
MUXConv: Information Multiplexing in Convolutional Neural Networks

Zhichao Lu Kalyanmoy Deb Vishnu Naresh Boddeti

Michigan State University

{luzhicha, kdeb, vishnu}@msu.edu

Abstract

Convolutional neural networks have witnessed remark-

able improvements in computational efficiency in recent

years. A key driving force has been the idea of trading-

off model expressivity and efficiency through a combina-

tion of 1×1 and depth-wise separable convolutions in lieu

of a standard convolutional layer. The price of the ef-

ficiency, however, is the sub-optimal flow of information

across space and channels in the network. To overcome this

limitation, we present MUXConv, a layer that is designed

to increase the flow of information by progressively mul-

tiplexing channel and spatial information in the network,

while mitigating computational complexity. Furthermore,

to demonstrate the effectiveness of MUXConv, we integrate

it within an efficient multi-objective evolutionary algorithm

to search for the optimal model hyper-parameters while si-

multaneously optimizing accuracy, compactness, and com-

putational efficiency. On ImageNet, the resulting mod-

els, dubbed MUXNets, match the performance (75.3% top-

1 accuracy) and multiply-add operations (218M) of Mo-

bileNetV3 while being 1.6× more compact, and outperform

other mobile models in all the three criteria. MUXNet also

performs well under transfer learning and when adapted

to object detection. On the ChestX-Ray 14 benchmark, its

accuracy is comparable to the state-of-the-art while being

3.3× more compact and 14× more efficient. Similarly, de-

tection on PASCAL VOC 2007 is 1.2% more accurate, 28%

faster and 6% more compact compared to MobileNetV2.

The code is available from https://github.com/

human-analysis/MUXConv .

1. Introduction

In the span of the last decade, convolutional neural net-

works (CNNs) have undergone a dramatic transformation

in terms of predictive performance, compactness and com-

putational efficiency. The development largely happened

in two phases. Starting from AlexNet [20], the focus of

the first wave of models was on improving the predictive

accuracy of CNNs including VGG [35], GoogleNet [37],
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Figure 1: Accuracy vs. Compactness vs. Efficiency: Existing networks

outperform each other in at most two criteria. MUXNet models are, how-

ever, dominant in all three objectives under mobile settings.

ResNet [11], ResNeXt [43], DenseNet [16] etc. These mod-

els progressively increased the contribution of 3×3 convolu-

tions, both in model size as well as multiply-add operations

(MAdds). The focus of the second wave of models was on

improving their computational efficiency while trading-off

accuracy to a small extent. Models in this category include

ShuffleNet [26], MobileNetV2 [32], MnasNet [38] and Mo-

bileNetV3 [12]. Such solutions sought to improve compu-

tational efficiency by progressively replacing the parameter

and compute intensive standard convolutions by a combina-

tion of 1×1 convolutions and depth-wise separable 3×3 con-

volutions. Figure 2 depicts the trend in the relative contribu-

tions of different layers in terms of parameters and MAdds.

Depth-wise separable convolutions [34, 4] offer signif-

icant computational benefits, both from the perspective of

number of parameters as well as computational complex-

ity. A salient feature of these layers is the lack of interac-
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Figure 2: Relative contribution of different layers in CNN designs in terms

of parameters (top) and MAdds (bottom). Initial models largely relied on

standard convolutional layers. More recent networks, on the other hand,

largely rely on 1×1 convolutions and linear layers. In contrast, MUXNets

reverse this trend to an extent.

tions between information in the channels. This limitation

is overcome through 1×1 convolution, a layer which allows

for interactions and information flow across the channels.

The combination of depth-wise separable and 1×1 convo-

lution fully decouples the task of spatial and channel in-

formation flow, respectively, into two independent and ef-

ficient layers. On the other hand, a standard convolutional

layer couples the spatial and channel information flow into a

single, yet, computationally inefficient layer. Therefore, the

former replaced the latter as the workhorse of CNN designs.

In this paper, we seek an alternative approach to trade-off

the expressivity and efficiency of convolutional layers. We

introduce MUXConv, a layer that leverages the efficiency of

depth-wise or group-wise convolutional layers along with a

mechanism to enhance the flow of information in the net-

work. MUXConv achieves this through two components,

spatial multiplexing and channel multiplexing. Spatial mul-

tiplexing extracts feature information at multiple scales via

spatial shuffling, processes such information through depth-

wise or group-wise convolutions and then unshuffles them

back together. Channel multiplexing is inspired by Shuf-

fleNet [26] and is designed to address the limitation of

depth-wise/group convolutions, namely the lack of informa-

tion flow across channels/groups of channels, by shuffling

the channels. The shuffling procedure and the operations we

perform on the shuffled channels are motivated by compu-

tational efficiency and differ significantly from ShuffleNet.

Collectively, these two components increase the flow of in-

formation, both spatially and across channels, while miti-

gating the computational burden of the layer.

To further realize the full potential of MUXConv in

trading-off accuracy and computational efficiency, we pro-

pose a population based evolutionary algorithm to effi-

ciently search for the hyperparameters of each MUXConv

layer in the network. The search simultaneously optimizes

three objectives, namely, prediction accuracy, model com-

pactness and model efficiency in terms of MAdds. To im-

prove the efficiency of the search process we decompose

the multi-objective optimization problem into a collection

of single-objective optimization sub-problems, that are in

turn optimized simultaneously and cooperatively. We refer

to the resulting family of CNNs as MUXNets.

Contributions: We first develop a new layer, called MUX-

Conv, that multiplexes information flow spatially and across

channels while improving the computational efficiency of

equivalent combination of depth-wise separable and 1×1
convolutions. Then, we develop the first multi-objective

neural architecture search (NAS) algorithm to simultane-

ously optimize compactness, efficiency, and accuracy of

MUXNets designed with MUXConv as the basic build-

ing block. We present thorough experimental evaluation

demonstrating the efficacy and value of each component

of MUXNet across multiple tasks including image classifi-

cation (ImageNet), object detection (PASCAL VOC 2007)

and transfer learning (CIFAR-10, CIFAR-100, ChestX-

Ray14). Our results indicate that, unlike the conventional

wisdom in all existing solutions, it is feasible to design

CNNs that do not sacrifice compactness for efficiency or

vice versa in the quest for better predictive performance.

2. Related-work

Many CNN architectures have been developed by opti-

mizing different objectives, such as, model compactness,

computational efficiency, or predictive performance. Be-

low, we categorize the solutions into a few major themes.

Multi-Scale and Shuffling: The notion of multi-scale pro-

cessing in CNNs has been utilized in different forms and

in a variety of contexts. These include explicit processing

of multi-resolution feature maps for object detection [2, 21]

and image classification [14] and computational blocks with

built-in multi-scale processing [3, 9]. The focus of these

methods is predictive performance and hence towards large

scale models. In contrast, multi-scale processing in MUX-

Conv is motivated by enhancing information flow in small

scale models deployed in resource constrained environ-

ments. Notably, MUXConv scales the feature maps through

a pixel shuffling operation that is similar to subpixel convo-

lution in [33]. The channel shuffling component of MUX-

Conv is motivated by [47, 26].

Mobile Architectures: A number of CNN architectures

have been developed for mobile settings. These include

SqueezeNet [18], MobileNet [13], MobileNetV2 [32], Mo-

bileNetV3 [12], ShuffleNet [47], ShuffleNetV2 [26] and

CondenseNet [15]. The focus of this body of work has

largely been to optimize two objectives, either accuracy and

compactness or accuracy and efficiency, thereby resulting
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in models that are either efficient or compact but not both.

In contrast, MUXNets are designed to simultaneously op-

timize all three objectives, compactness, efficiency and ac-

curacy, and therefore leads to models that are both compact

and efficient at the same time.

Neural Architecture Search: Automated approaches to

search for good neural architectures have proven to be very

effective in finding computational blocks that not only ex-

hibit high predictive performance but also generalize and

transfer to other tasks. Majority of the approaches in-

cluding, NasNet [48], PNAS [22], DARTS [23], Amoe-

baNet [30] and MixNet [40], are optimized against a sin-

gle objective, namely predictive performance. A couple of

recent approaches, LEMONADE [7], NSGANet [25], si-

multaneously optimize the networks against multiple objec-

tives, including parameters, MAdds, latency, and accuracy.

However, only results on small-scale datasets like CIFAR-

10 are demonstrated in both approaches. Concurrently, a

number of CNN architectures, such as ProxylessNAS [1],

MnasNet [38], ChamNet [5] and FBNet [5], have been de-

signed to target specific computing platforms such as mo-

bile, CPU, and GPU. In contrast to the aforementioned NAS

approaches, we adopt a hybrid search strategy where the

basic computational block, MUXConv, is hand-designed

while the hyper-parameters of each MUXConv layer in the

network are searched through a population based evolution-

ary algorithm directly on a large scale dataset.

3. Multiplexed Convolutions

The multiplexed convolution layer, called MUXConv, is

a combination of two components: (1) spatial multiplex-

ing which enhances the expressivity and predictive perfor-

mance of the network, and (2) channel multiplexing which

aids in reducing the computational complexity of the model.

3.1. Spatial Multiplexing

The expressivity of a standard convolutional layer stems

from the flow of information spatially and across the chan-

nels. Spatial multiplexing is designed to mimic this prop-

erty while mitigating its computational complexity. The key

idea is to map spatial information at multiple scales into

channels and vice versa. Specifically, given a feature map

x ∈ R
C×H×W , where C is the number of channels, H is

the height and W is the width of the feature map, the chan-

nels are grouped into three groups of (C1, C2, C3) channels

such that C = C1 + C2 + C3. The first and third group of

channels are subjected to a subpixel and superpixel multi-

plexing operation, respectively. The multiplexed channels

are then processed through a group-wise convolution oper-

ation defined over each of the three groups. The output fea-

ture maps from the group convolutions are mapped back to

the same dimensions as the input feature maps by reversing
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Figure 3: (a) Overview of spatial multiplexing operation. (b) Subpixel

operation multiplexes spatial information into channels. (c) Superpixel

operation multiplexes channels into spatial information.

the respective subpixel and superpixel operations. An illus-

tration of this process is shown in Fig. 3a. Collectively, the

subpixel and superpixel operations allow multi-scale spatial

information to flow across channels. We note that the stan-

dard idea of multi-scale processing in existing approaches,

multi-scale feature representations or kernels with larger re-

ceptive fields, is typically across different layers. In con-

trast, MUXConv seeks to exploit multi-scale information

within a layer through pixel manipulation. As we show in

Section 6, this operation significantly improves network ac-

curacy especially as they get more compact.

We parameterize the subpixel multiplexing operation

(see Fig. 3b) by r and define a window and stride of

size r×r. The features in the windows are mapped to r2

channels, with each window corresponding to a unique fea-

ture location in the channels. On the whole, the subpixel

operation maps the first group of channel features of size

C1 × H × W to features of size r2C1 ×
H
r
× W

r
. There-

fore, the subpixel operation enables down-scaled spatial in-

formation to be multiplexed with channel information and

processed jointly by a standard convolution over the group.

The combination of the two operations effectively increases

the receptive field of the convolution by a factor of r.

We define the superpixel multiplexing operation (see

Fig. 3c) as an inverse of subpixel multiplexing. It is param-

eterized by r2 which corresponds to the number of channels

that will be multiplexed spatially into a single channel. The

feature values at a particular location from the r2 channels

are mapped to a unique window in the output feature map.

On the whole, the superpixel operation maps the third group

of channels features of size C3 ×H ×W to features of size
C3

r2
× rH × rW . Therefore, the superpixel operation en-

ables channel information to be multiplexed with up-scaled

spatial information and processed jointly by a standard con-

volution over the group. The combination of the two oper-
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Figure 4: Illustration of two channel multiplexing layers. In each layer,

half the channels are propagated as is while the other half are processed

through the spatial multiplexing operation. The channels from the two

groups are then interleaved as denoted by the indices. Color intensity de-

notes number of times that channel is processed.

ations effectively decreases the receptive field of the convo-

lution by a factor of r. Our superpixel operation bears sim-

ilarity to the concept of tiled convolution [27], a particular

realization of locally connected layers. This idea has also

been particularly effective for image super-resolution [33]

in the form of “subpixel" convolution.

3.2. Channel Multiplexing

While the spatial multiplexing operation described above

is effective, it still suffers from some limitations. Firstly, the

group convolutions in spatial multiplexing are more com-

putationally expensive than depth-wise separable convolu-

tions that they replace. Secondly, the decoupled nature of

the group convolutions does not allow for flow of informa-

tion across the groups. The channel multiplexing operation

is designed to mitigate these drawbacks by reducing the

computational burden of spatial multiplexing and further

enhancing the flow of information across the feature map

channels. This is achieved in two stages, selective process-

ing and channel shuffling. A illustration of the whole oper-

ation is shown in Fig. 4. Overall, the channel multiplexing

operation is similar in spirit to ShuffleNet [47] and Shuf-

fleNetV2 [26] but with notable variations; (1) ShuffleNet

uses shuffling to share channel information that are pro-

cessed in different groups, while we use shuffling to blend

the raw and processed channel information., (2) While

ShuffleNetV2 always splits the input channels in half, we

treat it as a hyperparameter that is searched for each layer,

and (3) Shuffled channels are processed through an inverted

residual bottleneck block in ShuffleNetV2 as opposed to

spatial multiplexing in our case.

Selective Processing: We process only a part of the in-

put channels by the spatial multiplexing block. Specifically,

the C channels in the input feature maps are split into two

groups with C1 and C2 channels, such that C = C1 + C2.

The first group of channels are propagated as is while the

second group are processed through spatial multiplexing.

This scheme immediately increases the compactness and ef-

ficiency by a factor of
(

C
C2

)2

, which can compensate for the

computational burden of grouped as opposed to depth-wise

separable convolutions.

Channel Shuffling: After the selective processing opera-

tion, we shuffle the channels of the output feature map in a

fixed pattern. Alternative channels selected from the unpro-

cessed and processed channels are interleaved.

4. Tri-Objective Hyperparameter Search

Designing a CNN typically involves many hyperparam-

eters that critically impact the performance of the models.

In order to realize the full potential of MUXNet we seek to

search for the optimal hyperparameters in each layer of the

network. Since the primary design motive of MUXConv

is to increase model expressivity while mitigating compu-

tational complexity, we propose a multi-objective hyperpa-

rameter search algorithm to simultaneously optimize for ac-

curacy, compactness and efficiency. This can be stated as,

minimize F(x) =
(

f1(x), · · · , fm(x)
)T

,

subject to x ∈ Ω,
(1)

where in our context Ω = Πn
i=1[ai, bi] ⊆ R

n is the hy-

perparameter decision space, where ai, bi are the lower and

upper bounds, x = (x1, . . . , xn)
T ∈ Ω is a candidate hy-

perparameter setting, F : Ω → R
m constitutes m competing

objectives, i.e. predictive error, model size, model ineffi-

ciency, etc., and R
m is the objective space.

As the number of objectives increases, the number of

solutions needed to approximate the entire Pareto surface

grows exponentially [6], rendering a global search imprac-

tical in most cases. To overcome this challenge we pro-

pose a reference guided hyperparameter search. Instead

of spanning the entire search space, we focus the hyper-

parameter search to a neighborhood around few desired

user-defined preferences. An illustration of this concept is

shown in Fig. 5a. For instance, in our context, this could

correspond to different desired accuracy targets and hard-

ware specifications. This idea enables us to decompose

the tri-objective problem into multiple single objective sub-

problems. We adopt the penalty-based boundary intersec-

tion (PBI) method [46] to scalarize multiple objectives into

a single objective,

minimize g
pbi(x|w, z∗) = d1 + θd2

subject to x ∈ Ω,
(2)

where d2 =

∥

∥

∥

∥

F(x) −

(

z
∗ + d1

w

||w||

)
∥

∥

∥

∥

, d1 =

||(F(x)−z
∗)Tw||

||w|| , z∗ = (z∗1 , . . . , z
∗
m)T is the ideal objective

vector with z∗i < minx∈Ω fi(x) i ∈ {1, . . . ,m}. θ ≥ 0 is a

trade-off hyperparameter that is set to 5 and w is the refer-

ence direction obtained by connecting the ideal solution to

the desired reference target.
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Figure 5: Tri-Objective Search: (a) We leverage user-defined preferences

to decompose the tri-objective problem into multiple single-objective sub-

problems. By focusing on sub-regions as opposed to the entire Pareto sur-

face, our approach is more efficient. (b) The reference direction is formed

by joining the ideal point and user supplied reference targets. The PBI

method is used to scalarize the objectives based on the projected distance

d2 to the reference target w , and the distance d1 to the ideal point.

Conceptually, the PBI method constructs a composite

measure of the convergence (d1) of the solution to the given

reference targets and diversity (d2) of the solutions itself.

See Fig.5b for an illustration. In our context, d1 (distance

between current projected solution and ideal solution) seeks

to push the solution to the boundary of attainable objective

space and d2 measures how close the solution is to the user’s

preference. Finally, we adopt a multi-objective evolution-

ary algorithm based on decomposition (MOEA/D [46]), to

simultaneously solve the decomposed sub-problems while

optimizing the scalarized objective.

5. Experiments

We evaluate the efficacy of MUXNets on three tasks; im-

age classification, object detection, and transfer learning.

5.1. Hyperparameter Search Details

Search Space: To compensate for the extra hyperparam-

eters introduced by spatial and channel multiplexing, we

constrain the commonly adopted layer-wise search space [1,

38, 12] to a stage-wise search space, where layers within

the same stage share the same hyperparameters. MUXNets

consist of four stages, where each stage begins with a re-

duction block and is followed by a series of normal blocks.

In each stage, we search for kernel size, expansion ra-

tio, repetitions of normal blocks, leave-out ratio for chan-

nel multiplexing and the spatial multiplexing settings (see

supplementary for details). To further reduce the search

space, we always adopt squeeze-and-excitation [18] and use

swish [29] non-linearity for activation at each stage except

the first stage, where a ReLU is used.

Search: Following previous work [1, 38], we conduct the

search directly on ImageNet and estimate model accuracy

on a subset consisting of 50K randomly sampled images

from the training set. As a common practice, during search,

the number of training epochs are reduced to 5. We select

four reference points with preferences on model size rang-

ing from 1.5M to 5M, MAdds ranging from 60M to 300M,

and predictive accuracy fixed at 1. The compactness and

efficiency objectives are normalized between [0, 1] before

aggregation. Search is initialized with a global population

size of 40 and evolved for 100 iterations, which takes about

11 days on sixteen 2080Ti GPUs. At the end of evolution,

we pick the top 5 (based on PBI aggregated function values)

models from each of the four subproblems, and retrain them

thoroughly from scratch on ImageNet. The four resulting

models are named as MUXNet-xs/s/m/l. Architectural de-

tails can be found in the supplementary material.

5.2. ImageNet Classification

For training on ImageNet, we follow the procedure

outlined in [38]. Specifically, we adopt Inception pre-

processing with image size 224×224 [36], batch size of 256,

RMSProp optimizer with decay 0.9, momentum 0.9, and

weight decay 1e-5. A Dropout layer of rate 0.2 is added be-

fore the last linear layer. Learning rate is linearly increased

to 0.016 in the initial 5 epochs [10], it then decays every 3

epochs at a rate of 0.03. We further complement the training

with exponential moving average with decay rate of 0.9998.

Table 1 shows the performance of baselines and

MUXNets on ImageNet 2012 benchmark [31]. We compare

them in terms of accuracy on validation set, model compact-

ness (parameter size), model efficiency (MAdds) and infer-

ence latency on CPU and GPU. Overall, MUXNets consis-

tently either match or outperform other models across dif-

ferent accuracy levels. In particular, MUXNet-m achieves

75.3% accuracy with 3.4M parameters and 218M MAdds,

which is 1.4× more efficient and 1.6× more compact when

compared to MnasNet-A1 [38] and MobileNetV3 [12], re-

spectively. Figures 1 and 6 visualize the trade-off ob-

tained by MUXNet and previous models. In terms of ac-

curacy and compactness, MUXNet clearly dominates all

previous models including MnasNet [38], FBNet [42], Mo-

bileNetV3 [12], and MixNet [40]. In terms of accuracy and

efficiency, MUXNets are on par with current state-of-the-art

models, i.e. MobileNetV3 and MixNet.

In terms of latency, the performance of MUXNet models

is mixed since they, (i) use non-standard primitives that do

not have readily available efficient low-level implementa-

tions, and (ii) are not explicitly optimized for latency. Com-

pared to methods that use optimized convolutional prim-

itives but do not directly optimize for latency (Efficient-

Net/MixNet), MUXNet’s latency is competitive despite us-

ing unoptimized spatial and channel multiplexing primi-

tives. MUXNet’s limitations due to unoptimized implemen-

tation can be offset, to an extent, by its inherent FLOPs

and parameter efficiency. MUXNet is not as competitive

as methods that directly use CPU or GPU latency on Pixel

phones as a search objective (MobileNetV3, MnasNet).
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