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Abstract

We propose a new method for video object segmenta-

tion (VOS) that addresses object pattern learning from unla-

beled videos, unlike most existing methods which rely heav-

ily on extensive annotated data. We introduce a unified un-

supervised/weakly supervised learning framework, called

MuG, that comprehensively captures intrinsic properties of

VOS at multiple granularities. Our approach can help ad-

vance understanding of visual patterns in VOS and signifi-

cantly reduce annotation burden. With a carefully-designed

architecture and strong representation learning ability, our

learned model can be applied to diverse VOS settings, in-

cluding object-level zero-shot VOS, instance-level zero-shot

VOS, and one-shot VOS. Experiments demonstrate promis-

ing performance in these settings, as well as the potential

of MuG in leveraging unlabeled data to further improve the

segmentation accuracy.

1. Introduction

Video object segmentation (VOS) has two common set-

tings, zero-shot and one-shot. Zero-shot VOS (Z-VOS)1 is

to automatically segment out the primary foreground ob-

jects, without any test-time human supervision, whereas

one-shot VOS (O-VOS) focuses on extracting the human

determined foreground objects, typically assuming the first-

frame annotations are given ahead inference1. Current lead-

ing methods for both Z-VOS and O-VOS are supervised

deep learning models that require extensive amounts of

elaborately annotated data to improve the performance and

avoid over-fitting. However, obtaining pixel-wise segmen-

tation labels is labor-intensive and expensive (Fig.1(a)).

It is thus attractive to design VOS models that can learn

from unlabeled videos. With this aim in mind, we develop a

∗Corresponding author: Wenguan Wang.
1Some conventions [36, 59] also use ‘unsupervised VOS’ and ‘semi-

supervised VOS’ to name the Z-VOS and O-VOS settings[3]. In this work,

for notational clarity, the terms ‘supervised’, ‘weakly supervised’ and ‘un-

supervised’ are only used to address the different learning paradigms.

Figure 1: (a) Current leading VOS methods are learned in a super-

vised manner, requiring large-scale elaborately labeled data. (b)

Our model, MuG, provides an unsupervised/weakly-supervised

framework that learns video object patterns from unlabeled videos.

(c) Once trained, MuG can be applied to diverse VOS settings,

with strong modeling ability and high generability.

unified, unsupervised/weakly supervised VOS method that

mines multi-granularity cues to facilitate video object pat-

tern learning (Fig.1(b)). This allows us to take advantage of

nearly infinite amounts of video data. Below we give a more

formal description of our problem setup and main idea.

Problem Setup and Main Idea. Let X and Y denote the

input video space and output VOS space, respectively. Deep

learning based VOS solutions seek to learn a differentiable,

ideal video-to-segment mapping g∗:X 7→Y . To approximate

g∗, recent leading VOS models typically work in a super-

vised learning manner, requiring N input samples and their

desired outputs yn := g∗(xn), where {(xn, yn)}n⊂X×Y .

In contrast, we address the problem in settings with much

less supervision: (1) the unsupervised case, when we only

have samples drawn from X , {xn}n⊂X , and want to ap-

proximate g∗, and (2) the weakly supervised learning set-

ting, in which we have annotations for K, which is a related

output domain for which obtaining annotations is easier
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than Y , and we approximate g∗ using samples from X×K.

The standard way of evaluating learning outcomes fol-

lows an empirical risk/loss minimization formulation [43]:

g̃ ∈ argmin
g∈G

1

N

∑

n
ε(g(xn), z(xn)), (1)

where G denotes the hypothesis (solution) space, and

ε:X×Y 7→R is an error function that evaluates the estimate

g(xn) against VOS-related prior knowledge z(xn) ∈Z .

To make g̃ a good approximation of g∗, current super-

vised VOS methods directly use the desired output yn, i.e.,

z(xn):=g∗(xn), as the prior knowledge, with the price of

vast amounts of well-annotated data.

In our method, the prior knowledge Z , in the unsuper-

vised learning setting, is built upon several heuristics and

intrinsic properties of VOS itself, while in the weakly su-

pervised learning setting, it additionally considers a related,

easily-annotated output domain K. For example, part of

the fore-background knowledge could be from a saliency

model [70] (Fig. 1 (b)), or in a form of CAM maps [73, 76]

from a pre-trained image classifier [14] (i.e., a related im-

age classification domain K)2. Exploring VOS in an unsu-

pervised or weakly supervised setting is appealing not only

because it alleviates the annotation burden of Y , but also

because it inspires an in-depth understanding of the nature

of VOS by exploring Z . Specifically, we analyze several

different types of cues at multiple granularities, which are

crucial for video object pattern modeling:

• At the frame granularity, we leverage information from

an unsupervised saliency method [70] or CAM [73, 76]

activation maps to enhance the foreground and back-

ground discriminability of our intra-frame representation.

• At the short-term granularity, we impose local consis-

tency within the representations of short video clips,

to describe the continuous and coherent visual patterns

within a few seconds.

• At the long-range granularity, we address semantic corre-

spondence among distant frames, which makes the cross-

frame representations robust to local occlusions, appear-

ance variations and shape deformations.

• At the whole-video granularity, we encourage the video

representation to capture global and compact video con-

tent, by learning to aggregate multi-frame information

and be discriminative to other videos’ representations.

All these constraints are formulated under a unified,

multi-granularity VOS (MuG) framework, which is fully

differentiable and allows unsupervised/weakly supervised

video object pattern learning, from unlabeled videos. Our

extensive experiments over various VOS settings, i.e.,

object-level Z-VOS, instance-level Z-VOS, and O-VOS,

show that MuG outperforms other unsupervised and weakly

2Note that any unsupervised or weakly supervised object segmentation/saliency

model can be used; saliency [70], and CAM [73, 76] are just chosen due to their

popularity and relatively high performance.

supervised methods by a large margin, and continuously im-

proves its performance with more unlabeled data.

2. Related Work

2.1. Video Object Segmentation

Z-VOS. As there is no indication for objects to be seg-

mented, conventional ZVOS methods resorted to certain

heuristics, such as saliency [59, 62, 61, 7], object propos-

als [19, 37, 24], and discriminative motion patterns [31, 10,

33]. Recent advances have been driven by deep learn-

ing techniques, from early, relatively simple architectures,

such as recurrent network[45, 32, 63], and two-stream net-

work [6, 49, 77], to recent, more powerful designs, such as

teacher-student adaption [44], neural co-attention [26] and

graph neural network[58, 68].

O-VOS. As the annotations for the first frame are assumed

available at the test phase, O-VOS focuses on how to accu-

rately propagate the initial labels to subsequent frames. Tra-

ditional methods typically used optical flow based propaga-

tion strategy[29, 9, 60, 28]. Now, deep learning based solu-

tions become the main stream, which can be broadly classi-

fied into three categories, i.e., online learning, propagation

and matching based methods. Online learning based meth-

ods[3, 55, 35] fine-tune the segmentation network for each

test video on the first-frame annotations. Propagation based

methods [18, 67, 71] rely on the segments of the previous

frames and work in a frame-by-frame manner. Matching

based methods [66, 54, 27] segment each frame according

to its correspondence/matching relation to the first frame.

Typically, current deep learning based VOS solutions

(both Z-VOS and O-VOS) are trained using a large amount

of elaborately-annotated data for supervised learning. In

contrast, the proposed method trains a VOS network from

scratch using unlabeled videos. This is essential for under-

standing how visual recognition works in VOS and for nar-

rowing down the annotation budget.

2.2. VOS with Unlabeled Training Videos

Learning VOS from unlabeled videos is important but

under-explored. Among a few efforts, Pathak et al. [34]

present an early attempt in this direction, which uses a

modified, purely unsupervised version of [7] to generate

proxy masks as pseudo annotations. In a similar spirit,

some methods use heuristic segmentation masks [17] or

weakly supervised location maps [23] as supervisory sig-

nals. With a broader view, some works [47, 11, 74] capi-

talized on untrimmed videos tagged with semantic labels.

In addition to increased annotation efforts, they are hard to

handle such a class-agnostic VOS setting. Recently, self-

supervised video learning has been applied for O-VOS[56,

65], which imposes the learned features to capture certain

constraints on local coherence, such as cross-frame color

consistency[56] and temporal cycle-correspondence[65].
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Our method is distinctive in two aspects. First, it ex-

plores various intrinsic properties of videos as well as class-

agnostic fore-background knowledge in a unified, multi-

granularity framework, bringing a more comprehensive un-

derstanding of visual patterns in VOS. Second, it shows

strong video object representation learning ability and, for

the first time, it is applied to diverse VOS settings after only

being trained once. This gives a new glimpse into the con-

nections between the two most influential VOS settings.

3. Proposed Algorithm

3.1. Multi­Granularity VOS Network

For a training video X ∈X containing T frames: X =
{Xt}

T
t=1, its features are specified as {xt}

T
t=1, obtained

from a fully convolutional feature extractor ϕ: xt=ϕ(Xt)∈
R

W×H×C . Characterics at four-granularity are explored to

guide the learning of ϕ (Fig.2), as follows.

Frame Granularity Analysis: Fore-background Knowl-

edge Understanding. As ϕ is VOS-aware, basic fore-

background knowledge is desired to be encoded. In our

method, this knowledge (Fig.1(b)) is initially from a back-

ground prior based saliency model[70] (in an unsupervised

learning setting), or in a form of CAM maps [73, 76] (in a

weakly supervised learning setting).

Formally, for each frame Xt, let us denote its corre-

sponding initial fore-background mask as Qt ∈ {0, 1}W×H

(i.e., a binarized saliency or CAM activation map). In our

frame granularity analysis, the learning of ϕ is guided by

the supervision signals of {Qt}
T
t=1, i.e., utilizing the intra-

frame information xt=ϕ(Xt) to regress Qt:

Lframe = LCE(Pt, Qt). (2)

Here LCE is the cross-entropy loss, and Pt=ρ(xt) where ρ:
R
W×H×C 7→[0, 1]W×H maps the input single-frame feature xt

into a fore-background prediction map Pt. ρ is implemented

by a 1×1 convolutional layer with sigmoid activation.

Short-Term Granularity Analysis: Intra-Clip Coher-

ence Modeling. Short-term coherence is an essential prop-

erty in videos, as temporally-close frames typically ex-

hibit continuous visual content changes [15]. To capture

this property, we apply a forward-backward patch tracking

mechanism [57] which learns ϕ by tracking a sampled patch

forwards in a few successive frames and then backwards un-

til the start frame, and penalizing the distance between the

initial and final backwards tracked positions of that patch.

Llong

Lglobal

Lshort

Lframe

Figure 2: Overview of our approach. Intrinsic properties over

frame, short-term, long-term and whole video granularities are

explored to guide the video object pattern learning.

Formally, given two consecutive frames Xt and Xt+1,

we first crop a patch p from Xt and apply ϕ on p and Xt+1,

separately. Then we obtain two feature embeddings: ϕ(p)∈
R

w×h×C and xt+1 = ϕ(Xt+1) ∈ R
W×H×C. With a design

similar to the classic Siamese tracker [2], we forward track

the patch p on the next frame Xt+1 by conducting a cross-

correlation operation ‘⋆’ on ϕ(p) and ϕ(Xt+1):

S⇒ = ϕ(p) ⋆ ϕ(Xt+1) ∈ [0, 1]W×H , (3)

whereS⇒ is a sigmoid-normalized response map whose size

is rescaled into (H,W ). The new location of p in Xt+1 is

then inferred according to the peak value onS⇒. After ob-

taining the forward tracked patch p′ in Xt+1, we backward

trackp′ toXtand get a backward tracking response mapS⇐:

S⇐ = ϕ(p′) ⋆ ϕ(Xt) ∈ [0, 1]W×H . (4)

Ideally, the peak of S⇐ should correspond to the location of

p in the initial frame Xt. Thus we build a consistency loss

that measures the alignment error between the initial and

forward-backward tracked positions of p:

Lshort = ‖S⇐ −Gp‖
2
2, (5)

where Gp ∈ [0, 1]W×H is a (H,W )-dimensional Gaussian-

shape map with the same center of p and variance pro-

portional to the size of p. As in [57], the above forward-

backward tracking mechanism is extended to a multi-frame

setting (Fig. 3). Specifically, after obtaining the forward

Xt Xt+1 Xt+2

p p′ p′′

Xt+1

p

ϕ

ϕ

⋆

S⇒

Xt Xt+1 Xt+2 Xt+1 Xt

Xt

ϕ

ϕ

⋆

S⇐

Gp

Lshort

Figure 3: Left: Main idea of short-term granularity analysis. Right: Training details for intra-clip coherence modeling.
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