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Abstract

Cross-modality person re-identification (cm-ReID) is a

challenging but key technology for intelligent video anal-

ysis. Existing works mainly focus on learning modality-

shared representation by embedding different modalities

into a same feature space, lowering the upper bound of

feature distinctiveness. In this paper, we tackle the above

limitation by proposing a novel cross-modality shared-

specific feature transfer algorithm (termed cm-SSFT) to ex-

plore the potential of both the modality-shared information

and the modality-specific characteristics to boost the re-

identification performance. We model the affinities of differ-

ent modality samples according to the shared features and

then transfer both shared and specific features among and

across modalities. We also propose a complementary fea-

ture learning strategy including modality adaption, project

adversarial learning and reconstruction enhancement to

learn discriminative and complementary shared and spe-

cific features of each modality, respectively. The entire cm-

SSFT algorithm can be trained in an end-to-end manner. We

conducted comprehensive experiments to validate the supe-

riority of the overall algorithm and the effectiveness of each

component. The proposed algorithm significantly outper-

forms state-of-the-arts by 22.5% and 19.3% mAP on the two

mainstream benchmark datasets SYSU-MM01 and RegDB,

respectively.

1. Introduction

Person re-identification (ReID) aims to find out images

of the same person to the query image from a large gallery.

Many works focus on feature learning [17, 37] and met-

ric learning [3, 24] on the RGB modality. These methods

�Bin Liu is the corresponding author.
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Figure 1. Illustration of the difference between our algorithm and

modality-shared feature learning methods. The modality-shared

feature learning methods abandon lots of useful specific cues be-

cause the modality-specific information cannot be extracted from

the other modality. Our algorithm tries to introduce modality-

specific features based on the cross-modality near neighbor affinity

modeling, effectively utilizing both shared and specific informa-

tion for each sample.

have achieved great success, especially with the most re-

cent deep learning technology [39]. However, the depen-

dency on bright lighting environments limits their applica-

tions in real complex scenarios. The performance of these

methods degrades dramatically in dark environments where

most cameras cannot work well [47]. Hence, other kinds

of visual sensors like infrared cameras are now widely used

as a complement to RGB cameras to overcome these diffi-

culties, yielding popular research interest on RGB-Infrared

cross-modality person ReID (cm-ReID).

Compared to conventional ReID task, the major dif-

ficulty of cm-ReID is the modality discrepancy resulting
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from intrinsically distinct imaging processes of different

cameras. Some discriminative cues like colors in RGB im-

ages are missing in infrared images. Previous methods can

be summarized into two major categories to overcome the

modality discrepancy: modality-shared feature learning and

modality-specific feature compensation. The shared feature

learning aims to embed images of whatever modality into a

same feature space [47, 50, 51]. The specific information

of different modalities such as colors of RGB images and

thermal of infrared images are eliminated as redundant in-

formation [4]. However, the specific information like colors

plays an important role in conventional ReID. With shared

cues only, the upper bound of the discrimination ability of

the feature representation is limited. As a result, modality-

specific feature compensation methods try to make up the

missing specific information from one modality to another.

Dual-level Discrepancy Reduction Learning (D2RL) [45] is

the typical work to generate multi-spectral images to com-

pensate for the lacking specific information by utilizing the

generative adversarial network (GAN) [8]. However, a per-

son in the infrared modality can have different colors of

clothes in the RGB space. There can be multiple reason-

able results for image generation. It’s hard to decide which

one is the correct target to be generated for re-identification

without memorization of the limited gallery set.

In this paper, we tackle the above limitations by propos-

ing a novel cross-modality shared-specific feature trans-

fer algorithm (termed cm-SSFT) to explore the potential

of both the modality-shared information and the modality-

specific characteristics to boost the re-identification perfor-

mance. It models the affinities between intra-modality and

inter-modality samples and utilizes them to propagate in-

formation. Every sample accepts the information from its

inter-modality and intra-modality near neighbors and mean-

while shares its own information with them. This scheme

can compensate for the lack of specific information and

enhance the robustness of the shared feature, thus improv-

ing the overall representation ability. Comparison with the

shared feature learning methods are shown in Figure 1. Our

method can exploit the specific information that is unavail-

able in traditional shared feature learning. Since our method

is dependent on the affinity modeling of neighbors, the com-

pensation process can also overcome the choice difficulty of

generative methods. Experiments show that the proposed

algorithm can significantly outperform state-of-the-arts by

22.5% and 19.3% mAP, as well as 19.2% and 14.4% Rank-

1 accuracy on the two most popular benchmark datasets

SYSU-MM01 and RegDB, respectively.

The main contributions of our work are as follows:

• We propose an end-to-end cross-modality shared-

specific feature transfer (cm-SSFT) algorithm to uti-

lize both the modality shared and specific informa-

tion, achieving the state-of-the-art cross-modality per-

son ReID performance.

• We put forward a feature transfer method by modeling

the inter-modality and intra-modality affinity to propa-

gate information among and across modalities accord-

ing to near neighbors, which can effectively utilize the

shared and specific information of each sample.

• We provide a novel complementary learning method to

extract discriminative and complementary shared and

specific features of each modality, respectively, which

can further enhance the effectiveness of the cm-SSFT.

2. Related Work

Person ReID. Person ReID [53] aims to search target

person images in a large gallery set with a query image.

The recent works are mainly based on deep learning for

more discriminative features [6, 18, 49, 56]. Some of them

treat it as a partial feature learning task and pay much at-

tention to more powerful network structures to better dis-

cover, align, and depict the body parts [10, 38, 39, 26].

Other methods are based on metric learning, focusing on

proper loss functions, like the contrastive loss [40], triplet

loss [17], quadruplet loss [2], etc. Both kinds of methods

try to discard the unrelated cues, such as pose, viewpoint

and illumination changing out of the features and the metric

space. Recent disentangle based methods extend along this

direction further by splitting each sample to identity-related

and identitiy-unrelated features, obtaining purer representa-

tions without redundant cues [12, 54].

The aforementioned methods process each sample in-

dependently, ignoring the connections between person im-

ages. Recent self-attention [41, 29] and graph-based meth-

ods [1, 34, 35, 48] tried to model the relationship between

sample pairs. Luo et al. proposed the spectral feature

transformation method to fuse features between different

identities [29]. Shen et al. proposed a similarity guided

graph neural network [35] and deep group-shuffling random

walk [34] to fuse the residual features of different samples

to obtain more robust representation. Liu et al. utilized the

near neighbors to tackle the unsupervised ReID [28].

Cross-modality matching. Cross-modality matching

aims to match samples from different modalities, such as

cross-modality retrieval [9, 16, 21, 27] and cross-modality

tracking [57]. Cross-modality retrieval has been widely

studied for heterogeneous face recognition [15] and text-

to-image retrieval [9, 16, 21, 22, 27]. [15] proposed a two-

stream based deep invariant feature representation learning

method for heterogeneous face recognition.

Cross-modality person ReID. Cross-modality person

ReID aims to match queries of one modality against a

gallery set of another modality [44], such as text-image

ReID [23, 32, 33], RGB-Depth ReID [11, 46] and RGB-

Infrared (RGB-IR) ReID [4, 7, 13, 19, 20, 25, 42, 43, 45,
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Figure 2. Framework of the cross-modality shared-specific feature transfer algorithm.

47, 50, 51, 52]. Wu et al. built the largest SYSU-MM01

dataset for RGB-IR person ReID evaluation [47]. Ye et

al. advanced a two-stream based model and bi-directional

top-ranking loss function for the shared feature embed-

ding [50, 51]. To make the shared features purer, Dai et

al. suggested a generative adversarial training method for

the shared feature learning [4]. These methods only con-

centrate on the shared feature learning and ignore the po-

tential values of specific features. Accordingly, some other

works try to utilize modality-specific features and focus on

cross-modality GAN. Kniaz et al. proposed ThermalGAN

to transfer RGB images to IR images and extracted features

in IR domain [20]. Wang et al. put forward dual-level dis-

crepancy reduction learning based on a bi-directional cycle

GAN to reduce the gap between different modalities [45].

More recently, Wang et al. [42] constructed a novel GAN

model with the joint pixel-level and feature-level constraint,

which achieved the state-of-the-art performance. However,

it is hard to decide which one is the correct target to be gen-

erated from the multiple reasonable choices for ReID.

3. Cross-Modality Shared-Specific Feature

Transfer

The framework of the proposed cross-modality shared-

specific feature transfer algorithm (cm-SSFT) is shown in

Figure 2. Input images are first fed into the two-stream

feature extractor to obtain the shared and specific features.

Then the shared-specific transfer network (SSTN) mod-

els the intra-modality and inter-modality affinities. It then

propagates the shared and specific features across modali-

ties to compensate for the lacked specific information and

enhance the shared features. To obtain discriminative and

complementary shared and specific features, two project

adversarial and reconstruction blocks and one modality-

adaptation module are added on the feature extractor. The

overall algorithm is trained in an end-to-end manner.

To better illustrate how the proposed algorithm works,

we distinguish the RGB modality, infrared modality and

shared space with R, I and S in superscript. We use H

and P to denote sHared and sPecific features, respectively.

3.1. Twostream feature extractor

As shown in Figure 2, our two-stream feature extractor
includes the modality-shared stream (in blue blocks) and the
modality-specific stream (green blocks for RGB and yel-
low blocks for IR). Each input image Xm (m ∈ {R, I})
will pass the convolutional layers and the feature blocks to
generate the shared feature and specific feature. For better
performances, we separate the shared and specific stream at
the shallow convolutional layers instead of the deeper fully-
connected layers [50]:

H
m = Feat

S(Conv
S
2 (Conv

m
1 (Xm))),

P
m = Feat

m(Conv
m
2 (Conv

m
1 (Xm))).

(1)

To make sure that the two kinds of features are both dis-
criminative, we add the classification loss Lc on each kind
of features respectively:

Lc(H
m) = Ei,m[− log(p(ym

i |Hm
i ))],

Lc(P
m) = Ei,m[− log(p(ym

i |Pm
i ))],

(2)

where p(ymi |∗) is the predicted probability of belonging
to the ground-truth class ymi for the input image Xm. The
classification loss ensures that features can distinguish the
identities of the inputs. Besides, we add a single modality
triplet loss (LsmT ) [17] on specific features and a cross-
modality triplet loss (LcmT ) [4, 51] on shared features for
better discriminability:

LsmT (P ) =
∑

i,j,k

max[ρ2 + ||PR
i − P

R
j || − ||PR

i − P
R
k ||, 0]

+
∑

i,j,k

max[ρ2 + ||P I
i − P

I
j || − ||P I

i − P
I
k ||, 0],

(3)

LcmT (H) =
∑

i,j,k

max[ρ1 + ||HR
i −H

I
j || − ||HR

i −H
I
k ||, 0]

+
∑

i,j,k

max[ρ1 + ||HI
i −H

R
j || − ||HI

i −H
R
k ||, 0],

(4)
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where ρ1 and ρ2 are the margins of LcmT and LsmT ,

respectively. i, j, k represent indices of the anchor, posi-

tive of the anchor and negative of the anchor of triplet loss

(yi = yj , yi 6= yk).

3.2. SharedSpecific Transfer Network

The two-stream network extracts the shared and specific
features for each modality. For unified feature representa-
tion, we pad and denote the features of each modality with
a three-segment format: [RGB-specific; shared; Infrared-
specific] as follows:

Z
R
i = [PR

i ;HR
i ;0], Z

I
i = [0;HI

j ;P
I
j ]. (5)

Here, 0 denotes the padding zero vector, which means that

samples of the RGB modality have no specific features of

infrared modality, and vice versa. [•; •] means concatena-

tion in the columan dimension. For cross-modality retrieval,

we need to transfer the specific features from one modal-

ity to another to compensate for these zero-padding vectors.

Motivated by graph convolutional network (GCN), we uti-

lize the near neighbors to propagate information and mean-

while maintain the context structure of the overall sample

space. The proposed shared-specific transfer network can

make up the lacking specific features and enhance the ro-

bustness of the overall representation jointly. As shown

in Figure 2, SSTN first models the affinity of samples ac-

cording to the two kinds of features. Then it propagates

both intra-modality and inter-modality information with the

affinity model. Finally, the feature learning stage guides the

optimization of the whole process with classification and

triplet losses.
Affinity modeling. We use the shared and specific fea-

tures to model the pair-wise affinity. We take the spe-
cific features to compute the intra-modality affinity and the
shared features for inter-modality as follows:

A
m,m
ij = d(Pm

i , P
m
j ), A

m,m′

ij = d(Hm
i , H

m′

j ), (6)

where A
m,m
ij is the intra-modality affinity between the i-th

sample and the j-th sample, both of which belong to the m

modality. A
m,m′

ij is the inter-affinity. d(a, b) is the normal-
ized euclidean distance metric function:

d(a, b) = 1− 0.5 ·

∥∥∥∥
a

‖a‖
−

b

‖b‖

∥∥∥∥ . (7)

The intra-similarity and inter-similarity represent the rela-
tion between each sample with others of both the same and
different modalities. We define the final affinity matrix as:

A =


T (AR,R, k) T (AR,I , k)

T (AI,R, k) T (AI,I , k)


 , (8)

where T (•, k) is the near neighbor chosen function. It

keeps the top-k values for each row of a matrix and sets

the others to zero.

Shared and specific information propagation. The

affinity matrix represents the similarities across samples.

SSTN utilizes this matrix to propagate features. Before

this, features of the RGB and infrared modalities are con-

catenated in the row dimension, each row of which stores a

feature of a sample:

Z =

[
ZR

ZI

]
. (9)

Following the GCN approach, we obtain the diagonal
matrix D of the affinity matrix A with dii =

∑
j Aij . The

padded features are first propagated with the near neighbor

structure (D−

1

2AD−

1

2Z) and then fused by a learnable non-
linear transformation. After feature fusion, the propagated
features will include shared features and specific features

of both the two modalities. The propagated features Z̃ are
calculated as:

Z̃ =

[
Z̃R

Z̃I

]
= σ(D−

1

2AD
−

1

2ZW ), (10)

where σ is the activation function which is ReLU in our
implementation. W is the learnable parameters of SSTN.
These propagated features are finally fed into a feature
learning stage to optimize the whole learning process. The
transferred features T are denoted as:

T =

[
TR

T I

]
= Feat

t(Z̃). (11)

Following the common feature learning principle, we use
the classification loss for feature learning:

Lc(T
m) = Ei,m[− log(p(ym

i |Tm
i ))]. (12)

In additoin, we use the triplet loss on the transferred feature
to increase the discrimination ability. Since the transferred
features include both shared features and specific features of
two modalities. We add both the cm-triplet loss LcmT (T )
and sm-triplet loss LsmT (T ) on it for better discrimination:

Lt(T ) = LcmT (T ) + LsmT (T )

=
∑

i,j,k

max[ρ1 + ||TR
i , T

I
j || − ||TR

i , T
I
k ||, 0]

+
∑

i,j,k

max[ρ1 + ||T I
i , T

R
j || − ||T I

i , T
R
k ||, 0]

+
∑

i,j,k

max[ρ2 + ||TR
i , T

R
j || − ||TR

i , T
R
k ||, 0]

+
∑

i,j,k

max[ρ2 + ||T I
i , T

I
j || − ||T I

i , T
I
k ||, 0].

(13)
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3.3. Shared and specific complementary learning

SSTN explores a new way to utilize both shared the spe-

cific features to generate more discriminative representa-

tion. However, the overall performance may still suffer

from the information overlap between shared and specific

features. Firstly, if shared features contain much modality-

specific information, the reliability of the inter-similarity

matrix in equation (6) will be affected, leading to inaccu-

rate feature transfer. Secondly, if the specific features are

highly related to the shared features, the specific features

can only provide little complement to the shared features.

The redundant information in the specific features will also

affect the sensitivity of the intra-modality similarity matrix

in equation (6) due to the shared information. To alleviate

these two problems, we utilize the modality adaptation [4]

to filter out modality-specific information from the shared

features. We also propose a project adversarial strategy and

reconstruction enhancement for complementary modality-

specific feature learning.
Modality adaptation for shared features. To purify the

shared features to be unrelated to modalities, we utilize the
modality discriminator [4] with three fully-connected layers
to classify the modality of each shared feature:

Lma = Ei,m[− log(p(m|Hm
i ,ΘD))], (14)

where ΘD represents parameters of the modality discrim-

inator. p(m|Hm
i ) is the predicted probability of feature

Hm
i belonging to modality m. In the discrimination stage,

the modality discriminator will try to classify the modality

of each shared feature. In the generation stage, the back-

bone network will generate features to fool the discrimina-

tor. This min-max game will make the shared features not

contain any modality-related information.
Project adversarial learning for specific features. To

make the specific features uncorrelated with the shared fea-
tures, we propose the project adversarial strategy. In the
training stage, we project the specific features to the shared
features of the same sample. The projection error is used as
the loss function

Lpa = Ei,m [‖Θm · Pm
i −H

m
i ‖] , (15)

where Θm
p represents the projection matrix for modality m.

In this equation, ”·” means matrix multiply. Similarly, in the

discrimination stage, optimization of Θm
p will try to project

the specific features to the corresponding shared features.

While in the generation stage, the backbone network will

generate specific features uncorrelated with shared features

to fool the projection. This adversarial training can make

the feature spaces of the two kinds of features linearly in-

dependent. Alternatively minimizing and maximizing the

projection loss will lead the backbone network to learn spe-

cific patterns different from shared features.
Reconstruction enhancement. Modality adaption and

project adversarial learning make sure that the shared and

specific features do not contain correlated information be-
tween each other. To enhance both features to be comple-
mentary, we use a decoder network after features of each
modality to reconstruct the inputs. We concatenate the
shared and specific features and feed them to the decoder
De:

X̂
m = De

m([Pm;Hm]), (16)

where [•; •] means feature concatenation. The L2 loss is
used to evaluate the quality of the reconstructed images:

Lre = Ei,m[L2(X
m
i , X̂

m
i )]. (17)

The reconstruction task makes a constraint on the overall

information loss. Combined with project modality adaption

and adversarial learning, shared and specific features are

guided to be self-discriminate and mutual-complementary.

3.4. Optimization

Our proposed algorithm is trained in an end-to-end man-
ner with the adversarial min-max games. We mix the loss
function based on the principle that the classification and
the triplet share the same importance. So the feature learn-
ing losses of each part are as follows:

L(H) = Lc(H
m) + 0.5 · LcmT ,

L(P ) = 0.5 · (Lc(P
R) + Lc(P

I)) + 0.5 · LsmT ,

L(T ) = Lc(T ) + 0.25 · Lt(T ).

(18)

Furthermore, we think that the backbone feature extractor
and SSTN share the same importance. Hence, the overall
feature learning loss is as follows:

Lfeat = L(H) + L(P ) + L(T ). (19)

Therefore, the overall loss functions of the min and the max
steps of each part are as follows:

Lmin =Lfeat + λ1Lre − λ2Lma − λ3Lpa,

Lmax =− λ2Lma − λ3Lpa.
(20)

The optimization process includes two sub-processes: (1)
fix each discriminator and minimize Lmin. (2) fix all mod-
ules excluding the three discriminators and maximize the
Lmax. Support ΘN denotes the parameters of the overall
networks except all the other discriminators. The alterna-
tive learning process is:

Θ̂N = argmin
ΘN

Lmin(ΘN , Θ̂D, Θ̂m),

Θ̂D, Θ̂m = argmax
ΘD,Θm

Lmax(Θ̂N ,ΘD,Θm).
(21)

In order to ensure the training effectiveness, every batch

contains the equal number of RGB and infrared samples.

The details of the sampling strategy are introduced in the

implementation details. In the test stage, we utilize the

two-stream network to extract disentangled features from

the RGB set and the infrared set. We use SSTN to trans-

fer modality-shared and modality-specific features. All fea-

tures are L2-normalized and we use the Euclidean distance

to compute the final ReID performance.

13383



Table 1. Comparison on SYSU-MM01. r1, r10, r20 denote Rank-1, 10, 20 accuracies (%) .

Method
All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot
r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP

HOG[5] 2.76 18.3 31.9 4.24 3.82 22.8 37.6 2.16 3.22 24.7 44.5 7.25 4.75 29.2 49.4 3.51
LOMO[24] 3.64 23.2 37.3 4.53 4.70 28.2 43.1 2.28 5.75 34.4 54.9 10.2 7.36 40.4 60.3 5.64

Zero-Padding[47] 14.8 54.1 71.3 15.9 19.1 61.4 78.4 10.9 20.6 68.4 85.8 26.9 24.4 75.9 91.3 18.6
TONE+HCML[50] 14.3 53.2 69.2 16.2 - - - - - - - - - - - -

BDTR[51] 17.0 55.4 72.0 19.7 - - - - - - - - - - - -
D-HSME[13] 20.7 62.8 78.0 23.2 - - - - - - - - - - - -

IPVT+MSR[19] 23.2 51.2 61.7 22.5 - - - - - - - - - - - -
cmGAN[4] 27.0 67.5 80.6 27.8 31.5 72.7 85.0 22.3 31.6 77.2 89.2 42.2 37.0 80.9 92.1 32.8

D2RL[45] 28.9 70.6 82.4 29.2 - - - - - - - - - - - -
DGD+MSR[7] 37.4 83.4 93.3 38.1 43.9 86.9 95.7 30.5 39.6 89.3 97.7 50.9 46.6 93.6 98.8 40.1
JSIA-ReID[43] 38.1 80.7 89.9 36.9 45.1 85.7 93.8 29.5 43.8 86.2 94.2 52.9 52.7 91.1 96.4 42.7
AlignGAN[42] 42.4 85.0 93.7 40.7 51.5 89.4 95.7 33.9 45.9 87.6 94.4 54.3 57.1 92.7 97.4 45.3

cm-SSFT (Ours) 61.6 89.2 93.9 63.2 63.4 91.2 95.7 62.0 70.5 94.9 97.7 72.6 73.0 96.3 99.1 72.4

4. Experiments

In this section, we conduct comprehensive experiments

to validate the effectiveness of the proposed cross-modality

shared-specific feature transfer algorithm as well as each of

its components.

4.1. Experimental settings

Datasets. SYSU-MM01 is a large-scale and frequently

used RGB-IR cross-modality ReID dataset [47]. Images

are collected from four RGB cameras and two IR cameras,

in both indoor and outdoor environments. The training set

contains 395 persons, with 22,258 RGB images and 11,909

IR images. The test set contains 96 persons, with 3,803 IR

images for query and 301/3010 (one-shot/multi-shot) ran-

domly selected RGB images as the gallery. There are two

accordingly evaluation modes for RGB-IR ReID: indoor-

search and all-search [47]. RegDB is collected by dual

camera systems [31]. There are 412 identities and 8,240 im-

ages in total, with 206 identities for training and 206 identi-

ties for testing. Each identity has 10 different thermal (IR)

images and 10 different visible (RGB) images. There are

also two evaluation modes. One is Visible to Thermal to

search IR images from a Visible image. The other mode is

Thermal to Visible to search RGB images from a infrared

image. This dataset has 10 trials with different splits of the

dataset. We evaluate our model on the 10 trials to achieve

statistically stable results.

Evaluation protocols. All the experiments follow the

standard evaluation protocol in existing RGB-IR cross-

modality ReID methods. Queries and galleries images are

from different modalities. And then, the standard cumu-

lated matching characteristics (CMC) curve and mean aver-

age precision (mAP) are adopted.

Implementation details. We use Resnet50 [14] as the

backbone network, with the first convolutional layer, the

1st and 2nd bottlenecks as Conv1. Conv2 is the 3rd and

4th bottlenecks. k in Eq. (22) is set to 4. λ1, λ2 and λ3 are

set to 1.0, 0.2 and 0.2, respectively. We change the stride

of the last convolutional layer in the backbone to 1 to ben-

efit the learning of reconstruction decoders which are com-

posed of 4 sub-pixel convolutional layers with channels all

set to 64 [36]. We adopt the data and network augmentation

methods in BoT for ReID [30] to enhance the performance.

For fairness, we also give out results without any augmen-

tation. The augmentations include: (1) the feature blocks

are all set to BNNeck [30]; (2) the input images are aug-

mented with random erasing [55]. The whole algorithm is

optimized with Adam for 120 epochs with a batch size of

64 and a learning rate of 0.00035, decaying 10 times at 40,

70 epoch. Each mini-batch is comprised of 8 identities with

4 RGB images and 4 infrared images for each identity.

4.2. Comparison with stateoftheart methods.

In this subsection, we compare our proposed algorithm

with the baselines as well as the state-of-the-art methods,

including Zero-Padding [47], TONE [50], BDTR [51], cm-

GAN [4], D2RL[45], MSR[7], D-HSME[13], IPVT[19],

JSIA-ReID[43] and AlignGAN[42].

The results on SYSU-MM01 are shown in Table 1. The

proposed algorithm outperforms other methods by a large

margin. Specifically, in all-search mode, our method sur-

passes AlignGAN by 19.2% on Rank-1 accuracy and 22.5%

on mAP in the single-shot setting. The multi-shot setting

exhibits a similar phenomenon. Compared with single-shot

evaluation, mAP of most other methods drop significantly

by about 5% or even more. But our method only drops

1.2%. This validates that the features extracted by our al-

gorithm are much more discriminative, which can provide

higher recall than other methods when the gallery size in-

creases. For indoor-search mode, our method also gets the

best performance on all the evaluation metrics, demonstrat-

ing the robustness of the proposed algorithm.

The results on RegDB are shown in 2. Our method al-

ways suppresses others by a large margin. For the Visible

to Thermal mode, our method surpasses the state-of-the-art

method by 14.4% on Rank-1 and 19.3% on mAP. For Ther-

mal to Visible, the advantages are 14.7% on Rank-1 and

18.3% on mAP.
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Table 2. Comparison on RegDB.

Method Visible to Thermal Thermal to Visible
r1 mAP r1 mAP

HOG[5] 13.5 10.3 - -
LOMO[24] 0.80 2.28 - -

Zero-Padding[47] 17.8 18.9 16.7 17.9
TONE+HCML[50] 24.4 20.8 21.7 22.2

BDTR[51] 33.5 31.8 32.7 31.1

D2RL[45] 43.4 44.1 - -
DGD+MSR[7] 48.4 48.7 - -
JSIA-ReID[43] 48.5 49.3 48.1 48.9
D-HSME[13] 50.9 47.0 50.2 46.2

IPVT+MSR[19] 58.8 47.6 - -
AlignGAN[42] 57.9 53.6 56.3 53.4

cm-SSFT (Ours) 72.3 72.9 71.0 71.7

Table 3. Ablation study on RegDB.
ShL SpL SaS MoA PA RE ShT SpT r1 mAP

1 X - - - - - - - 42.4 45.0

2 X X - - - - - - 48.1 49.3

3 X X X - - - - - 52.3 53.1

4 X X X X - - - - 56.1 57.2

5 X X X X X - - - 58.7 57.9

6 X X X X X X - - 60.3 59.4

7 X X X - - - X X 60.8 60.1

8 X X X X - - X X 67.5 67.6

9 X X X X X - X X 71.1 71.2

10 X X X X X X X - 65.8 66.1

11 X X X X X X - X 64.9 65.3

12 X X X X X X X X 72.3 72.9

4.3. Ablation study

In this subsection, we study the effectiveness of each

component of the proposed algorithm.

Effectiveness of structure of feature extractor. We

first evaluate how much improvement can be made by the

structure of feature extractor. We ablate the specific fea-

ture extraction stream and evaluate the performance of the

shared features only to see the influence. The results are

shown in the 1st and 2nd row of Table 3, represented as ShL

(shared feature learning) and SpL (specific feature learn-

ing). The specific streams can bring about 5.7% incre-

ment of Rank-1 accuracy because they can back-propagate

modality-specific gradients to the low-level feature maps.

We also test the influences casued by separating streams at

shallow layers. The result in 3rd (SaS: Separating at Shal-

low) shows that it can make bring 4.2% gains for the more

dicriminative features.

Influence of complementary learning. We evaluate the

effectiveness of each module in the complementary learn-

ing. Since the complementary learning can affect both the

features of the feature extractor and SSTN, we design two

sets of experiments to observe the impact respectively. The

influences on the feature extractor are shown in rows 4∼6 of

Table 3. The results of SSTN are shown in rows 7∼9. We

can see that all modules (the modality-adaptation (MoA),

the project adversarial (PA) and reconstruction enhance-

ment (RE)) can make both backbone shared features and

SSTN features more discriminative. The whole comple-

mentary learning scheme can bring about 8% and 12% in-

Table 4. Performances without data or network augmentation.

Settings MM01 RegDB
r1 mAP r1 mAP

SOTA(AlignGAN)’s baseline 29.6 33.0 32.7 34.9
SOTA(AlignGAN) 42.4 40.7 57.9 53.6
baseline (wo aug) 25.5 27.2 29.5 30.8

cm-SSFT (wo aug) 52.4 52.1 62.2 63.0
baseline (w aug) 38.2 39.8 42.4 45.0

cm-SSFT (w aug) 61.6 63.2 72.3 72.9

Table 5. Performances comparison with single query.

Method
MM01 RegDB

S-shot M-shot V-T T-V
r1 mAP r1 mAP r1 mAP r1 mAP

Single query 47.7 54.1 57.4 59.1 65.4 65.6 63.8 64.2
All queries 61.6 63.2 63.4 62.0 72.3 72.9 71.0 71.7

crements for the feature extractor and SSTN, respectively.

Effectiveness of feature transfer. We aim to quantify

the contribution of the proposed feature transfer strategy.

Firstly, we want to know whether the proposed transfer

method itself only works on shared features. By comparing

row 6 with row 10 (only transfer the shared feature, defined

as ShT) in Table 3, we can see that feature transfer brings in

5.5% Rank-1 and 6.7% mAP improvements. Secondly, we

want to verify whether modality-specific features can posi-

tively contribute valuable information to the final represen-

tation. According to row 10 and row 12 (transfer both two

kinds of features. SpT means transferring specific features.)

of Table 3, we can see that the overall performance gains

6.5% and 6.8% increments on Rank-1 and mAP. For further

verifying the effectiveness of the specific feature transfer,

we also try only transferring the specific features. The re-

sults are shown in row 11 and show that only transferring

the specific features can also achieve satisfy performances.

The feature transfer stage not only contributes an overall

12.0% Rank-1 and 13.5% mAP improvements but also ver-

ifies that modality-specific features can be well-explored for

better re-identification.

Influence of data and network augmentation. For fair

comparison, we also give results without random-erasing in

data augmentation. For each feature block, we also use a

commonly used fully-connected layer to replace the BN-

Neck. The results are shown in Table 4. It can be seen

that, without the augmentation, our baseline is weaker than

the baseline of the state-of-the-art (AlignGAN [42]) method

(because we don’t use dropout). But our model still can

suppress SOTA by 10.0% on Rank-1 and 12.1% on mAP

on the SYSU-MM01 dataset. On the RegDB dataset, our

method can suppress 4.3% on Rank-1 and 9.4% on mAP.

The data and network augmentations can bring about 13%

increments on the backbone and 9% on our method. With-

out them, our model still achieves the state-of-the-art per-

formances, proving the effectiveness of our method.
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Figure 3. Reconstruction examples. The 1st to 4th rows corre-

spond to original images, shared feature reconstructions, specific

reconstructions and all feature reconstruction results, respectively.

4.4. Visualization of shared and specific features.

We take advantage of the reconstruction decoder to vi-

sualize the information of the modality shared and spe-

cific features. We remove Pm and Hm in Eq.(16) to

observe the changes in the reconstructed images, respec-

tively. The outputs are shown in Figure 3. We can see

that shared feature reconstruction results are different and

visually complementary to the specific features. For RGB

images, the shared features contain less color information

which is found in the images reconstructed by RGB-specific

features. The specific features carried more color infor-

mation but are less smooth. For infrared images, we can

also observe that the specific features are different from the

shared features. The combination of two kinds of features

produces high-quality images. This proves that the shared

and specific features produced by our feature extractor are

complementary with each other.

4.5. Application in real scenarios

The SSTN in our cm-SSFT passes information between
different modality samples. Every sample fuses the infor-
mation from its inter-modality and intra-modality k near
neighbors. Such setting hypothesizes that other query sam-
ples are treated as the auxiliary set. However, in some real
application scenarios, there may be no or only a few aux-
iliary dates. In order to prove that our method is not lim-
ited in the experimental environments with some strong hy-
pothesis, we show how to apply cm-SSFT to such single
query scenarios, which also achieves state-of-the-art perfor-
mances. We train the cm-SSFT algorithm exactly the same
as illustrated in this paper. While in the testing stage, the
SSTN only propagates information between only one query
image with the gallery images. We slightly stabilize the
affinity model A as follows:

Z =

[
zq

ZG

]
, A =


 k ·Aq,q T (Aq,G, k)

k ·AG,q T (AG,G, k)


 . (22)
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Figure 4. Influence of number of queries. Dashed lines correspond

to the SOTA method. Solid lines correspond to ours.

It can be seen that we amplify k times the left column

blocks of the affinity matrix, which is to balance the infor-

mation of the two modalities. The experiments are shown

in Table 5. The performance has dropped compared with

all queries due to inadequate intra-modality specific infor-

mation compensation. But our method still achieves better

performances than state-of-the-arts and our baseline.

Besides, we also test the influence of the auxiliary set.

The experiments are run on MM01 dataset for its large

query set. We randomly sample n images from the query

sets and watch the performance changing. For a specific

n, we run 10 times to get the average performance. n is

ranging from 1 (single query) to all query size. The results

are shown in Figure 4. We can see that with the size of the

auxiliary set growing, the performance saturates quickly.

5. Conclusion

In this paper, we proposed a cross-modality shared-

specific feature transfer algorithm for cross-modality per-

son ReID, which can utilize the specific features ignored by

conventionally shared feature learning. It propagates infor-

mation among and across modalities, which not only com-

pensates for the lacking specific information but also en-

hances the overall discriminative. We also proposed a com-

plementary learning strategy to learn self-discriminate and

complementary feature. Extensive experiments validate the

superior performance of the proposed algorithm, as well as

the effectiveness of each component of the algorithm.
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