

For the CamVid dataset, the results are reported in Table
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Group 4
mIoU

Person Rider Car Truck Bus Motor Bike

SegNet 62.8 42.8 89.3 38.1 43.1 35.8 51.9 57.0

+IAL 84.1 46.0 91.1 75.9 65.0 22.2 65.3 65.7

A-Ldi,j
85.4 47.4 90.3 76.9 69.3 41.5 62.4 65.9

ENet 65.5 38.4 90.6 36.9 50.5 38.8 55.4 58.3

+IAL 87.7 41.3 92.4 73.5 76.2 24.1 69.7 67.5

+A-Ldi,j
90.2 47.0 93.1 72.5 73.1 44.2 72.2 68.2

Table 3. The comparison of different loss functions on group 4 of

Cityscapes dataset using the SegNet or ENet backbone.

Group 3 Group 4
mIoU

Road Sidewalk Sign Car Pedestrian Bike

FCN 98.1 89.5 25.1 84.5 64.6 38.6 69.6

+IAL 96.3 91.8 21.5 82.2 69.5 57.6 71.2

+A-Ldi,j
97.3 92.4 28.6 86.4 70.8 60.5 71.5

Table 4. The comparison of different loss functions on group 3/4

of CamVid dataset using the FCN backbone.

4. The Wasserstein training with the learned ground matrix

can achieve comparable performance for groups 3 and 4 as

the IAL methods. This indicates that the classes in groups

3 and 4 can play an important role for safe driving.

For the unsupervised domain adaptation with con-

strained self-training (LRENT) [48], we also use the ap-

proximate solution of the Wasserstein distance. The results

GTA5→Cityscapes adaptation are given in Table 5. Our

learned ground matrix can be applied to many real-world

tasks.

Noticing that since we do not manage to achieve better

performance in the IAL setting with the learned ground ma-

trix, and the evaluation metrics used in IAL cannot demon-

strate the superiority of our severity-aware setting, we give

additional confusion statistics in Figure 8.

We can see that the prediction probability of

SegNet+Wasserstein training more concentrates on

car/truck/bus. Although the improvement of correctly clas-

sifying a car as a car is about 1% to 3% over IAL or SegNet

as shown in Table 8, IAL/SegNet have more severe mis-

classifications, e.g., car→person and rider/motor/bike/sky.

Noticing that since our correct classification probabilities in

the other class are usually more significant and promising

than the car, we just pick one that has the similar correct

probability class and show how different they make mis-

takes. Even though they have the similar probability to be

wrong, their consequences will have different severity.

6. Conclusions

We have introduced the severity-aware semantic seg-

mentation setting, which is ignored by the previous works.

The ground metric of our Wasserstein inspired loss in-

dicates the pair-wise severity of misclassification and is

learned by alternative optimization with an RL framework.

Figure 8. The confusion statistics of classifying a car on the testing

set of Cityscapes dataset with the SegNet backbone.

Group 4
mIoU

Person Rider Car Truck Bus Motor Bike

LRENT 61.7 27.4 83.5 27.3 37.8 30.9 41.1 46.5

A-Ldi,j
63.9 33.5 88.1 35.8 44.9 40.3 48.0 47.1

Table 5. The comparison of different loss functions on group 4

of GTA5→Cityscapes unsupervised domain adaptation using the

DeeplabV2 backbone.

The importance-aware problem can be a special case of our

framework. It has a simple exact fast solution in one-hot

case and the fast approximate solution can be used for the

conservative label in self-learning based unsupervised do-

main adaptation. We improve the autonomous driving met-

rics in the CARLA simulator significantly. Nevertheless,

it is designed for semantic segmentation, we are possible

to apply it to other problems with multiclass classification

labels that have different severity of misclassification. In

our future work, we plan to further consider the distance of

the misclassified pixel to the observer. For example, a per-

son misclassified as the road is much worse if the person

is close to the driving vehicle than if it is still far away. A

possible solution can be configuring via a depth estimation

module with a camera/lidar and assigning a larger weight

for the segmentation pixel near the observer.
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Wasserstein gan. arXiv preprint arXiv:1701.07875, 2017. 3

[3] Vijay Badrinarayanan, Alex Kendall, and Roberto Cipolla.

Segnet: A deep convolutional encoder-decoder architecture

for image segmentation. TPAMI, 39(12):2481–2495, 2017.

2, 7

[4] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla.

Semantic object classes in video: A high-definition ground

truth database. Pattern Recognition Letters, 30(2):88–97,

2009. 6

[5] Carlos A Cabrelli and Ursula M Molter. The kantorovich

metric for probability measures on the circle. Journal of

Computational and Applied Mathematics, 57(3):345–361,

1995. 6

[6] Tong Che, Xiaofeng Liu, Site Li, Yubin Ge, Ruixiang Zhang,

Caiming Xiong, and Yoshua Bengio. Deep verifier networks:

Verification of deep discriminative models with deep gener-

ative models. In ArXiv, 2019. 2

[7] Bike Chen, Chen Gong, and Jian Yang. Importance-

aware semantic segmentation for autonomous vehicles.

IEEE Transactions on Intelligent Transportation Systems,

20(1):137–148, 2018. 2, 6, 7

[8] Bi-ke Chen, Chen Gong, and Jian Yang. Importance-aware

semantic segmentation for autonomous driving system. In

IJCAI, pages 1504–1510, 2017. 2, 7

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

and Alan L Yuille. Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully

connected crfs. TPAMI, 40(4):834–848, 2017. 3, 7

[10] Gong Cheng, Junwei Han, Peicheng Zhou, and Dong Xu.

Learning rotation-invariant and fisher discriminative con-

volutional neural networks for object detection. IEEE

Transactions on Image Processing, 28(1):265–278, 2018. 2

[11] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3213–3223, 2016. 1, 6

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. Carla: An open urban driving

simulator. arXiv preprint arXiv:1711.03938, 2017. 3, 4, 6, 7

[13] Grant Fennessy. Autonomous Vehicle End-to-End

Reinforcement Learning Model and the Effects of Image

Segmentation on Model Quality. PhD thesis, Vanderbilt Uni-

versity, 2019. 6, 7

[14] Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio

Araya, and Tomaso A Poggio. Learning with a wasserstein

loss. In Advances in Neural Information Processing Systems,

pages 2053–2061, 2015. 3

[15] Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and

Sergey Levine. Latent space policies for hierarchical rein-

forcement learning. arXiv:1804.02808, 2018. 3

[16] ISO26262 ISO. 26262: Road vehicles-functional safety.

International Standard ISO/FDIS, 2011. 5

[17] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czar-

necki, Tom Schaul, Joel Z Leibo, David Silver, and Koray

Kavukcuoglu. Reinforcement learning with unsupervised

auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016. 6

[18] Yuxi Li. Deep reinforcement learning: An overview. arXiv

preprint arXiv:1701.07274, 2017. 4, 5

[19] Fayao Liu, Guosheng Lin, and Chunhua Shen. Crf learn-

ing with cnn features for image segmentation. Pattern

Recognition, 48(10):2983–2992, 2015. 3

[20] Xiaofeng Liu. Research on the technology of deep learning

based face image recognition. In Thesis, 2019. 2

[21] Xiaofeng Liu, Fangfang Fan, Lingsheng Kong, Zhihui Diao,

Wanqing Xie, Jun Lu, and Jane You. Unimodal reg-

ularized neuron stick-breaking for ordinal classification.

Neurocomputing, 2020. 2

[22] Xiaofeng Liu, Yubin Ge, Chao Yang, and Ping Jia. Adaptive

metric learning with deep neural networks for video-based

facial expression recognition. Journal of Electronic Imaging,

27(1):013022, 2018. 1

[23] Xiaofeng Liu, Zhenhua Guo, Site Li, Jane You, and Ku-

mar B.V.K. Dependency-aware attention control for uncon-

strained face recognition with image sets. In ICCV, 2019. 2,

4

[24] Xiaofeng Liu, Zhenhua Guo, Jane You, and BVK Vijaya

Kumar. Dependency-aware attention control for image set-

based face recognition. IEEE Transactions on Information

Forensics and Security, 15:1501–1512, 2019. 4

[25] Xiaofeng Liu, Xu Han, Yukai Qiao, Yi Ge, Site Li, and

Jun Lu. Unimodal-uniform constrained wasserstein train-

ing for medical diagnosis. In Proceedings of the IEEE

International Conference on Computer Vision Workshops,

pages 0–0, 2019. 3

[26] Xiaofeng Liu, Yuzhuo Han, Song Bai, Yi Ge, Tianxing

Wang, Xu Han, Site Li, Jane You, and Jun Lu. Importance-

aware semantic segmentation in self-driving with discrete

wasserstein training. In Proceedings of the AAAI, 2020. 2,

3, 4, 6, 7

[27] Xiaofeng Liu, Lingsheng Kong, Zhihui Diao, and Ping

Jia. Line-scan system for continuous hand authentication.

Optical Engineering, 56(3):033106, 2017. 2

[28] Xiaofeng Liu, BVK Vijaya Kumar, Ping Jia, and Jane You.

Hard negative generation for identity-disentangled facial ex-

pression recognition. Pattern Recognition, 88:1–12, 2019.

2

[29] Xiaofeng Liu, Site Li, Lingsheng Kong, Wanqing Xie, Ping

Jia, Jane You, and BVK Kumar. Feature-level franken-

stein: Eliminating variations for discriminative recognition.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 637–646, 2019. 2

[30] Xiaofeng Liu, Zhaofeng Li, Lingsheng Kong, Zhihui Diao,

Junliang Yan, Yang Zou, Chao Yang, Ping Jia, and Jane You.

12574



A joint optimization framework of low-dimensional projec-

tion and collaborative representation for discriminative clas-

sification. In 2018 24th International Conference on Pattern

Recognition (ICPR), pages 1493–1498. 2

[31] Xiaofeng Liu, BVK Vijaya Kumar, Chao Yang, Qingming

Tang, and Jane You. Dependency-aware attention con-

trol for unconstrained face recognition with image sets.

In Proceedings of the European Conference on Computer

Vision (ECCV), pages 548–565, 2018. 3, 4, 5

[32] Xiaofeng Liu, BVK Vijaya Kumar, Jane You, and Ping Jia.

Adaptive deep metric learning for identity-aware facial ex-

pression recognition. In CVPR Workshops, pages 20–29,

2017. 2

[33] Xiaofeng Liu, Yang Zou, Tong Che, Peng Ding, Ping Jia,

Jane You, and B.V.K. Vijaya Kumar. Conservative wasser-

stein training for pose estimation. In The IEEE International

Conference on Computer Vision (ICCV), October 2019. 3

[34] Xiaofeng Liu, Yang Zou, Tong Che, Jane You, and Kumar

B.V.K. Conservative wasserstein training for pose estima-

tion. In ICCV, 2019. 3, 4, 5

[35] Xiaofeng Liu, Yang Zou, Lingsheng Kong, Zhihui Diao,

Junliang Yan, Jun Wang, Site Li, Ping Jia, and Jane You.

Data augmentation via latent space interpolation for image

classification. In 24th International Conference on Pattern

Recognition (ICPR), pages 728–733, 2018. 1

[36] Xiaofeng Liu, Yang Zou, Yuhang Song, Chao Yang, Jane

You, and BV K Vijaya Kumar. Ordinal regression with neu-

ron stick-breaking for medical diagnosis. In Proceedings

of the European Conference on Computer Vision (ECCV),

pages 0–0, 2018. 2

[37] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, pages 3431–3440, 2015. 2

[38] Kevin Sebastian Luck, Joni Pajarinen, Erik Berger, Ville

Kyrki, and Heni Ben Amor. Sparse latent space policy

search. In AAAI, 2016. 3

[39] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529, 2015. 3

[40] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Euge-

nio Culurciello. Enet: A deep neural network architecture

for real-time semantic segmentation. ICLR, 2017. 7
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