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Abstract

We introduce a new task, Video-and-Language Inference,

for joint multimodal understanding of video and text. Given

a video clip with aligned subtitles as premise, paired with

a natural language hypothesis based on the video content,

a model needs to infer whether the hypothesis is entailed

or contradicted by the given video clip. A new large-scale

dataset, named VIOLIN (VIdeO-and-Language INference),

is introduced for this task, which consists of 95,322 video-

hypothesis pairs from 15,887 video clips, spanning over

582 hours of video. These video clips contain rich con-

tent with diverse temporal dynamics, event shifts, and peo-

ple interactions, collected from two sources: (i) popular TV

shows, and (ii) movie clips from YouTube channels. In or-

der to address our new multimodal inference task, a model

is required to possess sophisticated reasoning skills, from

surface-level grounding (e.g., identifying objects and char-

acters in the video) to in-depth commonsense reasoning

(e.g., inferring causal relations of events in the video). We

present a detailed analysis of the dataset and an extensive

evaluation over many strong baselines, providing valuable

insights on the challenges of this new task.

1. Introduction

Joint vision-and-language understanding sits at the nexus

of computer vision and natural language processing (NLP),

and has attracted rapidly growing attention from both com-

munities. Popular tasks include visual question answer-

ing [4, 20], referring expression comprehension [69, 68],

visual dialog [12], visual reasoning [27, 52, 25], visual

commonsense reasoning [72], NLVR2 [52], and visual

entailment [61]. The emergence of these diverse Vi-

sion+Language tasks, benchmarked over large-scale human

annotated datasets [39, 34], has driven tremendous progress

∗This work was done while the authors were interns at Microsoft.

in joint multimodal embedding learning [53, 42, 10, 51].

However, most of these datasets and models were centered

on static images, leaving the joint modeling of video and its

aligned textual information (e.g., video-and-language un-

derstanding) a relatively under-explored territory.

Video Question Answering (Video QA) is one of

the most popular tasks in current studies for video-and-

language understanding. Video QA model aims to answer

a natural language question given a video clip. Existing

Video QA datasets include MovieFIB [44], MovieQA [54],

TGIF-QA [26], PororoQA [32], and TVQA [35, 36]. While

these datasets have covered a rich pool of video content

(e.g., cartoons, short GIFs and TV shows), they are lim-

ited to QA task only. On the other hand, in NLP field, one

important benchmark for natural language understanding is

natural language inference (NLI) [5, 60], where a model is

presented with a pair of sentences (premise and hypothesis),

and judges the relationship between the pair (e.g., Contra-

diction, Neutral, and Entailment).

Inspired by NLI, we present a novel task, Video-and-

Language Inference, to foster deeper investigations in

video-and-language understanding. Specifically, given a

video clip with aligned subtitles as premise, and a natu-

ral language statement as a hypothesis describing the video

content, a model is expected to infer whether the statement

is entailed or contradicted by the given video clip. This new

task is easy to evaluate, since only binary classification is

measured; but also challenging to solve, as a thorough in-

terpretation of both visual and textual clues is required in

order to achieve in-depth understanding and inference for a

complex video scenario.

We introduce a large-scale dataset for this new task,

VIdeO-and-Language INference (VIOLIN)2, built upon

natural video content with rich temporal dynamics and so-

cial interactions. Video clips are collected from diverse

sources to cover realistic visual scenes, and statements are

2Project page: https://github.com/jimmy646/violin.
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00:00:03,576 --> 00:00:05,697

Gavin Mitchell's office.

Rachel Green's office.

00:00:05,870 --> 00:00:07,409

Give me that phone.

00:00:08,873 --> 00:00:12,293

Hello, this is Rachel Green.

How can I help you?

00:00:12,460 --> 00:00:17,629

Uh-huh. Okay, then.

I'll pass you back to your son.

00:00:18,800 --> 00:00:21,639

Hey, Mom. No, that's just my 

secretary.

(positive) The woman becomes upset when the man 

answers the phone because he pretends it is his own 

office.

(negative) The woman becomes upset when the man 

answers the phone because she is expecting a phone call 

from her mom.

(positive) The woman realizes it is the man's mother 

who is calling and she passes the phone back to the man.

(negative) The man realizes it is the woman's mother 

who is calling and he passes the phone back to the 

woman.

(positive) The phone rings, a man picks it up, and a 

woman slams her hand on the desk and demands the 

man give her the phone.

(negative) The two people that the man in the glasses is 

talking to need to be briefed on something.

Inferring reasons Identifying characters Global video understanding

Figure 1. An example from the VIOLIN dataset. The first two rows show a video clip with its aligned subtitles. The third row contains

three pairs of positive/negative statements. The task is to independently decide whether each statement is supported or contradicted given

the subtitled video. The first two negative statements are written by modifying part of the positive statements (marked in red), and the third

is curated by adversarial matching (Sec. 3.1). The text box below each pair of statements indicates the reasoning skill required to infer the

verdict of each statement.

collected from crowdsource workers via Amazon Mechani-

cal Turk (AMT)3, who watched the videos accompanied by

subtitles (dialogue, scene description, etc). Our goal is to

provide a dataset that can test a model’s cross-modality rea-

soning skills over both video and textual signals. To this

end, we require AMT workers to write statements based

on joint understanding of both video and subtitles, which

not only describe explicit information in the video (e.g.,

objects, locations, characters, social activity), but also re-

veal in-depth comprehension of complex plots (e.g., in-

terpreting human emotions and relations, understanding

the events, inferring causal relations of events through-

out the video). This distinguishes our collected statements

from the straightforward captions in video/image caption-

ing dataset [39, 33, 59], which are dominated by explicit

factual descriptions without deeper inference.

Writing negative statements for an inference task is chal-

lenging [5, 72]. To gather high-quality negative statements

without artificial cues or biased priors, we employed two

strategies in the data collection: (i) requiring annotators

to write negative statements by changing just a few words

or phrases in a positive statement, to ensure that the style

and length of the statement remain unchanged; (ii) per-

forming adversarial matching [72]: for each video, select

challenging and confusing statements from the statement

pool of other videos as the negative ones. The first strat-

egy ensures the collected statements can test a model’s in-

depth inference ability, since only a small fraction of a pos-

itive statement is modified, which requires the model to

distinguish highly similar statements with different mean-

ings. The second strategy focuses more on testing a model’s

global understanding of the video, to distinguish statements

with high-level scene difference between videos. When

3https://www.mturk.com/

combined together, these two strategies produce a dataset

with minimal visual or textual bias. Through this effort, we

collected 95,322 video-statement pairs, containing 15,887

video clips spanning over 582 hours. Each video is paired

with 6 statements and is 35.2 seconds long on average.

The main contributions of this paper are three-fold. (i)
We propose a new task, Video-and-Language Inference,

which requires a model to draw inference on whether a

written statement entails or contradicts a given video clip.

(ii) We introduce a new dataset VIOLIN for this task, pro-

viding a reliable benchmark for measuring joint video-and-

language understanding models. (iii) We provide a detailed

analysis of the VIOLIN dataset with evaluation over strong

baselines, and suggest future directions for this new task.

2. Related Work

Natural Language Inference (NLI) Understanding en-

tailment and contradiction relations between sentences (i.e.,

Natural Language Inference) is fundamental to natural lan-

guage understanding. Several large-scale datasets have

been developed as NLI benchmarks, such as SNLI [5]

and MultiNLI [60]. NLI is also included in the GLUE

benchmark for evaluating general language understand-

ing [57]. Recent introduction of large-scale pre-trained

language models, such as BERT [14], XLNet [63], and

RoBERTa [41], has propelled significant progress in NLI.

Multi-task learning and adversarial training [40, 73] also

prove to be helpful in improving model performance.

Inspired by NLI, we propose the task of Video-and-

Language Inference to evaluate a system’s multimodal rea-

soning ability. However, different from NLI, our task is

more challenging in the sense that both video and text (sub-

titles) are provided; thus, a thorough joint understanding of

both modalities is required for inference.
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source # episodes # clips avg clip len avg pos. statement len avg neg. statement len avg subtitle len

Friends 234 2,676 32.89s 17.94 17.85 72.80

Desperate Housewives 180 3,466 32.56s 17.79 17.81 69.19

How I Met Your Mother 207 1,944 31.64s 18.08 18.06 76.78

Modern Family 210 1,917 32.04s 18.52 18.20 98.50

MovieClips 5,885 5,885 40.00s 17.79 17.81 69.20

All 6,716 15,887 35.20s 18.10 18.04 76.40

Table 1. Statistics of different video sources used to create our dataset.

Visual Entailment Visual Entailment (VE) [61] is a re-

cently proposed task that extends NLI to the visual domain.

In this task, a natural image premise and a natural language

hypothesis are given, and the goal is to judge whether the

textual hypothesis can be confirmed based on the visual

content in the image. Three labels are assigned: Entail-

ment, Neutral, and Contradiction. The dataset is created

based on Flickr30k image captions [66] and SNLI [5]. Sim-

ilarly, NLVR2 [52] is proposed to investigate the grounding

relationship between given images and a natural language

description.

Our proposed task is different from VE in the follow-

ing aspects. (i) VE considers images as input, while our

task focuses on videos instead. Compared with static im-

ages, videos contain complex temporal dynamics, making

the video-and-language inference task more challenging as

the model needs to understand the relationship between dif-

ferent visual scenes to draw inference. (ii) Our proposed

task requires deeper visual understanding. Images in the

VE task are mostly natural images, while the videos in VIO-

LIN were collected from popular TV shows and movie clips,

which contain rich social interactions and diverse scenes.

This requires a model to not only understand explicit visual

cues, but also infer in-depth rationale behind the scene. (iii)
Our task requires more sophisticated language understand-

ing. VE is a combination of Flickr30k [66] and SNLI [5],

with no crowdsouring involved. The hypotheses in VE task

are composed of captions only, containing factual descrip-

tions that can be explicitly derived from the visual content

in the image. On the other hand, VIOLIN mainly consists of

implicit statements that cannot be solved without in-depth

understanding of the video and text, designed specifically

to evaluate a model’s multimodal reasoning skills.

Video-and-Language Research With the emergence of

large-scale video datasets [6, 1, 29, 11, 58], several video-

and-language tasks have been proposed, such as video cap-

tioning [21, 56, 62, 18, 33, 16, 47, 59], localizing video seg-

ments from natural language queries [19, 3, 8, 37], video

reasoning [65], and video question answering [54, 35].

Video captioning is a conditional text generation task,

while the other three belong to video-and-language un-

derstanding. In particular, MovieQA [54], TGIF-QA [26]

and TVQA [35, 36], which contain real-world videos and

human-generated questions, are recently proposed for video

question answering.

Our VIOLIN dataset also uses TV shows as one of the

video sources, similar to TVQA [35]. The main differences

are summarized as: (i) Our dataset contains richer video

content, including 5,885 movie clips in additional to TV

shows used in TVQA. (ii) Our dataset requires more so-

phisticated reasoning skills from a model, such as inferring

reasons and interpreting human emotions, while most QA

pairs in TVQA are focused on identifying explicit informa-

tion.

Visual Question Answering Our proposed task is also re-

lated to Visual Question Answering (VQA) [4, 20]. The

CLEVR dataset [27] serves as a popular synthetic diag-

nosis dataset that tests a model’s compositional reasoning

skills. Recently, GQA [25] was introduced to benchmark

real-world visual reasoning, and VCR [72] for visual com-

monsense reasoning.

Many neural network models have been proposed for

these tasks, such as more advanced attention mecha-

nisms [64, 43, 70], better multimodal fusion methods [15,

71, 31, 30], the use of multi-step reasoning [24, 17, 7], the

incorporation of relations [49, 38, 45], and neural module

networks for compositional reasoning [2, 28, 23, 9]. Our

proposed task can provide a new perspective for bench-

marking these models.

3. Video-and-Language Inference Dataset

In our VIOLIN dataset for video-and-language inference,

the input is a video clip V consisting of a sequence of

video frames {vi}
T
i=1, paired with its aligned text S =

{si, t
(0)
i , t

(1)
i }ni=1 (si is the subtitle within time span (t

(0)
i →

t
(1)
i ) in the video) and a natural language statement H as

the hypothesis aiming to describe the video clip. For every

(V, S,H) triplet, a system needs to perform binary classi-

fication: f(V, S,H) → {0, 1}, deciding whether the state-

ment H is entailed (label 1) from or contradicts (label 0) the

given video clip. In order to increase the coverage and ver-

satility, we collect the videos from diverse sources, includ-

ing 4 popular TV shows of different genres and YouTube

movie clips from thousands of movies. To ensure high

video quality, we also provide carefully-designed protocols

to guide crowdsource workers to select representative video

segments for which to write positive/negative statements.

The procedure of dataset collection is detailed in Sec. 3.1,

and Sec. 3.2 provides a thorough analysis on the dataset.
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Dataset Visual Domain Source Subtitles Inference Task # images/videos # samples

Movie-QA [54] video movie ✓ ✗ QA 6.8K 6.5K

MovieFIB [44] video movie ✗ ✗ QA 118.5K 349K

TVQA [35] video TV show ✓ ✗ QA 21.8K 152.5K

VCR [72] image movie ✗ ✓ QA 110K 290K

GQA [25] image indoor ✗ ✓ QA 113K 22M

SNLI-VE [61] image natural ✗ ✓ Entailment 31.8K 565.3K

NLVR2 [52] image natural ✗ ✓ Entailment 127.5K 107.3K

VIOLIN (ours) video TV show/movie ✓ ✓ Entailment 15.9K 95.3K

Table 2. Comparison between VIOLIN and other existing vision-and-language datasets.

3.1. Dataset Collection

We collect videos from two sources: (i) 4 popular TV

shows, and (ii) movie clips from YouTube channels4 cover-

ing thousands of movies. Both sources contain rich human

interactions and activities. Each episode of the TV shows

is 20-40 minutes long, which we split into clips of 90 sec-

onds long (while avoiding splitting dialogues in the mid-

dle). These 90 second-long clips may contain more than

one scene, which are then presented to crowdworkers to

select a video segment containing a single, self-contained

scene for which they can write the statements. Addition-

ally, we restrict the length of the selected interval to 15-40

seconds long, to maintain a reasonable difficulty level for

the task. For movie clips from YouTube channels, the origi-

nal lengths are around two minutes, which by nature usually

contain only one scene of the movie. Thus, there is no need

for the workers to manually select a video segment from

the provided movie clips. We just select the first 40 seconds

from every movie clip for annotation, to keep it consistent

with TV show clips. Figure 2 shows the interface for AMT

workers. By dragging the slider below the video player,

users can adjust the start and end timestamps of the segment

they want to select (for movie clips the slider is disabled).

After video segments are selected, they are presented to

another group of annotators to write positive/negative state-

ments. Each worker is assigned with one video clip, and is

required to write three pairs of positive/negative statements

describing the video (in the text boxes in Figure 2). We do

not require AMT workers to follow any templates, as our

goal is to collect diversified and natural expressions. We

do have several rules/guidelines for writing positive state-

ments: (i) We do not allow annotators to refer to characters

in the video by name. Instead, they should use grounded re-

ferring expressions (e.g., “the man with blonde hair wearing

grey shirt”, “the girl sitting in the sofa holding a cup of cof-

fee”). The purpose of this is to keep the dataset consistent

across different video sources (not all video clips have char-

acter names), and to reduce potential bias (in TV shows, the

number of character names is very small). (ii) We ask work-

ers to keep to a minimum level of copying from subtitles

(e.g., “somebody says ...”) or describing explicit visual in-

4https://www.youtube.com/user/movieclips

Positive statement #1: 10 to 40 words …

Negative statement #1: 10 to 40 words …

Figure 2. User interface for annotators. Each annotator is provided

with a video clip and required to first drag the slider below the

video player to select a single-scene clip from the video, then write

three pairs of positive/negative statements in the text boxes

formation (e.g., object, color), and encourage them to write

statements combining information from both the video clip

and subtitles. (iii) We encourage workers to write about dif-

ferent aspects of the given video clip in different statement

pairs, which may require different types of reasoning, such

as inferring character emotions/relations/intentions and in-

ferring causal relations in complex events.

In practice, we observe that when letting human annota-

tors write negative statements without any constraint, the re-

sulting statements show serious bias (i.e., models can learn

to classify positive/negative statements without even ab-

sorbing information from the video or subtitles). When in-

tentionally writing fake content without any reference, hu-

mans tend to use subtle patterns that statistical models can

easily pick up. Therefore, when collecting negative state-

ments, we propose two strategies to alleviate the bias issue.

First, we ask annotators to use a positive statement as refer-

ence, and only modify a small portion of it to make it neg-

ative. In this case, most part of the statement remains true

to the video content, and human-introduced bias is kept to

minimum. This rigorous setting makes the statements more

challenging to distinguish by the model, and in-depth rea-

soning is required to identify the fake content. For quality

control, only workers located in English-speaking countries
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with a lifetime task approval rate greater than 98% can par-

ticipate in our study. Also, during data collection, we manu-

ally check every worker’s submissions to ensure the quality

of the video segments and statements.

VCR [72] proposes adversarial matching to construct

wrong answers for multiple-choice QA, by selecting a cor-

rect answer (from another question) that is most similar to

the current question. In our task, we use a similar strat-

egy. For a human-generated positive statement Hi for video

Vi, we select a positive statement Hj collected for another

video Vj , which is most similar to Hi, and use (Hi, Hj) as a

pair of positive/negative statements for video Vi. Using this

strategy, a portion of the collected statements serve as both

positive and negative samples, which helps removing arti-

ficial bias. Unlike the first strategy aforementioned, state-

ment pairs constructed this way focus more on the global

understanding of the video. For example, in Figure 1, the

first two negative statements are written by modifying posi-

tive statements (the modified part is marked in red), and the

third negative statement is obtained by adversarial match-

ing. In the final dataset, 2/3 of the negative statements are

constructed following the first strategy, and the remaining

1/3 with the second strategy.

3.2. Dataset Analysis

The VIOLIN dataset contains 15,887 video clips, and

each video clip is annotated with 3 pairs of positive/negative

statements, resulting in 95,322 (V, S,H) triplets in total.

Statistics on the full dataset is provided in Table 1. Each

statement has 18 words on average, and the lengths of pos-

itive and negative statements are almost the same, showing

no significant bias in length.

As discussed in Sec. 3.1, we use two strategies to col-

lect negative statements: one is adversarial matching that

tests a model’s ability of global video understanding; the

other is modifying a small part of a positive statement for

the video clip, which requires in-depth reasoning skills for

a model to distinguish between positive and negative state-

ments. To investigate in more detail, for each pair of posi-

tive and negative statements, we categorize it into 6 types of

reasoning skills required, as shown in Figure 3. The types

of “visual recognition”, “identifying character”, and “action

recognition” are more focused on explicit information and

require relatively low-level reasoning. “Human dynamics”

includes inferring human emotions/relations/intentions, etc.

“Conversation reasoning” requires performing inference

over characters’ dialogues and other forms of interactions

(body language, hand gestures, etc.). And “inferring rea-

sons” is about inferring causal relations in complex events.

These 3 types of statement require in-depth understanding

and commonsense reasoning. Overall, “explicit informa-

tion recognition” makes up 54% of the dataset, and “com-

monsense reasoning” makes up the remaining 46%, mak-

Figure 3. Distribution of reasoning types. “Visual recognition”,

“identifying character” and “action recognition” focus on explicit

visual information; the other three require high-level inference.

ing our dataset a balanced one, imposing new challenges

on multi-facet video-and-language understanding. Com-

pared to other datasets, our VIOLIN dataset is more focused

on reasoning rather than surface-level grounding (e.g., in

TVQA [35], only 8.5% of the questions require reasoning).

4. Model

In this section, we introduce our baseline model used for

benchmarking the VIOLIN dataset and evaluating the effec-

tiveness of different feature choices. An overview of the

model is illustrated in Figure 4.

4.1. Video and Text Encoders

We first extract a sequence of visual features from video

frames as V ∈ R
T×dv , where T is the number of time

steps, and dv is the dimension of each feature. Choices of

visual features will later be discussed in Sec. 5.1. The video

encoder is implemented by a bi-directional LSTM, to cap-

ture the temporal correlation among consecutive frames. By

passing video features into the video encoder and stacking

hidden states from both directions, we obtain the video rep-

resentations as HV ∈ R
T×2d, where d is the hidden-state

dimension of the LSTM encoder.

Statements and subtitles share the same text encoder.

Statements are tokenized into a word sequence {wi}
nstmt

i=1 .

Each line in the subtitle is tokenized, and all the lines

are concatenated together into one single word sequence

{ui}
nsubtt

i=1 . Here, nstmt and nsubtt are the lengths of state-

ment and subtitle, respectively. We experiment with two

types of text encoder: LSTM encoder and BERT [14] en-

coder. For LSTM encoder, every word token is converted

to its word embedding and then fed to the LSTM encoder,

producing text representations Hstmt ∈ R
nstmt×2d and

Hsubtt ∈ R
nsubtt×2d. For BERT encoder, we use pre-

trained BERT-base model, finetuned on VIOLIN training

statements and subtitles. The output of BERT encoder at

each position is 768-dimensional, which is then projected

to 2d dimensions, also denoted as Hstmt and Hsubtt.
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Video

The woman becomes upset when 

the man answers the phone because 

he pretends it is his own office.

Statement

00:00:03,576 --> 00:00:05,697

Gavin Mitchell's office.

Rachel Green's office.

…

00:00:18,800 --> 00:00:21,639

Hey, Mom. No, that's just my secretary.

Subtitles

Video Encoder

Text Encoder

Text Encoder

Fusion 

Module

Fusion 

Module

LSTM SigmoidFC+
True

False

Figure 4. Overview of the proposed model for the Video-and-Language Inference task. The model takes a video (a sequence of frames), its

aligned subtitles and a statement hypothesis as input, and produces a scalar measuring the probability of the input statement being positive.

4.2. Combining Multimodality Streams

The model takes three streams of information as input:

video, subtitles and statement. The goal is to determine

whether the statement entails or contradicts with the video

and subtitles. In our model, statement representations are

jointly modeled with video and subtitles via a shared fu-

sion module. The fusion module is implemented with bidi-

rectional attention, adopted from [50, 67, 35], where it is

used for query-context matching. For simplicity, we only

describe the process of combining the video and the state-

ment streams. Subtitles and statement are fused in a similar

way. Statement representations Hstmt ∈ R
nstmt×2d are

used as context, and video representations HV ∈ R
T×2d as

query. Each word in the statement thus attends to every time

step in the video representations. Let ai ∈ R
T be attention

weights for the i-th word in the statement,
∑T

j=1 ai,j = 1

for all i = 1, . . . , nstmt, a ∈ R
nstmt×T . The output is a

video-aware statement representation: M
V
stmt = aHV ∈

R
nstmt×2d. Similarly, we combine subtitles and statement

streams to obtain a subtitle-aware statement representation

M
subtt
stmt ∈ R

nstmt×2d. These two sets of representations are

further fused via:

M
all
stmt = [Hstmt;M

V
stmt;M

subtt
stmt ;Hstmt ⊙M

V
stmt;Hstmt ⊙M

subtt
stmt ],

where ⊙ stands for element-wise product. The resulting

matrix M
all
stmt ∈ R

nstmt×10d combines information from

all three modality streams, which is then fed into another

bidirectional LSTM. The last hidden states from both direc-

tions are concatenated and passed through a fully-connected

layer with 1-dimensional output followed by a sigmoid acti-

vation function, predicting the probability of the input state-

ment being positive.

The proposed baseline model is similar to the one in [35].

The main difference is that our model uses statement repre-

sentations as context and video/subtitle representations as

query in the fusion module. The intuition is that, in our

video-and-language inference task, the full statement needs

to be supported by evidence from either the video or subti-

tles, in order to judge the statement to be positive/negative,

instead of just locating the position in the video/subtitles

that is most relevant to the query (as in TVQA [35]). Thus,

in our model, every word in the statement is attended to the

video and subtitles in the fusion module, then combined and

fed to the final bi-LSTM to make the prediction.

5. Experiments

For evaluation, we compare our model with several

baselines on the dataset and provide detailed analysis on

the results. In all the experiments, we split the VIOLIN

dataset into 80% for training (76,122 (V, S,H) triplets),

10% for validation (9,600 triplets) and 10% for testing

(9,600 triplets). Model performance is evaluated via binary

classification accuracy.

5.1. Compared Models

First, we define the following combinations of input

sources, to evaluate the importance of different modality

streams:

Statements Only: Using statements only, without absorb-

ing information from video or subtitles. This option is to

test the innate bias of positive/negative statements.

Video: Using video features only.

Subtitles: Using subtitles only.

Video+Subtitles: Using both video and subtitle features,

which is the full setting for the task.

Single Frame+Subtitles: Using subtitle features plus only

one middle frame from the video. This option is to test the

usefulness of temporal information in the video.

Different visual features are also evaluated on the VIO-

LIN task: (i) Image feature: we use ResNet101 [22] trained

on ImageNet [13] to extract the global image feature for

each frame; (ii) C3D feature: we use 3-dimensional convo-

lutional neural network (C3D) [55] to extract video features;

(iii) Detection feature: we run Faster R-CNN [48] trained

on Visual Genome [34] to detect objects in each frame and

use their regional features as the input. For image features,

we first down-sample each video to 3 frames per second,
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# Method Visual Text Accuracy

0 Random - - 50.00

1 Stmt - GloVe 53.94

2 Stmt - BERT 54.20

3 Stmt+Subtt - GloVe 60.10

4 Stmt+Subtt - BERT 66.05

5 Stmt+Vis Img GloVe 55.30

6 Stmt+Vis Img BERT 59.26

7 Stmt+Vis C3D GloVe 55.91

8 Stmt+Vis C3D BERT 58.34

9 Stmt+Vis Det GloVe 56.15

10 Stmt+Vis Det BERT 59.45

11 Stmt+Subtt+SglFrm Img BERT 66.60

12 Stmt+Subtt+Vis Img GloVe 60.33

13 Stmt+Subtt+Vis Img BERT 67.60

14 Stmt+Subtt+Vis C3D GloVe 60.68

15 Stmt+Subtt+Vis C3D BERT 67.23

16 Stmt+Subtt+Vis Det GloVe 61.31

17 Stmt+Subtt+Vis Det BERT 67.84

18 Stmt+Subtt+Vis LXMERT 66.25

Table 3. Accuracy of different methods on VIOLIN test set. Subtt

= Subtitle, Vis = Video, Stmt = Statement, SglFrm = single frame,

Img = Image features, Det = Detection features, C3D = C3D fea-

tures, BERT = BERT features, LXMERT = LXMERT features.

and then extract the 2048-dim feature for each frame. Sim-

ilarly, for detection features, we use the same sampling rate

and extract features followed by a pooling layer outputting

the 2048-dim feature for each frame. For C3D features, we

extract 4096-dim features for every 16 frames on the origi-

nal video (without down-sampling). To encode text input as

features, we use (i) pre-trained BERT-base model [14] fine-

tuned on VIOLIN statements and subtitles in the training set,

and (ii) GloVe [46] embeddings. For thorough evaluation,

we also test a large-scale pre-trained model LXMERT [53]

that jointly learns multimodal features.

5.2. Experimental Results

Table 3 summarizes results from baseline methods and

our proposed model (using full-length video clips, subtitles

and statements). We also run a set of experiments with dif-

ferent visual/text features and compare the results in Table

3.

Baseline Comparison Row 0 is the random guess base-

line with an accuracy of 50%. When using only the state-

ment to decide whether itself is positive or negative, the

best model with BERT features only achieves 54.20, pre-

senting little bias in the dataset. By adding subtitles or

video, all the models obtain significant gains over the “state-

ment only” versions. Notably, Stmt+Subtt with BERT and

Stmt+Vis with Det+BERT achieve 66.05 (row 4) and 59.45

(row 10), respectively. From row 3-4 and 12-17, we can

observe that adding subtitles improves the performance sig-

nificantly. However, the gain of adding video (row 5-10

Source Test Accuracy (%)

Statement 51.38

Subtitle + Statement 73.85

Video + Statement 77.19

Video+Subtitle+Statement 85.20

Table 4. Accuracy in human evaluation on test set over different

input sources.

Method Annotated Adversarial matching

Stmt+Subtt 61.05 66.05

Stmt+Vis 57.08 59.26

Stmt+Subtt+Vis 61.99 67.60

Table 5. Accuracy (%) on test set containing negative statements

collected via different strategies. Image and BERT features are

used in this experiment.

and 12-17) is not as significant as adding subtitles. This

might be due to visual features not capturing video infor-

mation well. Using only one frame as video features (row

11) is worse than using full video (row 13), showing the

importance of exploiting temporal information in the video.

Overall, the best performance is achieved by using all the

sources, with BERT and Detection features (row 17).

Model Variants We first evaluate the effectiveness of dif-

ferent visual features. In most settings, Detection features

work better than Image and C3D features, indicating that

the extracted regional information and external knowledge

from Visual Genome are useful for this task. Among all the

textual features, BERT [14] is the strongest as expected. In

all the settings, BERT-based versions generally improve the

accuracy by 3% to 6%, compared with non-contextualized

embedding such as GloVe [46]. Joint multimodal embed-

ding (LXMERT, row 18) achieves 66.25, which is slightly

worse than the best baseline model (row 17), showing that

VIOLIN imposes more challenges on existing single-image-

based joint pre-trained models.

Human Evaluation Human performance via AMT is pre-

sented in Table 4. As expected, humans achieve the best

performance when provided with both video and subtitles

(85.20)5. Without context (video and subtitles), humans

only achieve 51.38% accuracy. Interestingly, we find that

adding video brings in more gain than adding subtitles,

showing the importance of visual information in VIOLIN

task.

5.3. Further Analysis

Accuracy on Different Question Types To have a better

understanding of the dataset, we examine the accuracy of

models on different statement types on test set in Table 6.

Compared to Stmt+Subtt, Stmt+Subtt+Vis models improve

mostly on “visual recognition” and “action recognition”.

5We repeated the human evaluation ourselves, and the accuracy is 93%.
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(a)

00:00:01,511 --> 00:00:03,679
I see our targets

00:00:01,511 --> 00:00:03,679
about 70 stories up.

00:00:03,780 --> 00:00:06,048
They're on top of the building logo.

00:00:09,552 --> 00:00:11,153
Tough day.

00:00:11,420 --> 00:00:13,622
let's roll.

00:00:15,074 --> 00:00:17,342
Lapd! Get away from the window!

00:00:21,564 --> 00:00:22,948
Jay, you got him?

00:00:24,417 --> 00:00:26,551
Right there! Right there!

00:00:24,417 --> 00:00:26,551
Get him!

00:00:34,927 --> 00:00:38,280
Stay there! Damn it!

00:00:34,927 --> 00:00:38,280
Just stay down!

00:00:38,714 --> 00:00:40,000
Come on!

(pos) The policemen got off the elevator and started shouting orders to the people in the 

building. P

(neg) The people in the building got off the elevator and started shouting orders to the 

policemen. O

(pos) The policemen with the red beard spoke to the policemen with the black beard 

while they were on the elevator. P

(neg) The policemen with the red beard spoke to the policemen with the black beard 

after the got off the elevator. O

(pos) The policemen started shooting at the man climbing down the building. P

(neg) The woman in the jean vest is concerned about the blonde woman because she is 

upset about her sister. P

00:00:01,931 --> 00:00:05,012
Uh, Pheebs, so you guys just don't get 
along?

00:00:05,601 --> 00:00:08,141
It's mostly just dumb sister stuff, you 
know?

00:00:08,396 --> 00:00:11,566
Everyone always thought of her as the 
pretty one.

00:00:12,483 --> 00:00:15,153
Oh. Oh. She was the first to walk...

00:00:15,403 --> 00:00:18,283
...even though I did it later that same day.

(pos) The man in the plaid shirt gets up to leave because he has to go to lamaze class. P

(neg) The man in the plaid shirt gets up to leave because the blonde woman is upset 

about her sister. P

(pos) The blonde woman is complaining to her friends because she doesn't get along

with her sister. P

(neg) The blonde woman is complaining to her friends because the man in the plaid 

shirt has to go to lamaze class. P

(pos) The woman in the jean vest is concerned about the blonde woman because she is 

upset about her sister. O

(neg) Black man explains that he was unable to use the restroom at the service station 

because they don't serve blacks. O

00:00:20,074 --> 00:00:23,784
To my parents, by then it was, "Yeah, what 
else is new?"

00:00:24,203 --> 00:00:25,244
Oh.

00:00:25,496 --> 00:00:28,417
Pheebs, I'm sorry. I've gotta go. I've got 
Lamaze class.

00:00:28,624 --> 00:00:31,914
Oh, and I've got earth science, but I'll 
catch you in gym?

00:00:35,047 --> 00:00:36,160
So is this just gonna be you and Carol?

(b)

Figure 5. Qualitative analysis results. Pos/neg at the beginning of each statement indicates ground truth. ✓ or ✗ at the end of each statement

represents model prediction. ✓ means the system judges the statement as positive, and ✗ means negative.

Statement Stmt+ Stmt+Vis Stmt+Subtt+Vis

Reasoning Type Subtt Img Det Img Det

Visual recognition 67.19 67.41 67.41 67.97 67.97

Identify character 57.78 64.44 65.18 62.22 62.22

Action recognition 70.75 66.04 66.04 73.58 73.58

Human dynamics 63.39 58.04 58.04 60.71 61.48

Conversation reasoning 76.23 58.20 58.20 76.23 76.23

Inferring reasons 59.52 50.00 50.31 59.52 60.18

Table 6. Accuracy (%) on each statement type in VIOLIN test set.

All the methods use BERT feature.

For categories such as “inferring reasons” and “identify

character”, including video gains some improvement. On

“conversation reasoning” and “human dynamics”, adding

video features does not help.

Human-Written vs. Adversarially-Sampled Negatives

For comparison, we create a new statement set by replacing

the adversarially-sampled negative statements with original

human-written negative statements. Results are presented

in Table 5. Performance on the sampled negatives is higher

than that on human-written ones. Our interpretation is that

human-written content has higher propensity for intent un-

derstanding and in-depth reasoning, which makes the state-

ments more challenging to the model.

Qualitative Analysis Figure 5 presents some prediction

examples from our model using statement, video and sub-

titles. The correct cases in Figure 5 (a) demonstrate the

model’s ability to recognize action, infer emotion, identify

referred person, and understand temporal dynamics in the

video. In (b), the error cases show that our model does not

work well on inferring reasons and human relations.

6. Conclusion

We introduce a new task, video-and-language inference

(VIOLIN), which requires intelligent systems to capture rich

temporal signals about activities/events in video and text, in

order to acquire reasoning skills for multimodal inference.

We provide thorough baseline experiments for benchmark-

ing different models on the large-scale dataset, as well as

a comprehensive analysis of the dataset. The gap between

the baseline models and human performance is significant.

We encourage the community to participate in this task and

invent stronger methods to push the state of the art on mul-

timodal inference. Possible future directions include devel-

oping models to localize key frames, as well as better uti-

lizing the alignment between video and subtitles to improve

reasoning ability.
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