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Abstract

Neural networks are known to be vulnerable to carefully

crafted adversarial examples, and these malicious samples

often transfer, i.e., they remain adversarial even against

other models. Although significant effort has been devoted

to the transferability across models, surprisingly little atten-

tion has been paid to cross-task transferability, which repre-

sents the real-world cybercriminal’s situation, where an en-

semble of different defense/detection mechanisms need to be

evaded all at once. We investigate the transferability of ad-

versarial examples across a wide range of real-world com-

puter vision tasks, including image classification, object de-

tection, semantic segmentation, explicit content detection,

and text detection. Our proposed attack minimizes the “dis-

persion” of the internal feature map, overcoming the lim-

itations of existing attacks, that require task-specific loss

functions and/or probing a target model. We conduct eval-

uation on open-source detection and segmentation models,

as well as four different computer vision tasks provided by

Google Cloud Vision (GCV) APIs. We demonstrate that our

approach outperforms existing attacks by degrading perfor-

mance of multiple CV tasks by a large margin with only

modest perturbations.

1. Introduction

Recent progress in adversarial machine learning has

brought the weaknesses of deep neural networks (DNNs)

into the spotlight, and drawn the attention of researchers

working on security and machine learning. Given a deep

learning model, it is easy to generate adversarial examples
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Figure 1: Real-world computer vision systems deployed in

safety- and security-critical scenarios usually employ an ensemble

of detection mechanisms that are opaque to attackers. Cybercrim-

inals are required to generate adversarial examples that transfer

across tasks to maximize their chances of evading the entire detec-

tion systems.

(AEs), which are close to the original input, but are easily

misclassified by the model [9, 33]. More importantly, their

effectiveness sometimes transfers, which may severely hin-

der DNN-based applications especially in security critical

scenarios [23, 13, 36]. While such problems are alarming,

little attention has been paid to the threat model of commer-

cially deployed vision-based systems, wherein deep learn-

ing models across different tasks are assembled to provide

fail-safe protection against evasion attacks. Such a threat

model is quite different from models that have been inten-

sively studied in the aforementioned research.

Cross-task threat model. Computer vision (CV) based

detection mechanisms have been deployed extensively in

security-critical applications, such as content censorship

and authentication with facial biometrics, and readily avail-

able services are provided by cloud giants through APIs
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(e.g., Google Cloud Vision [3]). The detection systems

have long been targeted by evasive attacks from cybercrim-

inals, and it has resulted in an arms race between new at-

tacks and more advanced defenses. To overcome the weak-

ness of deep learning in an individual domain, real-world

CV systems tend to employ an ensemble of different detec-

tion mechanisms to prevent evasions. As shown in Fig. 1,

underground businesses embed promotional contents such

as URLs into porn images with sexual content for illicit on-

line advertising or phishing. A detection system, combining

Optical Character Recognition (OCR) and image-based ex-

plicit content detection, can thus drop posted images con-

taining either suspicious URLs or sexual content to miti-

gate evasion attacks. Similarly, a face recognition model

that is known to be fragile [32] is usually protected by a

liveness detector to defeat spoofed digital images when de-

ployed for authentication. Such ensemble mechanisms are

widely adopted in real-world CV deployment.

To evade detection systems with uncertain underlying

mechanisms, attackers turn to generating adversarial ex-

amples that transfer across CV tasks. Many adversar-

ial techniques on enhancing transferability have been pro-

posed [38, 36, 23, 13]. However, most of them are designed

for image classification tasks, and rely on task-specific loss

functions (e.g., cross-entropy loss), which limits their effec-

tiveness when transferred to other CV tasks.

To provide a strong baseline attack to evaluate the ro-

bustness of DNN models under the aforementioned threat

model, we propose a new succinct method to generate ad-

versarial examples, which transfers across a broad class of

CV tasks, including classification, object detection, seman-

tic segmentation, explicit-content detection, and text detec-

tion and recognition. Our approach, called Dispersion Re-

duction (DR) and illustrated in Fig. 2, is inspired by the im-

pact of “contrast” on an image’s perceptibility. As lowering

the contrast of an image would make the objects indistin-

guishable, we presume that reducing the “contrast” of an

internal feature map would also degrade the recognizabil-

ity of objects in the image, and thus could evade CV-based

detection.

We use dispersion as a measure of “contrast” in feature

space, which describes how scattered the feature map of

an internal layer is. We empirically validate the impact of

dispersion on model predictions, and find that reducing the

dispersion of internal feature maps significantly affects the

activation of subsequent layers. Based on additional ob-

servation that lower layers detect simple features [20], we

hypothesize that the low-level features extracted by early

convolution layers share many similarities across CV mod-

els. By reducing the dispersion of an internal feature map,

the information that is in the feature output becomes indis-

tinguishable or useless, and thus the following layers are not

able to obtain any useful information no matter what kind

of CV task is at hand. Thus, the distortions caused by dis-

persion reduction in feature space are ideally suited to fool

any CV model, whether designed for classification, object

detection, semantic segmentation, text detection, or other

vision tasks.

Based on these observations, we propose and build the

DR as a strong baseline attack to evaluate model robust-

ness against black box attacks, which generate adversarial

examples using simple and readily-available image classi-

fication models (e.g., VGG-16, Inception-V3 and ResNet-

152), whose effects extend to a wide range of CV tasks.

We evaluate our proposed DR attack on both popular open

source detection and segmentation models, as well as com-

mercially deployed detection models on four Google Cloud

Vision APIs: classification, object detection, SafeSearch,

and Text Detection (see §4). ImageNet, PASCAL VOC2012

and MS COCO2017 datasets are used for evaluations. The

results show that our proposed attack causes larger drops

on the model performance compared to the state-of-the-art

attacks (MI-FGSM [13], DIM [36] and TI [14]) across dif-

ferent tasks. We hope that our findings raise alarms for real-

world CV deployment in security-critical applications, and

that our simple but effective attack will be used as a bench-

mark to evaluate model robustness. Code is available at:

https://github.com/erbloo/dr cvpr20.

Contributions. Our contributions include the following:

• This work is the first to study adversarial machine

learning for cross-task attacks. The proposed attack,

called dispersion reduction, does not rely on labeling

systems or task-specific loss functions.

• Evaluations shows that the proposed DR attack beats

state-of-the-art attacks in degrading the performance

of object detection and semantic segmentation mod-

els, and four different GCV API tasks, by a large mar-

gin: 52% lower mAP (detection) and 31% lower mIoU

(segmentation) compared to the best of the baseline at-

tacks.

• Code and evaluation data are all available at an

anonymized GitHub repository [1].

2. Related Work

Adversarial examples [33, 16] have recently been shown

to be able to transfer across models trained on different

datasets, having different architectures, or even designed for

different tasks [23, 35]. This transferability property moti-

vates the research on black-box adversarial attacks.

One notable strategy, as demonstrated in [29, 28], is to

perform black-box attacks using a substitute model, which

is trained to mimic the behavior of the target model by a

distillation technique. They also demonstrated black-box

attacks against real-world machine learning services hosted
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Figure 2: DR attack targets on the dispersion of the feature map

at a specific layer of feature extractors. The adversarial exam-

ple generated by minimizing dispersion at conv3.3 of VGG-

16 model also distorts feature space of subsequent layers (e.g.,

conv5.3), and its effectiveness transfers to commercially de-

ployed GCV APIs.

by Amazon and Google. Another related line of research,

called a gradient-free attack, uses feedback on query data,

i.e., soft predictions [34, 18] or hard labels [8] to construct

adversarial examples.

The limitation of the aforementioned works is that they

all require (some form of) feedback from the target model,

which may not be practical in some scenarios. Recently,

several methods have been proposed to improve transfer-

ability, by studying the attack generation process itself; our

method falls into this category. In general, an iterative at-

tack [9, 19, 27] achieves a higher attack success rate than a

single-step attack [16] in a white-box setting, but performs

worse when transferred to other models. The methods men-

tioned below reduce the overfitting effect by either improv-

ing the optimization process or by exploiting data augmen-

tation.

MI-FGSM. Momentum Iterative Fast Gradient Sign

Method (MI-FGSM) [13] integrates a momentum term into

the attack process, to stabilize update directions and escape

poor local maxima. The update procedure is as follows:

x′

t+1 = x′

t
+ α · sign(gt+1)

gt+1 = µ · gt +
▽xJ(x

′
t
, y)

‖ ▽xJ(x′
t, y) ‖1

(1)

The strength of MI-FGSM can be controlled by the momen-

tum and the number of iterations.

DIM. Momentum Diverse Inputs Fast Gradient Sign

Method (DIM) combines momentum and an input diversity

strategy to enhance transferability [36]. Specifically, DIM

applies an image transformation, T (·), to the inputs with a

probability p at each iteration of iterative FGSM to alleviate

the overfitting phenomenon. The update procedure is simi-

lar to MI-FGSM, the only difference being the replacement

of (1) by:

x′

t+1 = Clipǫ
x
{x′

t
+ α · sign(▽xL(T (x

′

t+1; p), y
true)}

(2)

where T (x′
t
, p) is a stochastic transformation function that

performs input transformation with probability p.

TI. Rather than optimizing the objective function at a

single point, the Translation-Invariance (TI) [15] method

uses a set of translated images to optimize an adversarial

example. By approximation, TI calculates the gradient at

the untranslated image x̂ and then averages all the shifted

gradients. This procedure is equivalent to convolving the

gradient with a kernel composed of all the weights.

The major difference between our proposed method and

the three aforementioned attacks is that our method does

not rely on task-specific loss functions (e.g., cross-entropy

loss or hinge loss). Instead, it focuses on low-level features,

that are presumably task-independent and shared across dif-

ferent models. This is especially critical in the scenario for

which the attackers do not know the specific tasks of the

target models. Our evaluation in §4 demonstrates improved

transferability generated by our method across several dif-

ferent real-world CV tasks.

3. Methodology

To construct AEs against a target model, we first estab-

lish a source model as the surrogate, to which we have ac-

cess. Conventionally, the source model is established by

training with examples labeled by the target model. That

is, the inputs are paired with the labels generated from

the target model, instead of the ground truth. In this way,

the source model mimics the behavior of the target model.

When we construct AEs against the source model, they are

likely to transfer to the target model due to this connection.

In our framework, although a source model is still re-

quired, there is no need for training new models or query-

ing the target model for labels. Instead, a pretrained pub-

lic model could simply serve as the source model due to

the strong transferability of the AEs generated via our ap-

proach. For example, in our experiments, we use pretrained

VGG-16, Inception-v3 and Resnet-152, which are publicly

available, as the source model f . With f as the source

model, we construct AEs against it. Existing attacks perturb

input images along gradient directions▽xJ that depend on

942



Algorithm 1 Dispersion reduction attack

Input: A classifier f , original sample x, feature map at

layer k; perturbation budget ǫ
Input: Attack iterations T .

Output: An adversarial example x′ with ‖ x′ − x ‖
∞

6 ǫ

1: procedure DISPERSION REDUCTION

2: x′
0 ← x

3: for t = 0 to T − 1 do

4: Forward x′
t

and obtain feature map at layer k:

Fk = f(x′

t
)|k (3)

5: Compute dispersion of Fk: g(Fk)
6: Compute its gradient w.r.t the input: ▽xg(Fk)
7: Update x′

t
:

x′

t
= x′

t
−▽xg(Fk) (4)

8: Project x′
t

to the vicinity of x:

x′

t+1 = clip(x′

t
,x− ǫ,x+ ǫ) (5)

9: return x′
t+1

the definition of the task-specific loss function J , which not

only limits their cross-task transferability but also requires

ground-truth labels that are not always available. To miti-

gate these issues, we propose a dispersion reduction (DR)

attack, that formally defines the problem of finding an AE

as an optimization problem:

min
x
′

g(f(x′, θ))

s.t. ‖ x′ − x ‖
∞

6 ǫ
(6)

where f(·) is a DNN classifier with output of intermediate

feature map, and g(·) calculates the dispersion. Our pro-

posed DR attack, detailed in Algorithm 1, takes a multi-

step approach that creates an AE by iteratively reducing

the dispersion of an intermediate feature map at layer k.

Dispersion describes the extent to which a distribution is

stretched or squeezed, and there can be different measures

of dispersion, such as the standard deviation, and the gini

coefficient [26]. In this work, we choose standard deviation

as the dispersion metric due to its simplicity, and denote it

by g(·).
To explain why reducing dispersion could lead to valid

attacks, we propose a similar argument as used in [16]. Con-

sider a simplified model where f(x) = a = (a1, . . . , an)
⊤

is the intermediate feature, and y = Wa is an affine trans-

formation of the feature (we omit the bias b for simplicity),

resulting in the final output logits y = (y1, . . . , yk)
⊤. In

other words, we decompose a DNN classifier into a fea-

ture extractor f(·) and an affine transformation. If the cor-

rect class is c, the logit yc of a correctly classified example

should be the largest, that is wca >> wia for i 6= c, where

wi is the ith row of W. This indicates wc and a are highly

aligned.

On the other hand, suppose our attack aims to reduce

the standard deviation of the feature a. The corresponding

adversarial examples x′ leads to a perturbed feature

f(x′) = a′ ≈ a− α
∂

∂a
Std(a)

= a− 2α(a− ā1)/(
√
n− 1Std(a))

(7)

Where α depicts the magnitude of the perturbation on a, ā
is the average of the entries of a, and 1 is a column vector

with 1 in each entry. Therefore, the change of the logit yc
due to adversarial perturbation is essentially

∆yc = −2α(wca−wc1ā)/(
√
n− 1Std(a))

= −2α(wca− nw̄cā)/(
√
n− 1Std(a))

= −2α
√
n− 1Cov(wc,a)/Std(a) < 0

(8)

If we think of each entry of a and wc as samples, the

Cov(wc,a) corresponds to the empirical covariance of

these samples. This suggests that as long as wc and a are

aligned, our attack can always reduce the logit of the correct

class. Note that α is approximately the product of the mag-

nitude of the perturbation on x and the sensitivity of f(·),
therefore the reduction of the logit could be large if f(·) is

sensitive, which is often the case in practice.

In general, yc could be any activation that is useful for

the task, which may not be classification. As long as yc
is large for natural examples, indicating a certain feature is

detected, it is always reduced by our attacks according to

the analysis above. Thus, our attack is agnostic to tasks and

the choice of loss functions.

4. Experimental Results

We compare our proposed DR attack with the state-of-

the-art black-box adversarial attacks on object detection

and semantic segmentation tasks (using publicly available

models), and commercially deployed Google Cloud Vision

(GCV) tasks.

4.1. Experimental Settings

Network Types: We consider Yolov3-DarkNet53 [30],

RetinaNet-ResNet50 [21], SSD-MobileNetv2 [22], Faster

R-CNN-ResNet50 [31], Mask R-CNN-ResNet50 [17] as

the target object detection models and DeepLabv3Plus-

ResNet101 [11], DeepLabv3-ResNet101 [10], FCN-

ResNet101 [24] as the target semantic segmentation mod-

els. All network models are publicly available, and de-

tails are provided in the Appendix. The source networks
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Figure 3: Results of DR attack with different steps N . The proposed DR attack outperforms all baselines, even starting from small

steps (e.g., N = 20).
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Figure 4: Results of DR attack with different attack layers of

VGG16. We see that attacking the middle layers results in higher

drop in the performance compared to attacking top or bottom lay-

ers. At the same time, in the attacking process, the drop in std of

middle layers is also larger than the top and bottom layers. This

motivates that we can find a good attack layer by looking at the std

drop during the attack.

for generating adversarial examples are VGG16, Inception-

v3 and Resnet152 with output image sizes of (224 × 224),
(299 × 299) and (224 × 224), respectively. For the evalu-

ation on COCO2017 and PASCAL VOC2012 datasets, the

mAP and mIoU are calculated as the evaluation metrics for

detection and semantic segmentation, respectively. Due to

the mismatch of different models being trained with differ-

ent labeling systems (COCO / VOC), only 20 classes that

correspond to VOC labels are chosen from COCO labels if

a COCO pretrained model is tested on the PASCAL VOC

dataset, or a VOC pretrained model is tested on the COCO

dataset. For the evaluation on ImageNet, since not all test

images have the ground truth bounding boxes and pixelwise

labels, the mAP and mIoU are calculated as the difference

between the outputs of benign/clean images and adversarial

images.

Implementation details: We compare our proposed

method with projected gradient descent (PGD) [27],

momentum iterative fast gradient sign method (MI-

FGSM) [12], diverse inputs method (DIM) [37] and

translation-invariant attacks (TI) [15]. Concerning the hy-

perparameters, the maximum perturbation is set to be ǫ =
16 for all the experiments with pixel values in [0, 255].

For the proposed DR attacks, the step size is α = 4, and

the number of training steps is N = 100. For the base-

line methods, we first follow the default settings in [37] and

[15] with α = 1 and N = 20 for PGD, MI-FGSM and

DIM, α = 1.6 and N = 20 for TI-DIM. We apply the same

hyper-parameters (α = 4, N = 100) used with the pro-

posed method to all the baseline methods. For MI-FGSM,

we adopt the default decay factor µ = 1.0. For DIM and

TI-DIM, the transformation probability is set to p = 0.5.

4.2. Diagnostics

4.2.1 The effect of training steps N

We show the results of attacking SSD-ResNet50,

RetinaNet-ResNet50, SSD-MobileNet and Faster RCNN-

ResNet50 with a different number of training steps

(N = {20, 100, 500}) based on MS COCO2017 validation

set. We also compare the proposed DR attack with multiple

baselines, namely PGD, MI-FGSM, DIM, TI-DIM. The

results are shown in Fig. 3. In contrast to the classification-

based transfer attacks [13, 36, 14], we do not observe

over-fitting in cross-task transfer attacks for all the tested

methods. Therefore, instead of using N = 20, which is the

value used by the baseline attacks we compare with, we can

employ larger training steps (N = 100), and achieve better

attack performance at the same time. In addition, we can

see that our DR attack outperforms all the state-of-the-art

baselines for all the step size settings. It should be noticed

that DR attack is able to achieve promising results at

N = 20, and the results from the DR attack, using 20

steps, are better than those of baseline methods using 500

steps. This shows that our proposed DR attack has higher

efficiency than the baselines.

4.2.2 The effect of attack layer

We show the results of attacking different convolutional lay-

ers of the VGG16 network with the proposed DR attack

based on the PASCAL VOC2012 validation set. Figure 4a

shows the mAP for Yolov3 and faster RCNN, and mIoU for

Deeplabv3 and FCN. In Fig. 4b we plot the standard de-

viation (std) values before and after the DR attack, together

with the change. As can be seen, attacking the middle layers

of VGG16 results in higher drop in the performance com-

pared to attacking top or bottom layers. At the same time,
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Detection Results Using Val. Images of
Yolov3

DrkNet

RetinaNet

ResNet50

SSD

MobileNet

Faster-RCNN

ResNet50

Mask-RCNN

ResNet50

COCO and VOC Datasets mAP mAP mAP mAP mAP

COCO/VOC COCO/VOC COCO/VOC COCO/VOC COCO/VOC

VGG16 PGD (α=1, N=20) 33.5 / 54.8 14.7 / 31.8 16.8 / 35.9 9.7 / 14.2 10.3 / 15.9

PGD (α=4, N=100) 21.6 / 38.7 7.2 / 14.6 7.9 / 18.2 4.9 / 6.4 5.7 / 9.7

MI-FGSM (α=1, N=20) 28.4 / 48.9 12.0 / 23.6 13.6 / 29.6 7.8 / 10.9 8.2 / 12.0

MI-FGSM (α=4, N=100) 19.0 / 35.0 5.8 / 10.6 7.0 / 19.1 4.4 / 5.0 4.8 / 7.1

DIM (α=1, N=20) 26.7 / 46.9 11.0 / 21.9 11.0 / 22.9 6.4 / 8.2 7.2 / 11.6

DIM (α=4, N=100) 20.0 / 37.6 6.2 / 13.0 6.5 / 14.9 4.1 / 5.0 4.6 / 6.7

TI-DIM (α=1.6, N=20) 25.8 / 41.4 9.6 / 17.4 10.4 / 19.9 6.5 / 7.5 7.4 / 9.2

TI-DIM (α=4, N=100) 19.5 / 33.4 7.7 / 13.1 7.5 / 16.7 4.0 / 5.2 4.8 / 6.6

DR (α=4, N=100)(ours) 19.8 / 38.2 5.3 / 8.7 3.9 / 8.2 2.5 / 2.8 3.2 / 5.1

InceptionV3 PGD (α=1, N=20) 46.8 / 67.5 23.9 / 51.8 25.2 / 47.4 27.0 / 45.7 27.5 / 48.7

PGD (α=4, N=100) 35.3 / 57.1 15.0 / 33.0 14.0 / 31.6 18.2 / 31.7 19.4 / 34.8

MI-FGSM (α=1, N=20) 42.0 / 63.9 20.0 / 44.3 20.9 / 43.5 22.8 / 39.3 23.7 / 42.9

MI-FGSM (α=4, N=100) 32.4 / 54.0 12.5 / 27.1 13.1 / 29.2 16.3 / 26.9 17.9 / 30.5

DIM (α=1, N=20) 32.5 / 54.5 12.9 / 27.5 13.9 / 29.7 14.2 / 24.0 16.3 / 27.7

DIM (α=4, N=100) 29.1 / 48.3 10.4 / 20.5 10.4 / 22.0 12.2 / 18.2 13.8 / 44.6

TI-DIM (α=1.6, N=20) 32.1 / 50.2 12.8 / 25.8 13.5 / 28.0 12.5 / 20.4 14.4 / 23.0

TI-DIM (α=4, N=100) 27.1 / 42.2 11.0 / 19.8 10.4 / 22.1 9.9 / 14.6 11.1 / 17.5

DR (α=4, N=100)(ours) 24.2 / 45.1 8.5 / 18.9 9.0 / 19.5 8.3 / 14.3 9.8 / 17.0

Resnet152 PGD (α=1, N=20) 39.4 / 62.0 19.1 / 42.9 19.9 / 41.6 13.8 / 19.4 15.0 / 22.0

PGD (α=4, N=100) 28.8 / 51.5 12.2 / 25.9 11.2 / 24.4 8.2 / 11.3 8.8 / 13.9

MI-FGSM (α=1, N=20) 35.1 / 58.1 15.8 / 36.2 16.7 / 35.8 11.1 / 16.3 12.2 / 18.1

MI-FGSM (α=4, N=100) 26.4 / 48.2 11.2 / 23.5 9.9 / 21.3 7.0 / 9.5 8.2 / 11.4

DIM (α=1, N=20) 28.1 / 50.3 12.2 / 26.3 11.0 / 23.9 7.0 / 10.6 7.9 / 12.6

DIM (α=4, N=100) 24.7 / 43.2 8.8 / 19.4 7.8 / 16.1 5.1 / 7.1 6.2 / 10.3

TI-DIM (α=1.6, N=20) 27.9 / 45.6 11.7 / 21.7 11.3 / 22.5 6.8 / 8.7 7.5 / 9.9

TI-DIM (α=4, N=100) 22.3 / 36.7 9.0 / 15.8 8.7 / 19.1 5.0 / 6.6 5.7 / 8.2

DR (α=4, N=100)(ours) 22.7 / 43.8 6.8 / 12.4 4.7 / 7.6 2.3 / 2.8 3.0 / 4.5

Table 1: Detection results using validation images of COCO2017 and VOC2012 datasets. Our proposed DR attack performs best on

25 out of 30 different cases, and achieves 12.8 mAP on average over all the experiments. It creates 3.9 more drop in mAP compared to the

best of the baselines (TI-DIM: 16.7 mAP).

the change in std for middle layers is larger compared to the

top and bottom layers. We can infer that for initial layers,

the budget ǫ constrains the loss function to reduce the std,

while for the layers near the output, the std is already rela-

tively small, and cannot be reduced too much further. Based

on this observation, we choose one of the middle layers as

the target of the DR attack. More specifically, in the fol-

lowing experiments we attack conv3-3 for VGG16, the last

layer of group − A for inception-v3, and the last layer of

2nd group of bottlenecks(conv3-8-3) for ResNet152.

4.3. Open Source Model Experiments

We compare the proposed DR attack with the state-of-

the-art adversarial techniques, to demonstrate the transfer-

ability of our method on public object detection and seman-

tic segmentation models. We use validation sets of Ima-

geNet, VOC2012 and COCO2017 for testing object detec-

tion and semantic segmentation tasks. For ImageNet, 5000

correctly classified images from the validation set are cho-

sen. For VOC and COCO, 1000 images from the validation

set are chosen. The test images are shared in github reposi-

tory: dispersion reduction test images [2].

The results for detection and segmentation on COCO and

VOC datasets are shown in Tables 1 and 2, respectively.

The results for detection and segmentation on the ImageNet

dataset are provided in the Appendix. We also include the

table for average results over all the datasets, including Im-

ageNet, in the Appendix.

As can be seen from Tables 1 and 2, our proposed

method (DR) achieves the best results on 36 out of 42 ex-

periments by degrading the performance of the target model

by a larger margin. For detection experiments, the DR at-

tack performs best on 25 out of 30 different cases and for

semantic segmentation 11 out of 12 different cases. For de-

tection, our proposed attack achieves 12.8 mAP on average

over all the experiments. It creates 3.9 more drop in mAP

compared to the best of the baselines (TI-DIM: 16.7 mAP).

For semantic segmentation, our proposed attack achieves

20.0 mIoU on average over all the experiments. It achieves

5.9 more drop in mIoU compared to the best of the baselines
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(DIM: 25.9 mIoU).

To summarize the results on the ImageNet dataset pro-

vided in the Appendix, our proposed method (DR) achieves

the best results in 17 out of 21 experiments. For detection,

our proposed attack achieves 7.4 relative-mAP on average

over all the experiments. It creates 3.8 more drop in relative-

mAP compared to the best of the baselines (TI-DIM: 11.2).

For semantic segmentation, our proposed attack achieves

16.9 relative-mIoU on average over all the experiments. It

achieves 4.8 more drop in relative-mIoU compared to the

best of the baselines (TI-DIM: 21.7).

Seg. Results Using Val. Images of
DeepLabv3

ResNet-101

FCN

ResNet-101

COCO and VOC Datasets mIoU mIoU

COCO/VOC COCO/VOC

VGG16 PGD (α=1, N=20) 37.8 / 42.6 26.7 / 29.1

PGD (α=4, N=100) 22.3 / 24.0 17.1 / 18.1

MI-FGSM (α=1, N=20) 32.8 / 36.2 22.7 / 25.0

MI-FGSM (α=4, N=100) 19.9 / 21.6 22.0 / 16.5

DIM (α=1, N=20) 30.3 / 33.2 15.5 / 22.4

DIM (α=4, N=100) 21.2 / 23.7 16.2 / 16.9

TI-DIM (α=1.6, N=20) 29.9 / 31.1 21.9 / 23.0

TI-DIM (α=4, N=100) 23.8 / 24.7 18.9 / 19.2

DR (α=4, N=100)(ours) 17.2 / 21.8 12.9 / 14.4

IncV3 PGD (α=1, N=20) 49.4 / 56.0 36.8 / 40.1

PGD (α=4, N=100) 37.1 / 41.3 26.1 / 28.3

MI-FGSM (α=1, N=20) 44.2 / 51.1 32.4 / 35.4

MI-FGSM (α=4, N=100) 33.7 / 39.1 24.0 / 35.4

DIM (α=1, N=20) 35.7 / 40.4 24.9 / 27.2

DIM (α=4, N=100) 30.4 / 33.9 21.3 / 22.3

TI-DIM (α=1.6, N=20) 35.3 / 37.0 26.4 / 27.7

TI-DIM (α=4, N=100) 29.0 / 29.8 22.5 / 23.5

DR (α=4, N=100)(ours) 23.2 / 29.2 17.1 / 20.9

Res152 PGD (α=1, N=20) 45.2 / 50.2 30.7 / 34.6

PGD (α=4, N=100) 31.5 / 35.1 21.6 / 24.0

MI-FGSM (α=1, N=20) 39.9 / 43.9 26.4 / 29.9

MI-FGSM (α=4, N=100) 28.2 / 32.2 19.9 / 22.1

DIM (α=1, N=20) 31.3 / 35.5 22.3 / 23.9

DIM (α=4, N=100) 25.9 / 28.8 19.0 / 19.9

TI-DIM (α=1.6, N=20) 31.8 / 33.9 23.7 / 25.2

TI-DIM (α=4, N=100) 26.6 / 26.6 20.3 / 21.4

DR (α=4, N=100)(ours) 22.7 / 27.0 16.4 / 17.6

Table 2: Semantic Segmentation results using validation im-

ages of the COCO2017 and VOC2012 datasets. Our proposed

DR attack performs best on 11 out of 12 cases and achieves 20.0

mIoU on average over all the experiments. It achieves 5.9 more

drop in mIoU compared to the best of the baselines (DIM: 25.9

mIoU).

4.4. Cloud API Experiments

We compare the proposed DR attack with the state-

of-the-art adversarial techniques to enhance transferability

on commercially deployed Google Cloud Vision (GCV)

tasks 1:

• Image Label Detection (Labels) classifies image into

broad sets of categories.

1https://cloud.google.com/vision/docs

Barn Owl: 

99%

Turtle : 84%

bbox : […]

Adult: Likely

Racy: Likely

“STOP” : […]

“HAWMER” : […]

“TIME” : […]

“STO)” : […]

“HAWWER” : […]

“TWC” : […]

Vertebrate: 

99%

Adult: Unlikely

Racy: Unlikely

Animal : 77%

bbox : […]

Labels Objects SafeSearch Texts

Original

Adversarial

GCV
APIs

Figure 5: Visualization of images chosen from the testing set and

their corresponding AEs generated by DR. All the AEs are gener-

ated on VGG-16 conv3.3 layer, with perturbations clipped by

l∞ ≤ 16, and they effectively fool the four GCV APIs as indi-

cated by their outputs.

• Object Detection (Objects) detects multiple objects

with their labels and bounding boxes in an image.

• Image Texts Recognition (Texts) detects and recog-

nize text within an image, which returns their bounding

boxes and transcript texts.

• Explicit Content Detection (SafeSearch) detects

explicit content such as adult or violent content within

an image, and returns the likelihood.

Datasets. We use ImageNet validation set for test-

ing Labels and Objects, and the NSFW Data

Scraper [7] and COCO-Text [4] dataset for evaluating

against SafeSearch and Texts, respectively. We ran-

domly choose 100 images from each dataset for our evalua-

tion, and Fig. 5 shows sample images in our test set. Please

note that due to the API query fees, larger scale experiments

could not be performed for this part.

Experiment setup. To generate the AEs, We use nor-

mally trained VGG-16 and Resnet-152 as our source mod-

els, since Resnet-152 is commonly used by MI-FGSM and

DIM for generation [36, 13]. Since the DR attack targets

a specific layer, we choose conv3.3 for VGG-16 and

conv3.8.3 for Resnet-152 as per the profiling result in

Table 3 and discussion in Sec. 4.2.2.

Attack parameters. We follow the default settings

in [13] with the momentum decay factor µ = 1 when im-

plementing the MI-FGSM attack. For the DIM attack, we

set probability p = 0.5 for the stochastic transformation

function T (x; p) as in [36], and use the same decay fac-

tor µ = 1 and total iteration number N = 20 as in the

vanilla MI-FGSM. For our proposed DR attack, we do not

rely on the FGSM method, and instead use the Adam opti-

mizer (β1 = 0.98, β2 = 0.99) with learning rate of 5e−2 to

reduce the dispersion of target feature map. The maximum

946



Model Attack
Labels Objects SafeSearch Texts

acc. mAP (IoU=0.5) acc. AP (IoU=0.5) C.R.W2

baseline (SOTA)1 82.5% 73.2 100% 69.2 76.1%

VGG-16

MI-FGSM 41% 42.6 62% 38.2 15.9%

DIM 39% 36.5 57% 29.9 16.1%

DR (Ours) 23% 32.9 35% 20.9 4.1%

Resnet-152

MI-FGSM 37% 41.0 61% 40.4 17.4%

DIM 49% 46.7 60% 34.2 15.1%

DR (Ours) 25% 33.3 31% 34.6 9.5%

1 The baseline performance of GCV models cannot be measured due to the mismatch between the original

labels and labels used by Google. We use the GCV prediction results on original images as ground truth,

thus the baseline performance should be 100% for all accuracy and 100.0 for mAP and AP. Here we

provide state-of-the-art performance [5, 6, 4, 7] for reference.
2 Correctly recognized words (C.R.W) [4].

Table 3: The degraded performance of four Google Cloud Vision models, where we attack a sin-

gle model from the left column. Our proposed DR attack degrades the accuracy of Lables and

SafeSearch to 23% and 35%, the mAP of Objects and Texts to 32.9 and 20.9, the word recog-

nition accuracy of Texts to only 4.1%, which outperform existing attacks.

perturbation of all attacks in the experiments are limited by

clipping at l∞ = 16, which is still considered less percepti-

ble for human observers [25].

Evaluation metrics. We perform adversarial attacks

only on a single network and test them on the four black-

box GCV models. The effectiveness of attacks is measured

by the model performance under attacks. As the labels from

original datasets are different from labels used by GCV, we

use the prediction results of GCV APIs on the original data

as the ground truth, which gives a baseline performance of

100% relative accuracy or 100.0 relative mAP and AP re-

spectively.

Results. We provide the state-of-the-art results on each

CV task as reference in Table 3. As shown in Table 3,

DR outperforms other baseline attacks by degrading the

target model performance by a larger margin. For ex-

ample, the adversarial examples crafted by DR on VGG-

16 model brings down the accuracy of Labels to only

23%, and SafeSearch to 35%. Adversarial examples

created with the DR also degrade the mAP of Objects

to 32.9% and AP of text localization to 20.9%, and with

barely 4.1% accuracy in recognizing words. Strong base-

lines like MI-FGSM and DIM, on the other hand, only cause

38% and 43% success rate, respectively, when attacking

SafeSearch, and are less effective compared with DR

when attacking all other GCV models. The results demon-

strate the better cross-task transferability of the dispersion

reduction attack.

Figure 5 shows example of each GCV model’s output

for the original and adversarial examples. The performance

of Labels and SafeSearch are measured by the accu-

racy of classification. More specifically, we use top1 accu-

racy for Labels, and use the accuracy for detecting the

given porn images as LIKELY or VERY LIKELY being

adult for SafeSearch. The performance of Objects

is given by the mean average precision (mAP) at IoU=0.5.

For Texts, we follow the bi-fold evaluation method of IC-

DAR 2017 Challenge [4]. We measure text localization ac-

curacy using average precision (AP) of bounding boxes at

IoU=0.5, and evaluate the word recognition accuracy with

correctly recognized words (C.R.W) that are case insensi-

tive.

When comparing the effectiveness of attacks on different

generation models, the results demonstrate that DR gener-

ates adversarial examples that transfer better across these

four commercial APIs. The visualization in Fig. 5 shows

that the perturbed images with l∞ ≤ 16 well maintain their

visual similarities with the original images, but fool the real-

world computer vision systems.

5. Discussion and Conclusion

We have proposed a Dispersion Reduction (DR) attack

to improve the cross-task transferability of adversarial ex-

amples. Specifically, our method reduces the dispersion of

intermediate feature maps. Compared to existing black-box

attacks, results show that our proposed method performs

better on attacking black-box cross-CV-task models. One

intuition behind the DR attack is that by minimizing the dis-

persion of feature maps, images become “featureless.” This

is because few features can be detected if neuron activations

are suppressed by perturbing the input (Fig. 2). Moreover,

with the observation that low-level features bear more sim-

ilarities across CV models, we hypothesize that the DR at-

tack would produce transferable adversarial examples when

one of the middle convolution layers is targeted. Evalu-

ation on different CV tasks shows that this enhanced at-

tack greatly degrades model performance compared to prior

state-of-the-art attacks, and thus would facilitate evasion at-

tacks against a different task model or even an ensemble of

CV-based detection mechanisms.
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