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Abstract

Large-scale synthetic datasets are beneficial to stereo

matching but usually introduce known domain bias. Al-

though unsupervised image-to-image translation networks

represented by CycleGAN show great potential in dealing

with domain gap, it is non-trivial to generalize this method

to stereo matching due to the problem of pixel distortion and

stereo mismatch after translation. In this paper, we propose

an end-to-end training framework with domain translation

and stereo matching networks to tackle this challenge. First,

joint optimization between domain translation and stereo

matching networks in our end-to-end framework makes the

former facilitate the latter one to the maximum extent. Sec-

ond, this framework introduces two novel losses, i.e., bidi-

rectional multi-scale feature re-projection loss and correla-

tion consistency loss, to help translate all synthetic stereo

images into realistic ones as well as maintain epipolar con-

straints. The effective combination of above two contribu-

tions leads to impressive stereo-consistent translation and

disparity estimation accuracy. In addition, a mode seeking

regularization term is added to endow the synthetic-to-real

translation results with higher fine-grained diversity. Exten-

sive experiments demonstrate the effectiveness of the pro-

posed framework on bridging the synthetic-to-real domain

gap on stereo matching.

1. Introduction

With the fast development of deep neural network-

s [23, 12] and large-scale benchmarks [31, 13, 7], deep

learning-based stereo matching methods have made great

progress in the past decade [29, 19]. These methods, how-

ever, relying on a large quantity of high-quality left-right-

disparity training data. Although the input images to the

stereo matching networks ( i.e., left and right images) are

relatively easy to collect using stereo rigs in the real world,

their corresponding ground-truth disparities are very diffi-
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Figure 1. Domain translation results. Top row: stereo images from

synthetic domain. Middle row: synthetic-to-real translated results

by CycleGAN. Bottom row: synthetic-to-real translated results by

our proposed model.

cult to collect. Instead, researchers tend to create synthetic

training datasets [29, 31, 13] with perfect disparities. In

this way, the demand of large quantity of training data is

alleviated. However, the non-negligible domain gaps be-

tween synthetic and real must be considered when general-

izing to real domains. In order to mitigate the domain gaps,

some of the previous works [1, 40] train their models in two

stages. Firstly the model is trained on synthetic dataset and

then fine-tuned on a particular real dataset in either super-

vised [30, 1, 11] or unsupervised manner [38, 39]. In this

paper, we focus on the latter one, a more challenging task

with no ground-truth for the real target-domain data.

Existing unsupervised online adaptation methods ad-

vanced the research progress, however, still have difficul-

ties on handling the domain gaps between source and target

domains [38, 39]. Moreover, these methods introduce extra
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computation compared to a feed-forward neural network,

although they have striven to reduce the computation com-

plexity of updating network parameters [40].

Recently, unsupervised image-to-image translation mod-

els achieved great success [47, 25, 24] and thus were

adopted in domain adaptation methods to tackle many

applications such as semantic segmentation, person re-

identification and object detection [15, 41, 32, 3]. However,

it is non-trivial to generalize this series of methods to stere-

o matching. The middle row of Figure 1 reveals two main

challenges for translation in stereo matching. 1) The gen-

eral image-to-image translation does not take epipolar con-

straints into consideration, which leads to inconsistent tex-

tures and thus ambiguity of disparity, as emphasized by red

circles. 2) It only attempts to transfer domain styles while

neglecting the fact that its purpose should be serving the

stereo matching networks. For instance, since most back-

ground of our synthetic images is brown mountains while

that of real images in the training set is blue sky, the vanil-

la CycleGAN [47] regards this to be domain style and tries

to translate from brown mountains to blue sky as shown in

the first two rows of Figure 1. This would confuse stere-

o matching network, because the useful textures for stereo

matching in the sky is definitely much less than those in the

mountains. In this paper, we successfully addressed these

two challenges by properly designed stereo constraints and

joint training scheme. The intermediate image translation

results are shown in the bottom row of Figure 1.

In particular, we propose an end-to-end deep learn-

ing framework consisting of domain translation and stereo

matching networks to estimate stereo disparity on the tar-

get domain, using only source-domain synthetic stereo im-

age pairs with ground-truth disparity and target-domain real

stereo image pairs without any annotation. The stereo im-

age translation is constrained by a novel bidirectional multi-

scale feature re-projection loss and a correlation consisten-

cy loss. The former one is realized by a multi-scale feature

re-projection module. For feature maps at each layer of do-

main translation networks, the inverse warping [17] of the

right feature map according to the given disparity should be

as close as its corresponding left feature map. Both ground-

truth disparity for synthetic data and estimated disparity for

real data would contribute to joint training in a bidirection-

al manner. We also introduce a correlation consistency loss

to ensure that the reconstructed stereo images should main-

tain consistent correlation feature maps, which are extracted

from the stereo matching network, with those original im-

ages.

In addition, we observed that real stereo pairs usually do

not exactly match each other due to different camera con-

figurations and settings. To this end, inspired by successful

applications of using noise to manipulate image [18, 28],

we propose a mode seeking regularization term to ensure

Figure 2. The effect of mode seeking regularization term. Leftmost

image is from synthetic domain, and middle image and rightmost

image are translated from leftmost image with different random

maps. Red circles emphasize the fine-grained difference between

middle image and rightmost image. Please zoom in to observe

more details.

the fine-grained diversity in synthetic-to-real translation, as

shown in Figure 2. As we could observe as circled in red,

the local intensity between the left image and right image

varies, which simulates the real data. With such augmen-

tation, the domain translation makes the stereo matching in

the real domain more robust and effective.

In summary, our contributions are listed as follows:

• We for the first time combine unsupervised domain

translation with disparity estimation in an end-to-end

framework to tackle the challenging problem of stereo

matching in the absence of real ground-truth dispari-

ties.

• We propose novel stereo constraints including the bidi-

rectional multi-scale feature re-projection loss and the

correlation consistency loss, which better regularizes

this joint framework to achieve stereo-consistent trans-

lation and accurate stereo matching. The additional

mode seeking regularization endows the synthetic-to-

real translation with higher fine-grained diversity.

• Extensive experiments demonstrate that our proposed

model outperforms the state-of-the-art unsupervised

adaptation approaches for stereo matching.

2. Related Work

Stereo matching conventionally follows a four-step

pipeline including matching cost computation, cost aggre-

gation, disparity optimization and post-processing [33]. Lo-

cal descriptors such as absolute difference (AD), sum of

squared difference (SAD) and so on are usually adopted for

measuring left-right inconsistency, so as to calculate match-

ing costs for all possible disparities. Cost aggregation and

disparity optimization are usually treated as a 2D graph

partitioning problem, which could be optimized by graph

cut [22] or belief propagation [37, 21]. Semi-global match-

ing (SGM) [14] approximates the global optimization with

dynamic programming.

Deep learning-based stereo matching methods have

achieved great progress due to the rise of deep neural net-

works [23, 12] and large-scale benchmarks [8, 7] in the last
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decade. Among them, Zbontar and LeCun [45] for the first

time presented the computation of stereo matching cost-

s by a deep Siamese network. Luo et al. [27] accelerated

the computation of matching costs by correlating unary fea-

tures. Recently, many end-to-end neural networks were de-

veloped to directly predict the whole disparity maps from

stereo image pairs [29, 30, 34, 43, 19, 1, 44, 11]. Among

them, DispNet [29] is a pioneer work which for the first

time uses an end-to-end deep learning framework to direct-

ly regress disparity maps. The follow-up work GCNet [19]

introduces 3D convolutional networks to aggregate contex-

tual information for obtaining better cost volumes.

Domain adaptation methods have shown great poten-

tial in filling the gap between synthetic and real domains.

Previous works attempted to solve this problem by either

learning domain-invariant representations [4, 5] or pushing

two domain distributions to be close [9, 42, 35, 36]. For

example, the gap between source and target domain could

be filled by matching the distribution [10, 26] or statistic-

s [35, 36] of deep features.

Recently, unsupervised image-to-image translation mod-

els achieved great success under unpaired setting [47, 25,

24] and thus were applied as domain adaptation methods in

many applications including semantic segmentation, person

re-identification and object detection [15, 41, 32, 3].

In the field of stereo matching, unsupervised online

adaptation advanced great progress. These methods first

train a disparity estimation network on synthetic data and

then fine-tune it online using unsupervised loss such as

re-projection loss when continuously accessing new stere-

o pairs from other domains [38, 40]. This unsupervised

adaptation strategy is then incorporated in a meta-learning

framework [39].

3. Method

Given a set of N synthetic left-right-disparity tu-

ples {(xl, xr, xd)i}
N
i=1 in the source domain X , where

(xl, xr, xd) ∈ (XL,XR,XD) = X , and a set of M real

stereo images {(yl, yr)}
M
j=1 in the target domain Y without

any ground-truth disparity, where (yl, yr) ∈ (YL,YR), our

goal is to learn an accurate disparity estimation network F

for estimating the disparity ŷd = F (yl, yr) on the target

domain.

For the sake of clear formulation, we define a paired set

(XL,XR) = {(xl1, xr1), (xl2, xr2), ..., (xlN , xrN )} where

(xli, xri) stands for a paired stereo image, i.e., a left im-

age xli and its corresponding right image xri (see E-

qs. (4-7)). We also define an unpaired set {XL,XR} =
{xl1, xr1, xl2, xr2, ..., xlN , xrN} where we can only sam-

ple a single left or right image (see Eqs. (1-2)).

Different from previous works that directly train stere-

o matching network F with synthetic data [29, 19, 40],

we propose a joint domain translation and stereo matching

framework, which aims to translate synthetic-style stereo

images into realistic ones with novel stereo constraints and

thus better cooperate with the stereo matching network in

an end-to-end manner, as shown in Figure 3.

3.1. Cycleconsistency Domain Translation for
Stereo Matching

Cycle-consistency domain translation loss. To help

synthetic-to-real translation network Gx2y capture the glob-

al domain style of the real datasets, we adopt a real domain

discriminator Dy whose goal is to distinguish synthetic-to-

real generated images from real-domain images. On the

contrary, Gx2y learns to generate images that look similar

to real-domain images to fool the real domain discriminator

Dy . These two sub-nets constitute a minimax game that op-

timizes in an adversarial manner and achieves optimal when

Dy cannot tell whether images are generated or not. The ad-

versarial loss for synthetic-to-real generation is formulated

as:

Ladv(Gx2y, Dy,X ,Y) = Ey∼{YL,YR} [logDy(y)]

+ Ex∼{XL,XR} [log (1−Dy(Gx2y(x))] ,
(1)

where y ∼ {YL,YR} means a single real image y is

sampled from the non-paired real-domain set {YL,YR}.

We also introduce a similar adversarial loss for su-

pervising the process of real-to-synthetic generation as

Ladv(Gy2x, Dx,Y,X ).
Adversarial losses could only supervise Gx2y and Gy2x

to produce images that are not distinguishable by domain

discriminators, but any random permutation of outputs can

happen without any other constraints. In order to regularize

Gx2y and Gy2x to be one-to-one mapping, the cycle consis-

tency loss is also adopted,

Lcyc(Gx2y, Gy2x)

= Ey∼{YL,YR}

[

∥Gx2y(Gy2x(y))− y∥1
]

+ Ex∼{XL,XR}

[

∥Gy2x(Gx2y(x))− x∥1
]

.

(2)

To sum up, the cycle-consistency domain translation loss

following the CycleGAN [47] can be defined as

Lcdt(Gx2y, Gy2x, Dx, Dy) = Ladv(Gx2y, Dy,X ,Y)

+ Ladv(Gy2x, Dx,Y,X ) + λcycLcyc(Gx2y, Gy2x).
(3)

Stereo matching loss. Since our goal is to learn a map-

ping from real-domain stereo image to disparity map with

only annotated synthetic stereo images and unlabeled re-

al ones, it is straight-forward to take advantage of the re-

sults of synthetic-to-real translation. Given a paired syn-

thetic tuple (xl, xr, xd), we argue that the translated stere-

o pair (Gx2y(xl), Gx2y(xr)) could be regarded as real-

domain images and such translated stereo pair should match
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Figure 3. The joint framework of our proposed method. Blue-background block shows our domain translation component and orange-

background block shows our stereo matching component. Different blocks, lines and nets are labeled in the rightmost of this figure. F

denotes the stereo matching network. Note that we omit cycle consistency loss due to the limited space.

its ground-truth disparity xd. Therefore, we formulate the

stereo matching loss as:

Lsm(F ) = E(xl,xr,xd)∼X

[

∥F (Gx2y(xl), Gx2y(xr))− xd∥1
]

,

(4)

where F (·, ·) is the stereo matching network for estimating

disparities from real-domain stereo images.

These two losses construct a simple framework that op-

timizes stereo matching network with the assistance of do-

main translation networks. However, it may introduce the

problem of pixel distortion and stereo mismatch during

translation.

3.2. Joint Domain Translation and Stereo Matching

To tackle the above mentioned challenges, we should en-

sure that domain translation networks only transfer glob-

al domain style while maintain the epipolar consistency,

which contributes to the improvement of stereo matching.

To achieve this, we propose a joint optimization scheme be-

tween domain translation and stereo matching with novel

constraints.

Before diving into novel constraints, we would first

introduce our newly-proposed multi-scale feature re-

projection module, which establishes a bidirectional con-

nection between domain translation component and stereo

matching component by left-right consistency check, as il-

lustrated in Figure 4. For each intermediate layer of domain

translation networks, the inversely warped right feature map

should be the same as its corresponding left feature map.

This inverse warping operation is completed with proper-

ly downsampled disparity map using differentiable bilinear

sampling technique [17]. Note that the given disparity could

be either ground-truth one for synthetic stereo or estimat-

ed one for real stereo, which calculate feature re-projection

loss for synthetic or real stereo images respectively. The

former endows the domain translation networks with strong

epipolar constraints while the latter provides extra supervi-

sion for training stereo matching network.

Feature re-projection loss for synthetic images. We ar-

gue that the intermediate feature maps for generating the

domain-translated left and right images should be the same

at 3D physical locations. To model this constraint, we

utilize synthetic ground-truth disparity to warp the inter-

mediate feature maps of both Gx2y and Gy2x along the

synthetic-real-synthetic cycle translation. If the stereo im-

age pairs are well translated, the inversely warped right fea-

ture map should match the left feature exactly. The feature

re-projection loss for synthetic images is formulated as

Lfx(Gx2y, Gy2x)

= E(xl,xr,xd)∼X
1

T1

T1
∑

i=1

[
∥

∥

∥
W (G

(i)
x2y(xr), xd)−G

(i)
x2y(xl)

∥

∥

∥

1

+
∥

∥

∥
W (G

(i)
y2x(Gx2y(xr)), xd)−G

(i)
y2x(Gx2y(xl))

∥

∥

∥

1

]

,

(5)

where T1 is the total number of layers of translation net-

works, G(i)(x) denotes the feature of image x at ith-layer

the translation network G, the inverse warping function

W (G(i)(xr), xd) warps the right feature map G(i)(xr) with

the ground-truth disparity xd.

Feature re-projection loss for real images. For a gener-

al stereo matching network such as DispNet [29], it natu-

rally outputs multi-scale disparities, which can be formed

from correlation features at different neural network layers.
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figure demonstrates the calculating process of feature re-projection

loss for synthetic data with ground-truth disparity. Note that stereo

matching networks usually output multi-scale disparities, so we

remove downsample function when dealing with real data.

These multi-scale disparity maps can be used to warp the in-

termediate feature maps for both Gx2y and Gy2x along the

real-synthetic-real cycle translation. Then the L1 distance

between the left feature and the inversely warped right fea-

ture provides an extra supervision for updating the parame-

ters of disparity estimation network F . This loss could be

formulated as

Lfy(F )

= E(yl,yr)∼(YL,YR)
1

T1

T1
∑

i=1

[∥

∥

∥
W (G

(i)
y2x(yr), ŷd)−G

(i)
y2x(yl)

∥

∥

∥

1

+
∥

∥

∥
W (G

(i)
x2y(Gy2x(yr)), ŷd)−G

(i)
x2y(Gy2x(yl))

∥

∥

∥

1

]

,

(6)

where ŷd is the estimated disparity of real stereo image pairs

by F (yl, yr).

Different from previous works which directly warp im-

ages at the origin scale [6, 46], our warping operation is

based on multi-scale feature maps. Since features at d-

ifferent layers model image structures of different scales,

this constraint could help supervise the training of stereo

matching network from multiple scales (from global to lo-

cal regions), leading to impressive improvement on dispari-

ty estimation accuracy. In addition, it leaves some space for

fine-grained noise modeling upon pixel level (see Figure 2),

which would be introduced in the mode seeking regulariza-

tion term, described later in this section.

Correlation consistency loss. Feature re-projection losses

may not totally address the stereo-mismatch issue yet. Since

there is no ground-truth disparity for real-domain stereo im-

ages, warping features with estimated disparity may intro-

duce some bias into the joint framework. For example, the

value of Lfy for a certain left-right-disparity tuple may be

0, but it still makes a limited effect on stereo matching, even

makes a negative effect. This is because the phenomenon

of pixel distortion during domain translation and inaccurate

estimation during stereo matching occur simultaneously.

To reduce such impact, stereo matching network is u-

tilized to supervise both Gy2x and Gx2y along the real-

synthetic-real cycle translation. We denote the recon-

structed real image by such cycle translation as y′ =
Gx2y(Gy2x(y)) for ease of presentation. Given a pair of re-

al stereo images (yl, yr), we could obtain their reconstruct-

ed pair (y′l, y
′
r). The correlation features of (y′l, y

′
r) from

each layer of stereo matching network should match those

of (yl, yr). In addition, we make a cross-pair for construct-

ing a tighter loss, which is calculated by pushing correlation

features of both (y′l, yr) and (yl, y
′
r) to be close to those of

(yl, yr). Therefore, we formulate this constraint for real-

domain images as the correlation consistency loss between

multi-layer correlation features:

Lcorr(Gx2y, Gy2x)

= E(yl,yr)∼(YL,YR)
1

T2

T2
∑

i=1

[
∥

∥

∥
F (i)(y′l, yr)− F (i)(yl, yr)

∥

∥

∥

1

+
∥

∥

∥
F (i)(yl, y

′
r)− F (i)(yl, yr)

∥

∥

∥

1

+
∥

∥

∥
F (i)(y′l, y

′
r)− F (i)(yl, yr)

∥

∥

∥

1

]

,

(7)

where T2 is the total number of correlation aggregation lay-

ers which are after the individual image feature encoding

layers and F (i)(yl, yr) denotes the correlation aggregation

feature of the stereo pair (yl, yr) at ith-layer of the stereo

matching network F .

Mode seeking loss. The above losses could well main-

tain the stereo consistency of the domain-translated images.

However, in practice, the stereo images also show slight

variations between the left and right images, because of sen-

sor noise, different camera configurations, etc. To model

such left-right image variations, we propose a mode seek-

ing regularization term following [28] to make the genera-

tors create small but realistic variations between the gener-

ated left and right images, as demonstrated in Figure 2. A

Gaussian random map z is introduced into the synthetic-to-

real translation networks Gx2y(x, z) to model the variations

of the generated images. When training domain translation

networks, we attempt to maximize the L1 distance between

two generated outputs from the same original image x with

two different random maps z1 and z2 ∼ p(z), where p(z)
denotes a prior Gaussian distribution with zero mean and

unity variance. Since this term has no optimal point, we lin-

early decay its weight to zero during training. This loss is

formulated as

Lms(Gx2y)

= Ex∼{XL,XR},z1,z2∼p(z)

[

∥z1 − z2∥1
∥Gx2y(x, z1)−Gx2y(x, z2)∥1

]

.

(8)
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Dataset Method
D1-all (%) EPE >2px (%) >4px (%) >5px (%) Time

Noc All Noc All Noc All Noc All Noc All (s)

Inference 10.75 11.14 1.817 1.961 20.52 20.86 8.40 8.85 5.68 6.06 0.06
Synthia SL+Ad [40] 10.02 10.58 1.596 1.724 19.86 20.16 7.98 8.42 5.53 5.82 0.19

to L2A+Wad [39] 9.88 10.48 1.569 1.697 17.32 17.70 6.78 7.12 5.01 5.54 0.23
KITTI2015 CycleGAN 10.20 10.69 1.653 1.890 17.83 18.15 6.83 7.39 5.10 5.65 0.06

Proposed 8.78 9.26 1.488 1.631 15.74 16.09 5.73 6.17 4.55 5.08 0.06

Inference 52.65 53.07 9.351 9.513 63.95 64.30 45.07 45.52 39.33 39.79 0.06
Driving SL+Ad [40] 39.16 39.49 4.698 4.775 53.33 53.61 30.22 30.56 24.18 24.52 0.19

to L2A+Wad [39] 26.33 26.90 2.878 3.017 40.59 41.57 17.31 18.01 12.55 13.27 0.23
KITTI2015 CycleGAN 31.23 31.74 3.272 3.444 44.34 45.29 19.76 20.34 15.08 15.68 0.06

Proposed 25.18 25.71 2.584 2.752 39.16 40.24 15.83 16.55 11.04 11.60 0.06

Table 1. Evaluation results of the proposed method compared to different methods on Synthia-to-KITTI2015 and Driving-to-KITTI2015.

Lower value means better performance.

3.3. Full Objective and Optimization

Putting all the losses introduced above into an overall

objective function, we obtain

L(F,Gx2y, Gy2x, Dx, Dy)

= Lcdt(Gx2y, Gy2x, Dx, Dy) + λsmLsm(F )

+ λfxLfx(Gx2y, Gy2x) + λfyLfy(F )

+ λcorrLcorr(Gx2y, Gy2x) + λmsLms(Gx2y),

(9)

where λs, s ∈ {sm, fx, fy, corr,ms} weigh the relative

importance among different objectives. We would discuss

the effectiveness of each objective in Section 4 by ablation

study. Our final goal is to solve the following optimization

problem:

max
Dx,Dy

min
F,Gx2y,Gy2x

L(F,Gx2y, Gy2x, Dx, Dy). (10)

4. Experiment

4.1. Implementation Detials

Network and training. We adopt the architecture for our

generator and dicriminator networks from CycleGAN [47]

with patch discriminator [16] and take DispNet [29] as our

stereo matching network. We implement this method on

Pytorch. For training our proposed joint domain transla-

tion and stereo matching framework, we partition the train-

ing into two stages. In the warm-up stage, we first train

the domain translation networks with only Lcdt and Lfx

for 10 epochs, using Adam optimizer [20] with the momen-

tum β1 = 0.5, β2 = 0.999 and learning rate α = 0.0002.

Then we train the stereo matching network with only Lsm

for 50 epochs, using Adam optimizer with the momentum

β1 = 0.9, β2 = 0.999 and learning rate α = 0.0001. In the

second stage, we train these two components together in an

end-to-end manner and maintain the hyper-parameters un-

changed. We alternatively optimize domain translation nets

and stereo matching net with the full objective. We em-

pirically set the trade-off factors as λcyc = 10, λsm = 1,

λfx = 5, λfy = 5, λcorr = 1 and λms = 0.1.

Datasets. We take three datasets to testify the effective-

ness of our proposed method. Two of them are synthetic

datasets and the last one is real dataset. The first is Driving,

a subset of a large synthetic dataset Sceneflow [29], which

describes a virtual-world car driving scene. It contains fast

sequences and slow sequences with both forward driving

and backward driving scenes, the number of images sum-

ming up to 4, 400 totally. The image size in this dataset is

540× 960 and the range of disparity value is 0− 300. The

second is Synthia-SF [31], which contains 6 sequences fea-

turing different scenarios and traffic conditions. There are

2, 224 images with associated ground-truth disparity maps.

The image size is 1080 × 1920 and its range of disparity

is similar to Driving dataset. The last real dataset is KIT-

TI2015 [7], containing 200 training images collected in real

scenarios. Its image size is around 385× 1242 with dispar-

ity ranging from 0 to around 180. Due to the inconsistency

of object size between Synthia-SF and KITTI2015, we re-

size all images in Synthia-SF to half and the corresponding

disparity value is divided by 2.

Evaluation metrics. We testify the effectiveness of our

proposed method by the following evaluation metrics. End-

point error (EPE) is the mean average disparity error in pix-

els. D1-all means the percentage of pixels whose absolute

disparity error is larger than 3 pixels or 5% of ground-truth

disparity value. Percentages of erroneous pixels larger than

2, 4, 5 are reported. All these evaluation metrics are calcu-

lated for both non-occluded (Noc) and all (All) pixels. The

inference time on single TITAN-X GPU is also recorded.

4.2. Comparison with Other Methods

We first investigate whether the proposed method is su-

perior to other related methods or not, whose results are

summarized in Table 1. We take two synthetic data - Syn-
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Dataset
Ablation D1-all (%) EPE >2px (%) >4px (%) >5px (%)

objective Noc All Noc All Noc All Noc All Noc All

w/o Lcorr 8.95 9.45 1.532 1.675 16.00 16.36 5.88 6.32 4.65 5.20
Synthia w/o Lfx 9.46 10.02 1.570 1.706 16.89 17.13 6.34 6.79 4.98 5.43

to w/o Lfy 9.32 9.89 1.552 1.690 16.73 16.95 6.20 6.62 4.84 5.31
KITTI2015 w/o Lms 9.04 9.53 1.538 1.668 16.13 16.48 5.94 6.43 4.72 5.26

full obj. 8.78 9.26 1.488 1.631 15.74 16.09 5.73 6.17 4.55 5.08

w/o Lcorr 25.64 26.16 2.633 2.804 39.88 40.96 16.46 17.12 11.57 12.11
Driving w/o Lfx 26.38 26.95 2.883 3.029 40.61 41.64 17.28 17.96 12.64 13.28

to w/o Lfy 26.22 26.79 2.843 2.998 40.42 41.28 17.06 17.85 12.09 12.66
KITTI2015 w/o Lms 25.45 25.98 2.601 2.782 39.76 40.85 16.30 16.95 11.34 11.93

full obj. 25.18 25.71 2.584 2.752 39.16 40.24 15.83 16.55 11.04 11.60

Table 2. Evaluation results of the proposed method with different objectives by ablation study. Lower value means better performance.

thia and Driving as our source-domain dataset, and one re-

al dataset - KITTI2015 as our target-domain dataset. A

dubbed method without domain translation, which is called

Inference, is to train the stereo matching network on syn-

thetic data and then directly predict disparity map on real

data. Two state-of-the-art unsupervised adaptation methods

for stereo matching are compared. Particularly, we use S-

L+Ad to denote unsupervised online adaptation method de-

scribed in [40] and use L2A+Wad to denote unsupervised

adaptation via meta learning framework described in [39].

Moreover, since there is no stereo matching-specific domain

adaptation technique developed, we choose CycleGAN [47]

as our baseline for comparison. For the sake of fair compar-

ison, we set the stereo matching network of all methods to

DispNet [29].

As could be seen from Table 1, all of the methods

perform better on Synthia-to-KITTI2015 than Driving-to-

KITTI2015 because there is a larger gap between Driv-

ing and KITTI2015. Among these methods, Inference per-

form worst due to the natural gap between synthetic and

real domain. SL+Ad updates the stereo matching net-

work by calculating the error between the inversely-warped

left image and real left image when accessing new stere-

o images. L2A+Wad proposes a novel weight confidence-

guided adaptation technique and updates the network in a

meta-learning manner. These two methods mitigated the

domain gap to a little bit extent but meanwhile brought

some extra calculation burden to inference process. Their

inference time increase from 0.06 seconds to 0.19 and 0.23
seconds respectively. The translation results of CycleGAN

have the problem of pixel distortion, as introduced in Sec-

tion 1, so it performed not well enough. The proposed join-

t domain translation and stereo matching framework, with

novel stereo constraints, beat all the above methods by re-

ducing the number of erroneous pixels considerably. The

significant improvements in all evaluation metrics demon-

strate the superiority of our method. In addition, the infer-

ence time of our method is same as that of original DispNet

because all the extra domain translation and auxiliary train-

ing is completed in the procedure of offline training.

4.3. Ablation Study

We then investigate how each objective term influence

the performance of unsupervised stereo matching quantita-

tively by ablation study. Besides cycle domain translation

loss and stereo matching loss, we propose four novel objec-

tives for regularizing the basic problem formulation includ-

ing correlation consistency loss, mode seeking loss, feature

re-projection loss for real stereo and for synthetic stereo.

We would train our joint framework by removing one of

them and then record the corresponding D1-all, EPE, and

bad pixel percentage with threshold 2, 4 and 5, as sum-

marized in Table 2. The results of ablation study on both

Synthia and Driving source dataset show similar trend. In

general, feature re-projection loss for synthetic stereo and

real stereo is more effective than that of correlation consis-

tency loss and mode seeking loss. We try to analyze the

reasons in the following.

First of all, among all four proposed objectives, feature

re-projection loss for synthetic stereo Lfx is most effective

on our joint framework. The reasons are as follows: 1) it

ensures that translated outputs be stereo-consistent with in-

puts, which is vital to stereo matching loss in the presence of

a large amount accurate disparities; 2) it benefits the train-

ing of stereo matching network with feature re-projection

loss for real stereo by well-learned translation networks.

The effect of feature re-projection loss for real stereo

Lfy is runner-up, because it actually provides extra train-

ing signals for training stereo matching network. However,

such supervision signals are obtained from the warping of

features in domain translation networks, so its performance

is highly dependent on how well domain translation net-

works are trained by Lfx to a large degree.

Thirdly, correlation consistency loss Lcorr may con-

tribute to this framework marginally in the presence of fea-

ture re-projection losses. It serves as a complement to Lfx.
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Synthia-to-KITTI2015

Models
Inference Proposed Time

D1-all EPE D1-all EPE (s)

DispNet 11.14 1.961 9.26 1.631 0.06
GwcNet [11] 7.46 1.576 5.74 1.424 0.32

Driving-to-KITTI2015

Models
Inference Proposed Time

D1-all EPE D1-all EPE (s)

DispNet 53.07 9.513 25.71 2.752 0.06
GwcNet [11] 28.21 3.275 12.17 1.980 0.32

Table 3. The effect of different stereo matching network. Lower

value means better performance.

As analyzed above, feature re-projection loss for real stere-

o images usually benefits from the well-trained translation

networks by Lfx. However, sometimes the value of feature

re-projection loss for real stereo images may be low, but

contrarily, both pixel distortion in translation and inaccurate

estimation in stereo matching occur simultaneously. This

correlation consistency loss could help only at this time.

Finally, D1-all results would drop a little bit without

mode seeking loss. Because mode seeking loss actually

provides fine-grained diversity to translated results and es-

sentially helps stereo matching network learn a more robust

disparity estimation network. In other words, stereo match-

ing networks would learn to reduce the influence of various

noise and lighting conditions during training.

Thanks to the integration of all the above four objectives

described in Equation 9, we have obtained great improve-

ment on filling the synthetic-to-real gap in stereo matching.

4.4. The Effect of Stereo Matching Network

In this part, we show how the structure of stereo match-

ing network influences the performance of our proposed

joint domain translation and stereo matching framework.

We compare DispNet with one of the recently-proposed

state-of-the-art stereo matching model GwcNet [11]. Their

D1-all and EPE scores and inference time are reported in

Table 3. As can be seen, GwcNet [11] performs far bet-

ter than DispNet on both datasets and evaluation metrics.

When using Synthia as our synthetic training data, our pro-

posed model could help DispNet reduce D1-all and EPE by

around 16.8%. It also makes GwcNet reduce D1-all by 23%
and reduce EPE by 9.6%. For Driving training data whose

domain gap to KITTI2015 is larger, our method could also

help stereo matching network obtain very competitive per-

formance. After trained with our proposed framework, D1-

all is reduced by 51.5% and EPE 71% for DispNet respec-

tively and D1-all is reduced by 56.8% and EPE by 39.6%
for GwcNet respectively.

D1-all
❍
❍

❍
❍
❍

Train

Test KITTI2012 Cityscapes

Inference Proposed Inference Proposed

Synthia 13.34 11.56 31.69 22.93
Driving 56.31 25.57 60.50 32.14

EPE
❍
❍

❍
❍
❍

Train

Test KITTI2012 Cityscapes

Inference Proposed Inference Proposed

Synthia 2.121 1.936 11.805 6.701
Driving 11.669 2.832 15.468 8.506

Table 4. Generalization capability of our proposed method. We

test our performance on two other real dataset: KITTI2012 and

Cityscapes. Models are trained with only synthetic dataset and

KITTI2015 dataset.

4.5. Generalization to Other Real Datasets

To demonstrate the generalization capability of stereo

matching network trained in our joint optimization frame-

work, we test their performance on other two real datasets -

KITTI2012 [8] and Cityscapes [2], whose results are sum-

marized in Table 4. Images in KITTI2012 have very simi-

lar domain style to those in KITTI2015 due to their similar

camera setting. Therefore, the performance gain with the

help of domain translation on KITTI2012 is similar to that

on KITTI2015. For Cityscapes real dataset, both D1-all and

EPE scores almost reduce by half. These significant im-

provements demonstrate great generalization capability of

our proposed joint framework.

5. Conclusion and Future Work

In this paper we propose a novel end-to-end framework

that trains domain translation networks and stereo matching

network jointly. The newly-introduced stereo constraints

including correlation consistency loss, bi-directional multi-

scale feature re-projection loss and mode seeking loss reg-

ularize this joint framework to achieve better performance

on stereo matching without ground-truth. The experimental

results testify the effectiveness of our proposed framework

in bridging the synthetic-to-real domain gap.

Our proposed framework successfully mitigated the gap

between synthetic and real domain, yet there usually ex-

ist other gaps on intrinsics and disparity distribution be-

tween real-domain stereo images and translated-real stereo

images, which is not explicit in our experimental datasets.

Further study is also required to facilitate the generalization

capability of our framework when meeting such datasets.
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