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Abstract

Depth completion recovers dense depth from sparse mea-

surements, e.g., LiDAR. Existing depth-only methods use

sparse depth as the only input. However, these methods

may fail to recover semantically consistent boundaries, or

small/thin objects due to 1) the sparse nature of depth points

and 2) the lack of images to provide semantic cues. This pa-

per continues this line of research and aims to overcome the

above shortcomings. The unique design of our depth comple-

tion model is that it simultaneously outputs a reconstructed

image and a dense depth map. Specifically, we formulate

image reconstruction from sparse depth as an auxiliary task

during training that is supervised by the unlabelled gray-

scale images. During testing, our system accepts sparse

depth as the only input, i.e., the image is not required. Our

design allows the depth completion network to learn com-

plementary image features that help to better understand

object structures. The extra supervision incurred by image

reconstruction is minimal, because no annotations other

than the image are needed. We evaluate our method on the

KITTI depth completion benchmark and show that depth

completion can be significantly improved via the auxiliary

supervision of image reconstruction. Our algorithm consis-

tently outperforms depth-only methods and is also effective

for indoor scenes like NYUv2.

1. Introduction

Dense and accurate depth is beneficial to many computer

vision tasks, e.g., 3D object detection [5, 39], optical flow

estimation [31, 48], and semantic segmentation [42, 45].

However, depth maps acquired from sensors, like LiDAR,

are too sparse to fulfill practical needs. Depth completion

thus aims to recover dense depth from sparse measurements.

Existing studies for depth completion are generally classi-

fied into depth-only and multiple-input methods. Depth-only

methods use sparse depth as the only input [36, 26, 11].

However, they may fail to recover semantically consistent

boundaries, or small/thin objects due to the sparsity of in-
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put depth points and the lack of images to provide semantic

cues (see Fig. 1). The intuitive solution is to take the RGB

image or its gray scale as an additional input to the model,

as used by multiple-input methods [40, 30, 7]. Nevertheless,

aggregating features from two modalities is challenging and

complicated [11, 30], and also, calibrating images to depth

maps can be expensive in practice [14, 20]. Further, for end-

use systems, such as autonomous vehicles, incorporating

additional calibrated sensors, like the camera, and associated

processing modules may significantly increase the cost.

The question arising from above is, can we continue the

depth-only paradigm but incorporate more image features

so as to provide richer semantics to overcome shortcomings

of this paradigm? To answer this, we start from an observa-

tion that, from sparse depth we can still roughly see some

object structures according to their general shape and depth

difference to the background, e.g., the car and pole examples

in Fig. 1. This motivates us into thinking if some image

semantics can be recovered from sparse depth, we will be

able to relax the need of taking the image as input.

Motivated by the above considerations, we propose a

depth completion model that takes sparse depth as the only

input and at the same time has the ability to learn from im-

ages features to provide semantic cues. Specifically, we

train the network to output a reconstructed image and a

dense depth map simultaneously, as illustrated in Fig. 2(a).

We formulate image reconstruction from sparse depth as

an auxiliary task during training that is supervised by the

unlabelled gray-scale images. During testing, no image is

required as input. The unique design of our model allows

the depth completion network to learn complementary im-

age features that help to better understand object structures,

and thus, produce more semantically consistent and accurate

results than existing depth-only methods (see Fig. 1). More-

over, the extra supervision incurred by image reconstruction

at the training stage is minimal, because no annotations other

than the image are needed. Therefore, our method is prac-

tical in use. We evaluate our method on the KITTI depth

completion benchmark and show that depth completion can

be significantly improved via the auxiliary learning of image

reconstruction.
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(a) Sparse depth (b) RGB image (c) Glob_guide [38] (d) S2D [26] (e) Our reconst. image (f) Our depth (g) Ground truth 
Figure 1. Depth completion from sparse depth. Only given (a) sparse depth as input without (b) corresponding RGB images, existing

depth-only methods, like (c) Glob guide [38] and (d) S2D [26] cannot appropriately complete the depth of objects with specific boundaries

(e.g., the car) and small/thin objects (e.g., the pole), due to the lack of depth points and images to provide semantic cues. (e) Different from

theirs, we implicitly recover these semantic cues via image reconstruction directly from sparse depth. It helps (f) our depth completion

recover more semantically consistent boundaries and deal with small/thin objects more accurately, and our results are closer to (g) the ground

truth. All the depth maps are colorized for better visualization.

In summary, we make the following major contributions:

• We propose a depth completion network that only takes

sparse depth as input and outputs a reconstructed image

and a dense depth map simultaneously. This practice

largely overcomes the shortcomings of existing depth-

only methods, i.e., the lack of semantic cues.

• By formulating image reconstruction as an auxiliary

task during training, we do not need additional annota-

tions other than the image. This is cheap and easy to

implement. During testing, no image is required.

• We demonstrate that our approach significantly outper-

forms depth-only methods on the KITTI depth comple-

tion benchmark and can be applied to indoor scenes.

2. Related Work

This section introduces existing literatures on depth com-

pletion and multi-task learning, as well as auxiliary learning.

2.1. Depth completion

Existing methods for depth completion can be roughly

classified into depth-only and multiple-input. Depth-only

methods only take sparse depth as input and output the

dense depth map (see Fig. 2(b)). To handle data sparsity,

Uhrig et al. [36] propose SparseConvs, a sparsity invariant

CNN method, where a binary mask is generated to indicate

the availability of depth value, i.e., 1 for available depth

values and 0 for none. The binary mask can be updated itera-

tively but is over-saturated in shallow layers and has limited

performance in deeper layers [17]. It can be improved by de-

signing a more adaptive mask [15] or using other techniques

like compressed sensing [8], confidence/attention map con-

struction [12, 38], and multi-scale learning and refinement

[27, 26]. However, they are computationally expensive and

unable to recover the full structure of objects due to the lack

of images to provide semantic cues.

Differently, multiple-input methods supplement extra in-

formation into the input and take advantage of complemen-

tary features from other modalities. Traditionally, the popu-

lar choice is to take the image as an additional input, since it

can provide rich semantic cues [30, 40, 11, 26, 7, 16]. This

is particularly useful in distinguishing different objects, gen-

erating consistent boundaries, and preserving details. In this

case fusion strategies are widely employed, e.g., early fusion

where the image and the depth map are concatenated to get

a 4D tensor, and late fusion by extracting features from the

image and the depth separately and then fusing them, as

shown in Fig. 2(c) and (d) respectively. A number of studies

also attempt to make use of other modalities, e.g., surface

normals [30, 40], semantic classes [18], point clouds [6],

and disparity maps [41]. However, these inevitably increase

model complexity.

2.2. Multi-task learning

Multi-Task Learning (MTL) aims to improve perfor-

mance by learning individual yet related tasks simultane-

ously [2]. Features are shared among these tasks to exploit

common representations, while they can also be complemen-

tary to each other [19]. This learning strategy has been suc-

cessfully employed in semantic segmentation [19, 29], ob-

ject detection [22, 23], single image depth estimation [4, 46].

Similarly, for depth completion, Qiu et al. propose to regress

completion and surface normal estimation at the same time

[30]. Jaritz et al. jointly train the network with semantic

segmentation and depth completion [18].

Recently, a variant of MTL, known as Auxiliary Learning

(AL), is becoming popular. In this framework, a primary task

is defined while all other tasks served as auxiliary regulariz-

ers that enhance the primary one [32]. AL has been proven

to be effective in a number of computer vision tasks, e.g.,

hand-written digit recognition [43], semantic segmentation

[24], face anti-spoofing [25], visual odometry [37] etc. We

also employ it and focus on depth completion as the primary

task. We expect the auxiliary task, i.e. image reconstruction,

to facilitate it with complementary image features that can

help to better understand object structures. To the best of

our knowledge, our work is the first to introduce auxiliary

learning to depth completion.
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Figure 2. Different depth completion models. (a) Our model takes sparse depth as the only input, and outputs a reconstructed image and

dense depth simultaneously. Image reconstruction is only used as an auxiliary task at the training stage. During testing, no image is required.

(b) Depth-only models input sparse depth and output its dense map. (c) and (d) Multiple-input models take the image as an additional input

with an early or late fusion strategy, and the image is required in both training and testing.

3. Methodology

In this section, we first give a general formulation to

describe existing depth completion models and contrast these

with ours. We then elaborate the details of our method.

3.1. Depth completion models

Given a sparse depth map x where the empty locations are

filled with zeros, a general depth completion model learns to

recover dense depth x̃ supervised by its ground truth x
∗.

Depth-only model. A depth-only model D only takes

sparse depth, x, as input:

x̃ = D(x; θD), (1)

where θD denotes the model parameters. The optimal model

is parameterized by θ∗D, and obtained during training by

minimizing the loss function L, i.e.,

θ∗D = argmin
θD

L(x̃,x∗). (2)

Multiple-input model. A multiple-input model T com-

bines the sparse depth x and the corresponding calibrated

image r as input:

x̃ = T (x, r; θT ), (3)

and the optimal model is

θ∗T = argmin
θT

L(x̃,x∗). (4)

Our model. As illustrated in Fig. 3, our model G takes

the sparse depth x as the only input, and outputs dense depth

x̃ and a reconstructed image r̃ simultaneously:

x̃, r̃ = G(x; θG) ⇒

{

x̃ = Gdpt(F(x; θF ); θdpt, θshr)
r̃ = Gimg(F(x; θF ); θimg, θshr)

,

(5)

where F parameterized by θF extracts features from the

input, θdpt and θimg are parameters for the depth comple-

tion module Gdpt and image reconstruction module Gimg

respectively, and θshr represents feature sharing between the

two modules. During training, the parameters of the joint

model, θG = (θF , θdpt, θimg, θshr), are optimized such that

θ∗G = argmin
θG

(wdpt · L(x̃,x
∗) + wimg · L(r̃, r)), (6)

where wdpt and wimg are weighting factors of the two tasks.

This is a typical multi-task learning framework [3], where the

network jointly learns to recover dense depth and reconstruct

the image directly from the sparse input. More specifically,

we treat depth completion as the primary task, and image re-

construction as an auxiliary task, which is known as auxiliary

learning [32]. The purpose is to transfer useful knowledge

from the auxiliary task to the primary one to enhance the

feature learning of the latter [10]. In our case, by enforc-

ing feature correlations via sharing, we expect the depth

completion network to learn more complementary image

features to provide semantic cues for understanding object

structures. Note that the auxiliary image reconstruction is

supervised by unlabelled camera images, which are cheaper

to acquire than manually-labelled data. In the following, we

illustrate the network architecture, loss functions, and how

image reconstruction facilitates depth completion.

During testing, we only focus on the primary depth com-

pletion and no image is required, i.e.,

x̃ = Gdpt(F(x; θ∗F ); θ
∗

dpt, θ
∗

shr). (7)

3.2. Network architecture

The overall network architecture for training our model is

based on Eq. 5 and shown in Fig. 3. We specify each module

below and more details of the configuration of each layer

can be found in the supplementary material.

Feature encoder F . We extract multi-scale features from

the input by convolving with different kernel sizes. This is

inspired by the Inception architecture [35], but with 3 ×
3, 5 × 5, 7 × 7, 9 × 9 kernels instead. In the last layer,

all the feature maps are with 1/16 resolution to the input

and concatenated in a channel-wise manner. We denote the

output of this encoder, representing initial features from the

sparse input, as f0 = F(x).

Depth completion module Gdpt. It is composed of a

depth feature extractor Gd1 and depth decoder Gd2. Gd1

focuses on learning depth-specific features and gradually

upsamples f0 with transpose convolutions (1/16→ 1/8→
1/4 → 1/2). The intermediate features in Gd1 are also

transferred to the feature sharing module (see Fig. 4). Its

output, Gd1(f0), containing both depth and shared features,

is fed into Gd2 to produce dense depth.
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Figure 3. Network architecture for training our model. It contains: 1) the feature encoder - extracting initial features from the sparse input;

2) the depth completion module - specializing depth features and producing dense depth; 3) the image reconstruction module - specializing

image features and reconstructing the image from sparse depth; and 4) the feature sharing module - aggregating features from depth and

image modules. Depth completion is the primary task, while image reconstruction is an auxiliary and supervised by the gray-scale image.
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Figure 4. Structure of the feature sharing module. It aggregates

depth and image features by element-wise summation, followed by

convolutions in each layer. The depth and image feature modules

output the concatenation of their last layer features and the shared

features.

Image reconstruction module Gimg . The underlying

architecture of the image reconstruction module is identical

to the depth completion module, where Gr1 specializes and

transfers image features, and the image decoder, Gr2, out-

puts the reconstructed image based on image-specific and

shared features.

Feature sharing module. This module aggregates fea-

tures from the depth and image feature modules via element-

wise summation followed by convolutions in each layer, as

illustrated in Fig. 4. Suppose there are Nt layers in each

module, and we denote the feature maps in n-th convolu-

tional layer in Gd1, Gr1, and the sharing module as fd(n),
fr(n), and fs(n) respectively. We use Φ(·) to represent the

general convolutional operator. In the first layer, i.e., n = 1,

⎧

⎨

⎩

fr(1) = Φ(f0)
fd(1) = Φ(f0)
fs(1) = fr(1)⊕ fd(1)

, (8)

where ⊕ is element-wise summation. In subsequent layers

before the last layer, i.e., 1 < n < Nt,
⎧

⎨

⎩

fr(n) = Φ(fr(n− 1))
fd(n) = Φ(fd(n− 1))
fs(n) = fr(n)⊕ fd(n)⊕ Φ(fs(n− 1))

. (9)

In the last layer where n = Nt, only convolutions are per-

formed,
⎧

⎨

⎩

fr(Nt) = Φ(fr(Nt − 1))
fd(Nt) = Φ(fd(Nt − 1))
fs(Nt) = Φ(fs(Nt − 1))

. (10)

The final output of both Gd1 and Gr1 is the channel-wise

concatenation of their corresponding feature maps and the

shared features, i.e.,
{

Gd1(f0) = Cat(fd(Nt), fs(Nt))
Gr1(f0) = Cat(fr(Nt), fs(Nt))

. (11)

The two concatenated features are further fed into depth and

image decoders to produce the dense depth x̃ and recon-

structed image r̃, i.e.,
{

x̃ = Gdpt(f0) = Gd2(Gd1(F(x)))
r̃ = Gimg(f0) = Gr2(Gr1(F(x)))

. (12)

Loss functions. To train the network, we first define the

�2 loss for depth completion (primary task):

�dpt =
1

N1

‖Ψ⊙ (x̃− x
∗)‖

2

2
, (13)

where N1 is the number of pixels that have depth values in

ground truth x
∗, Ψ is a binary mask of x∗ where 1 means

available depth values and 0 for none, and ⊙ is the element-

wise multiplier. We use the gray-scale image, r, to supervise

auxiliary image reconstruction. The �2 loss function is:

�img =
1

N2

‖r̃− r‖
2

2
, (14)

where N2 is the number of pixels in the image. Hence, the

total loss for the entire network is:

�total = wdpt · �dpt + wimg · �img. (15)
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(c) Image features (d) Shared features 

(a) RGB image and sparse depth (b) Depth features 

Figure 5. Feature visualization. (a) The RGB image is used for

reference and sparse depth is the only input. (b) Depth features

focus more on objects that are visible in both near and far regions of

the depth map. (c) Image features highlight global visual structure

as well as some details that are not reflected in depth. (d) Shared

features take advantage of both depth and image features, and cover

most objects (upper) as well as some details like their boundaries

and structures (bottom). Zoom in for clearer visualization.

Eq. 15 indicates that �img serves as a regularizer during

training to facilitate parameter learning of depth completion

and thus improves its overall performance.

Discussions. To further investigate the learning ability of

our network, we select and visualize two representative fea-

ture maps from the first and second channels of the last layer

of the depth features, image features, and shared features

respectively, i.e., fd(Nt), fr(Nt), and fs(Nt). The depth

features shown in Fig. 5(b) indicate that they focus more on

visible objects in both near and far regions of the depth map,

e.g., cars and poles. However, due to the sparsity of depth

points and lack of image information, these features only

partially reflect the real shape of the objects.

The image features in Fig. 5(c), by contrast, highlight

the global structure, e.g., the road, and some details that

are not reflected in depth, e.g., the missing parts around car

boundaries and poles. These features are beneficial to distin-

guish highly occluded objects and recover the full structure

of small/thin objects. Therefore, image features are comple-

mentary to depth features. After aggregating these features

via the sharing module, the shared features shown in Fig. 5(d)

take advantage of both depth and image features, and cover

most objects as well as some details like their boundaries

and structures. In summary, the auxiliary learning of image

reconstruction enables the depth completion network to learn

useful and complementary image features via sharing, and

thus obtains more semantic cues for better completion. This

can be achieved even without the image as input.

4. Experiment

In the following, we show the effectiveness of our method

through extensive experiments. This includes quantitative

and visual comparison with state-of-the-art approaches, ab-

lation studies on several factors that affect completion per-

formance, and generalization to indoor scenes.

4.1. Implementation details

Dataset. The KITTI depth completion benchmark [36]

contains raw, sparse depth maps collected by LiDAR which

are further separated into 85,898 frames for training, 1,000

for validation, and 1,000 for testing. Each depth map has the

corresponding RGB image, and we convert the RGB image

to gray-scale to supervise image reconstruction only at the

training stage. The KITTI ground truth was generated by

accumulating multiple LiDAR frames, and removing outliers

by semi-global matching [36], which makes it semi-dense

(depth completion becomes harder in this case because the

semi-dense ground truth cannot completely reflect the depth

of some object boundaries and small objects). Test samples

have no ground truth available, and the results are evaluated

on the benchmark server.

Training configuration. The network is implemented in

PyTorch [28]. During training, the input is cropped from the

bottom to 352×1216. We train the network on two NVIDIA

1080 Titan GPUs with a batch size of 16. The loss function

is defined in Eq. 15, where wdpt = 1 and wimg = 10−4. We

use the Adam optimizer [21], and the initial learning rate is

10−3 and decayed by half every five epochs.

Evaluation metrics. Similar to the benchmark [36], we

calculate RMSE and MAE from depth (mm), and iRMSE

and iMAE from inverse depth (1/km). RMSE measures

depth completion errors directly and penalizes more for un-

desirable larger errors. Differently, MAE treats all the errors

equally. Hence, we consider RMSE to be the more impor-

tant evaluation metric, which is consistent with the KITTI

benchmark where RMSE is used for ranking.

4.2. Comparison with the state-of-the-art methods

Quantitative comparison. In Table 1, we report quan-

titative results of our method as well as the state-of-the-art

approaches on the KITTI test set. Compared with depth-only

methods (highlighted in gray), our model trained with �2 loss

achieves the best RMSE = 901.43, ranking first among them

and surpassing the second place by 21.50. Our MAE and

iMAE are both comparable to others. However, our iRMSE

is less competitive. The underlying reason is iRMSE mea-

sures the accuracy of inverse depth, in which case depth

points in closer regions with relatively smaller errors are

more dominant. By contrast, we use �2 loss for depth to

penalize larger errors. There thus exists a trade-off in bal-

ancing large and small errors with this metric. We consider

that iRMSE is less reliable than RMSE in reflecting model

accuracy mainly because iRMSE is not a direct metric to

measure depth errors. We have mathematically justified this

in the supplementary material that smaller errors may yield

larger iRMSE. We refer the reader to Fig. 8(c) where our

model performs competitively to the state-of-the-art meth-

ods in close regions, e.g., 0-40m. iMAE has the same issue.

Consequently, we still consider RMSE as the primary metric.
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RMSE=1258.64 

RMSE=1231.84 

RMSE=1886.35 

RMSE=528.92 

RMSE=959.44 

RMSE=1141.85 

RMSE=1069.51 

RMSE=737.41 

RMSE=844.28 

RMSE=857.54 

RMSE=1086.93 

RMSE=785.84 

Figure 6. Visual comparison with state-of-the-art depth-only methods on the KITTI test set. Our model can produce more accurate depth

completion results in small/thin objects, boundaries, and distant regions. To the right of each close-up is the error map, where small errors

are displayed in blue and large errors in red. Black regions mean the ground truth labels are not used for evaluation.

In fact, several studies have observed that training with

different loss functions may yield different results [6, 12].

For example, Spade-sD [17] achieves the best iRMSE and

iMAE because it is directly trained on inverse depth. To

further validate our method, we re-train the model with �1
loss, with the same network setting in Section 4.1. Unsur-

prisingly, using �1 loss yields a smaller MAE (best among

depth-only methods) but slightly larger RMSE (still ranks

first). Since we mainly focus on RMSE, in the following,

our default model refers to that trained with �2 loss unless

otherwise specified.

Our model is also comparable to multiple-input meth-

11311



(c) With image features w/o sharing(a) RGB image (b) Only with depth features (d) With image features and sharing

Figure 7. Visual comparison of depth completion results after incorporating image reconstruction and feature sharing. (a) RGB images for

reference. (b) Only with depth features cannot recover the full structure of objects. (c) With image features but without sharing, the results

are slightly improved. (d) With shared features, the model performs better in recovering consistent object structures and small/thin objects.

Method RMSE ↓ MAE ↓ iRMSE ↓ iMAE ↓

SparseConvs [36] 1601.33 481.27 4.94 1.78

ADNN [8] 1325.37 439.48 59.39 3.19

Spade-sD [17] 1035.29 248.32 2.60 0.98

NConv-CNN (d) [11] 1268.22 360.28 4.67 1.52

S2D (d) [26] 954.36 288.64 3.21 1.35

Glob guide [38] 922.93 249.11 2.80 1.07

Ours (ℓ2 loss) 901.43 292.36 4.92 1.35

Ours (ℓ1 loss) 915.86 231.37 3.19 1.23

DeepLiDAR [30] 758.38 226.50 2.56 1.15

PwP [40] 777.05 235.17 2.42 1.13

S2D (gd) [26] 814.37 249.95 2.80 1.21

NConv-CNN (gd) [11] 829.98 233.26 2.60 1.03

CSPN [7] 1019.64 279.46 2.93 1.15

Table 1. Quantitative comparison with state-of-the-art methods on

the KITTI test set. The best results are marked with bold among

methods that do not use any images during testing (gray region). ↓

means smaller is better.

ods, e.g., it surpasses CSPN [7] in terms of RMSE, and

outperforms PwP [40], S2D (gd) [26], NConv-CNN-L2 (gd)

[11], and CSPN [7] in MAE if trained with �1 loss. In sum-

mary, our approach generally lies in between depth-only and

multiple-input methods, showing competitive performance

even without using the image as input.

Visual comparison. We present qualitative results in

Fig. 6 and compare with three state-of-the-art depth-only

methods, i.e., Glob guide [38], S2D (d) [26], and Nconv-

CNN (d) [11]. For each example, we also provide the RMSE

and close-ups (left) with corresponding error maps (right).

Overall, our model is able to produce more accurate depth

completion results for small/thin objects, boundaries, and

distant regions. Specifically, our method recovers the depth

of narrow poles in Example 1 and 3 more appropriately in

preserving their general structures. Besides, our completion

results also have smaller errors along boundaries of the tree

and car, as well as the distant regions, e.g., the right close-up

in Example 2 where the white car and its surroundings are

relatively far away.

Moreover, our RMSE in these three examples is signifi-

cantly better than others. The good performance is mainly

RMSE ↓ MAE ↓

B 1267.01 322.32

B + I 1103.85 301.64

B + I + S (ours) 914.65 297.38

Table 2. Ablation study on the KITTI validation set. “B”, “I”, and

“S” represent baseline only with depth features, image features, and

feature sharing respectively. The best results are marked with bold.

↓ means smaller is better.

owing to image reconstruction as an auxiliary task1, because

it enables our depth completion network to acquire more

semantic cues and understand object structures better. Be-

sides, since the image is truly dense, it can also overcome

the shortcoming of the semi-dense ground truth in reflecting

the full structures of objects. Therefore, our performance is

largely improved over depth-only methods.

4.3. Model analysis & ablation studies

Impact of image reconstruction. Our proposed auxil-

iary image reconstruction can largely facilitate depth comple-

tion. To justify this, we set the baseline B as the combination

of the feature encoder and depth completion module. Based

on it, B + I denotes the incorporation of the image recon-

struction module but without feature sharing, while B+I+S
is our ultimate model with shared features. The quantita-

tive comparison in terms of RMSE and MAE is reported in

Table 2. With only image reconstruction as an additional

task but no shared features, depth completion performance

is slightly boosted. This is mainly because more parameters

are introduced but the image features are not sufficiently

transferred to the depth completion network. Feature sharing

between depth and image modules enables the depth com-

pletion network to better take advantage of image features,

and thus the overall performance is further improved. Fig. 7

shows qualitative comparisons, where after feature sharing,

the model performs better in recovering consistent object

structures and small/thin objects.

1These reconstructed images displayed in Fig. 6 are less comparable to

the original images from appearance. However, for image reconstruction,

we only care about the object structures it can reveal rather than the specific

intensity.
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Figure 8. Quantitative comparison with the baseline and state-of-the-art methods Glob guide [38], S2D [26] in three cases on the KITTI

validation set. “B”, “I”, and “S” represent baseline only with depth features, image features, and feature sharing respectively. Our model

performs consistently better in all cases.

RMSE ↓ REL ↓ δ1.25 ↑ δ1.252 ↑ δ1.253 ↑

Bilateral [33] 0.479 0.084 92.4 97.6 98.9

TVG [13] 0.635 0.123 81.9 93.0 96.8

Zhang et al. [44] 0.228 0.042 97.1 99.3 99.7

Ma et al. [27] 0.204 0.043 97.8 99.6 99.9

Nconv-CNN [12] 0.129 0.018 99.0 99.8 100

CSPN [7] 0.117 0.016 99.2 99.9 100

DeepLiDAR [30] 0.115 0.022 99.3 99.9 100

Ours 0.125 0.030 99.1 99.8 100

Table 3. Quantitative comparisons on the NYUv2 dataset. Note

that ours is the only one that does not use the image during testing,

while others take the image as an additional input at both training

and testing stages. Best results are marked with bold. ↓ means

smaller is better, and ↑ means larger is better.

Robustness to input density. We randomly drop depth

points in the sparse input with different ratios, and com-

pare RMSE with the baseline and other two state-of-the-art

methods Glob guide [38] and S2D [26] in Fig. 8(a). Our

model performs consistently better than others, indicating

its robustness to input sparsity.

Comparison in different semantic classes. To validate

that our model is able to acquire semantically meaningful

image features and use them to facilitate depth completion,

we compare results within different semantic classes. Specif-

ically, we fine-tune the off-the-shelf PSPNet [47] pre-trained

on Cityscapes [9] with 400 labelled images from the KITTI

Semantic Segmentation Benchmark [1]. We use this model

to generate semantic masks for the KITTI validation set. We

calculate the RMSE of depth completion in six representa-

tive classes, i.e., Road, Car, Tree, Building, Pole, and Traffic

sign, as shown in Fig. 8(b). The performance in Road and

Building classes of different methods is similar, mainly be-

cause these large and flat regions have more depth points

in the input and thus are easier to complete. Our model

performs significantly better than others in cars, trees, poles,

and traffic signs, which tend to have more specific bound-

aries and smaller structures. The good performance largely

benefits from the effective understanding of object structures

with auxiliary image reconstruction and feature sharing.

Results in different distance ranges. Next, we compare

completion results in different distance ranges. As illus-

trated in Fig. 8(c), our model performs slightly better in near

regions (0-40m) but significantly better in distant regions

(40-80m). This is mainly owing to (1) the use of �2 loss

which penalizes more on larger errors that mostly exist in

distant regions, and (2) the image features can reflect the

global structure like the road (see Fig. 5(c)) which facilitates

our model with a better discrimination in near and distant re-

gions. Besides, the results in the nearest regions, i.e., 0-20m,

are competitive to others, which is not properly reflected by

iRMSE and iMAE.

Generalization to indoor scenes. Finally, we study the

generalization ability of our model in indoor scenes, i.e.,

NYUv2 [34]. Following [27], we only retain 500 points in

each depth map, the same for other methods we compare.

We re-train our network from scratch with this new dataset

(nearly 50K images from 249 scenes for training, and 654

for testing). The evaluation metrics are RMSE, REL (mean

absolute relative error), and the percentage of completed

depth with both the relative error and its inverse under a

threshold t, i.e., t = 1.25, 1.252, 1.253. The quantitative

results are reported in Table 3. Note that all the methods

for comparison take the RGB image as an additional input.

Our model outperforms non-learning based Bilateral [33]

and TVG [13], and deep learning methods Zhang et al. [44],

Ma et al. [27] and NConv-CNN [12] in terms of RMSE. Our

performance is also comparable to CSPN [7] and DeepLi-

DAR [30]. In summary, our model can also generalize well

to other datasets, and thus is a generic approach for depth

completion that only takes sparse depth as input.

5. Conclusion

In this paper, we propose a depth completion model that

takes sparse depth as the only input and outputs dense depth

and a reconstructed image simultaneously. The auxiliary

learning of image reconstruction from sparse depth during

training enables the depth completion network to acquire

more complementary image features for understanding ob-

ject structures. It mostly overcomes the shortcomings of

existing depth-only approaches due to the lack of semantic

cues from images. Future work can be recovering other use-

ful information from sparse depth if ground truth is available,

e.g., semantic labels, to facilitate depth completion.
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