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Abstract

Traditionally multi-object tracking and object detection

are performed using separate systems with most prior works

focusing exclusively on one of these aspects over the other.

Tracking systems clearly benefit from having access to ac-

curate detections, however and there is ample evidence in

literature that detectors can benefit from tracking which, for

example, can help to smooth predictions over time. In this

paper we focus on the tracking-by-detection paradigm for

autonomous driving where both tasks are mission critical.

We propose a conceptually simple and efficient joint model

of detection and tracking, called RetinaTrack , which modi-

fies the popular single stage RetinaNet approach such that it

is amenable to instance-level embedding training. We show,

via evaluations on the Waymo Open Dataset, that we out-

perform a recent state of the art tracking algorithm while re-

quiring significantly less computation. We believe that our

simple yet effective approach can serve as a strong baseline

for future work in this area.

1. Introduction

The tracking-by-detection paradigm today has become

the dominant method for multi object tracking (MOT) and

works by detecting objects in each frame independently and

then performing data association across frames of a video.

In recent years, both aspects of this approach (detection

and data association) have seen significant technological ad-

vances due to the adoption of deep learning.

Despite the fact that these two tasks often go hand in

hand and the fact that deep learning has made models easily

amenable to multitask training, even today it is far more

common to separate the two aspects than to train them

jointly in one model, with most papers often focusing on

detection metrics or tracking metrics and rarely both. This

task separation has led to more complex models and less ef-

ficient approaches. It is telling that the flagship benchmark

in this area (MOT Challenge [42]) assumes that models will

make use of publicly available detections and that papers

continue to claim the use of a real-time tracker while not

measuring the time required to perform detection.

∗Equal contribution with names listed alphabetically.

In this paper we are interested primarily in the au-

tonomous driving domain where object detection and multi-

object tracking are mission-critical technologies. If we can-

not detect and track, we will not be able to predict where

vehicles and pedestrians are going (and at what speed), and

consequently we will not, e.g., know whether to yield to a

pedestrian at the corner or whether to drive full speed down

a street despite cars coming down an opposing lane.

We focus specifically on RGB inputs which, while typ-

ically not the only sensing modality used within a modern

autonomous vehicle, play an important role; RGB cameras

do not have the same range constraints as LIDAR, are con-

siderably cheaper and are capable of detecting much smaller

objects which are important particularly for highway driv-

ing where the faster driving speeds make it important to be

able to react to distant vehicles or pedestrians.

In the setting of autonomous driving, speed and accuracy

are both essential and therefore the choice of architecture

is critical as one cannot simply take the heaviest/most per-

formant model or the most lightweight but not as accurate

model. We base our model on the RetinaNet detector [36]

which is real-time while reaching state of art accuracy and

is specifically designed to detect small objects well. To

this base detector, we add instance-level embeddings for

the purposes of data association. However the vanilla Reti-

naNet architecture is not suitable for these per-instance em-

beddings — we propose a simple but effective modification

to RetinaNet’s post-FPN prediction subnetworks to address

these issues. We show via ablations that our model, which

we dub, RetinaTrack , benefits from joint training of the

tracker and detector. It has small computational overhead

compared to base RetinaNet and is therefore fast — due to

its simplicity, it is also easy to train via Google TPUs.

To summarize, our main contributions are as follows:

• We propose a jointly trained detection and tracking

model - our method is simple, efficient and could be

feasibly deployed in an autonomous vehicle.

• We propose a simple modification to single shot de-

tection architectures that allow for extracting instance

level features; we use these features for tracking, but

they could also be useful for other purposes.

14668



Figure 1: Example vehicle tracking results on the Waymo Open Dataset — tracks are color coded and for clarity we highlight two tracks in each sequence

with arrows. Challenges in this dataset include small objects, frequent occlusions due to other traffic or pedestrians, changing scales and low illumination.

• We establish initial strong baselines for detection

and tracking from 2d images on the Waymo Open

dataset [2] (Figure 1) and show that our method

achieves state of the art performance.

We hope our simple model will serve as a solid baseline and

ease future research in joint detection and tracking.

2. Related Work

Traditionally multi-object tracking and detection have

been treated in two separate literatures with trackers often

using detectors as black box modules but not necessarily

incorporating them deeply. In recent years both fields have

begun to rely heavily on deep learning which makes it nat-

ural to model both tasks jointly. However with a few excep-

tions, joint training of detection and tracking remains the

exception rather than the rule. And there are few papers

that evaluate both tracking and detection with papers often

focusing on one evaluation exclusively.

2.1. Object Detection in Images and Video

In recent years there has been an explosion of tech-

nological progress in the field of object detection driven

largely by community benchmarks like the COCO chal-

lenge [37] and Open Images [31]. There have also been

a number of advances in detection specific model archi-

tectures including anchor-based models, both single stage

(e.g., SSD [39], RetinaNet [36], Yolo variants [44, 45]) and

two-stage detectors (e.g., Fast/Faster R-CNN [19, 24, 47],

R-FCN [13]), as well as the newer anchor-free models (e.g.,

CornerNet [32, 33], CenterNet [65], FCOS [55]).

Building on these single frame architectures are methods

incorporating temporal context for better detection in video

(specifically to combat motion blur, occlusion, rare poses of

objects, etc). Approaches include the use of 3d convolutions

(e.g., I3D, S3D) [8,41,62] or recurrent networks [29,38] to

extract better temporal features. There are also a number of

works that use tracking-like concepts of some form in or-

der to aggregate, but their main focus lies in detection and

not tracking. For example, there are works exploiting flow

(or flow-like quantities) to aggregate features [6, 66–68].

Recently there are also papers that propose object level

attention-based aggregation methods [14, 51, 59, 60] which

effectively can be viewed at high level as methods to aggre-

gate features along tracks. In many of these cases, simple

heuristics to “smooth” predictions along time are also used,

including tubelet smoothing [20] or SeqNMS [22].

2.2. Tracking

Traditionally trackers have played several different roles.

In the cases mentioned above, the role of the tracker has

been to improve detection accuracy in videos (e.g. by

smoothing predictions over time). In other cases, trackers

have also been used to augment (traditionally much slower)

detectors allowing for real-time updates based on intermit-

tent detector updates (e.g. [3, 7]).

Finally in applications such as self-driving and sports

analysis, track outputs are themselves of independent inter-

est. For example typical behavior prediction modules take

object trajectories as input in order to forecast future tra-

jectories (and thereby react to) predicted behavior of a par-

ticular object (like a car or pedestrian) [9, 54, 56, 63, 64].

In this role, the tracking-by-detection paradigm has become

the predominant approach taken for multi-object tracking,

where detection is first run on each frame of an input se-

quence, then the results linked across frames (this second

step is called data association).

In the pre-deep learning era, tracking-by-detection meth-

ods [11, 21, 61] tended to focus on using whatever visual

features were available and finding a way to combat the

combinatorial explosion of the various graph optimization

problems [12,17,46] that have been formulated to determine

optimal trajectories. In recent years, this trend has been re-

versed with authors using simple matching algorithms (e.g.

Hungarian matching [43]) and focusing on learning features

that are better for data association e.g, via deep metric learn-

ing [4, 34, 48, 50, 52, 53, 58]. For example [58] proposed
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Deep Sort, a simple yet strong baseline that takes offline

detections (produced by Faster RCNN) and links them us-

ing an offline trained deep ReID model and Kalman filter

motion model. In this context, our work can be viewed as

a simplified pipeline compared to Deep Sort, relying on a

more lightweight detection network which is unified with a

subnetwork tasked with performing ReID.

2.3. Detection meets Tracking

Strong detection is critical to strong tracking. This can be

seen via the commonly used CLEAR MOT metric (MOTA,

multiple object tracking accuracy) [42] which penalizes

false positives, false negatives and identity switches (the

first two terms of which are detection related). The re-

cent Tracktor paper [4] pushes this observation to the limit

achieving strong results using only a single frame Faster

R-CNN detection model. Tracking itself is accomplished

by exploiting the behavior of the second stage of Faster R-

CNN that allows an imprecisely specified proposal (e.g. a

detection from the previous frame) to be “snapped” onto the

closest object in the image. With a few small modifications

(including an offline trained ReID component), Tracktor is

currently state of the art on the MOT17 Challenge and we

compare against this strong baseline in our experiments.

To address the issue that detection can have such an out-

sized impact on tracking metrics, benchmarks such as the

MOT Challenge have tried to make things “fair” by hav-

ing multiple methods use exactly the same out-of-the-box

provided detections. However this restriction unnecessarily

ties ones hands as it assumes that the two will be done sepa-

rately and consequently can preclude jointly trained models

such as our own. One wonders whether the paucity of joint

detection/tracking literature may be due in part to this em-

phasis on using black box detections.

Prior to our work, there have been several recent attempts

to train joint tracking/detection models. Feichtenhofer et

al. [16] run an R-FCN ( [13]) base detection architecture

and simultaneously compute correlation maps between high

level feature maps of consecutive frames which are then

passed to a secondary prediction tower in order to predict

frame-to-frame instance motion. Like [16], we train for

both tasks jointly. However where they focus exclusively

on detection metrics for Imagenet Vid, motivated by au-

tonomous driving needs, we evaluate both tracking and de-

tection metrics. Our architecture is also considerably sim-

pler, faster and based on a stronger single stage detector.

There are also several works that predict 3d tubelets [18,

26] directly using 3d inputs by using 2d anchor grids that

are allowed to “wiggle” in time via a predicted temporal se-

quence of spatial offsets. However these methods are typi-

cally heavier and require a mechanism to associate tubelets

amongst each other, often relying on simple heuristics com-

bining single frame scores and IOU overlap. We directly

learn to associate detections (and show that this is useful).

Finally the work most related to our approach is Wang

et al. [57] which also combines an FPN based model (with

YOLO v3) with an additional embedding layer. In contrast,

we use a modification of RetinaNet which has stronger de-

tection performance and we show that without our modifi-

cations to the FPN, performance suffers.

3. The RetinaTrack Architecture

In this section we describe the design of a variant of Reti-

naNet that allows us to extract per-instance level features.

Like other anchor based detectors, every detection produced

by RetinaNet is associated with an anchor. In order to link a

detection to those in another frame, we would like to be able

to identify a feature vector associated with its correspond-

ing anchor and pass it to an embedding network which will

be trained with metric learning losses.

3.1. RetinaNet

To begin, we review the popular RetinaNet architec-

ture [36] and explain why the vanilla model is not suit-

able for instance level embeddings. Modern convolutional

object detectors extract feature maps from sliding window

positions arranged along a regular grid over the image. In

anchor-based methods such as RetinaNet, we place K an-

chor boxes {A1, . . . , AK} of different shapes (varying as-

pect ratios and sizes) on top of each grid point and ask the

model to make predictions (e.g., classification logits, box

regression offsets) relative to these anchors.

In the case of RetinaNet, we use an FPN-based (feature

pyramid network) feature extractor [35] which produces

multiple layers of feature maps Fi with different spatial res-

olutions Wi ×Hi (Figure 2a). Each feature map Fi is then

passed to two post-FPN task-specific convolutional subnet-

works predicting K tensors (one for each possible anchor

shape) {Y cls
i,k }k=1:K each of shape Wi×Hi×N represent-

ing N -dimensional classification logits, as well as K ten-

sors {Y loc
i,k }k=1:K of shape Wi × Hi × 4 representing box

regression offsets. (Figure 2b). Note that typically papers

collapse these outputs to be a single combined tensor in-

stead of K tensors with one for each anchor shape — how-

ever for our purposes we separate these predictions for clar-

ity (with the end result being equivalent).

More formally, we can write the RetinaNet classification

and location prediction tensors as a function of each of the

feature maps Fi as follows:

Y cls
i,k (Fi) ≡ Sigmoid(Conv(Conv(4)(Fi; θ

cls); φcls
k )), (1)

Y loc
i,k (Fi) ≡ Conv(Conv(4)(Fi; θ

loc); φloc
k ), (2)

where k ∈ {1, . . .K}) indexes into the K anchors. We

use Conv(4) to refer to 4 intermediate 3 × 3 convolution

layers (which include batch norm and ReLu layers unless

otherwise specified). The model parameters after the FPN

are θcls, {φcls
k }Kk=1, θloc and {φloc

k }Kk=1. Importantly, while
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(a) (b) (c)

Figure 2: Architecture diagrams. (a) Feature Pyramid Network (FPN) and Post-FPN layers of (vanilla) (b) RetinaNet and (c) RetinaTrack . In order to

capture instance level features RetinaTrack splits the computational pathways among different anchor shapes at an earlier stage in the Post-FPN subnetwork

of RetinaNet. Yellow boxes Fi represent feature maps produced by the FPN. In both models we share convolutional parameters across all FPN layers. At

level of a single FPN layer, gray boxes represent convolutional layers that are unshared while colored boxes represent sharing relationships (boxes with the

same color share parameters).

Figure 3: In order to track successfully through occlusions, we need

to be able to model that objects that share the same anchor grid center

have distinct tracking features. Here, green boxes represent two anchors

centered at the same location which match the cars in the scene. Blue dots

represent centers of the anchor grid.

the classification and box regression subnetworks have dif-

ferent parameters for a given FPN layer, the parameters are

shared across FPN layers which allow us to treat feature

vectors extracted from different layers as if they belonged

to compatible embedding spaces.

3.2. Modifying task-prediction subnetworks to have
anchor-level features

From Equations 1, 2 all convolutional parameters of

RetinaNet are shared amongst all K anchors until the fi-

nal convolution for the classification and regression sub-

networks. Therefore there is no clear way to extract per-

instance features since if two detections match to anchors

at the same location with different shapes, then the only

point in the network at which they would be distinguished

are at the final class and box regression predictions. This

can be especially problematic when tracking through occlu-

sions when objects are more likely to correspond to anchors

which share the same location (Figure 3).

Our solution is to force the split among the anchors to

occur earlier among the post-FPN prediction layers, allow-

ing us to access intermediate level features that can still be

uniquely associated with an anchor (and consequently a fi-

nal detection). Our proposed modification is simple — we

end up with a similar architecture to RetinaNet, but tie/untie

weights in a different manner compared to the vanilla archi-

tecture. In our RetinaTrack model we predict via the fol-

lowing parameterization (c.f. Equations 1, 2):

Fi,k = Conv(m1)(Fi; θk), (3)

Y cls
i,k ≡ Sigmoid(Conv(Conv(m2)(Fi,k; θ

cls); φcls)), (4)

Y loc
i,k ≡ Conv(Conv(m2)(Fi,k; θ

loc); φloc). (5)

Thus for each post-FPN layer Fi, we first apply K con-

volutional sequences (with m1 layers) in parallel to predict

the Fi,k tensors, which we view as per-anchor instance-

level features, since from this point on, there will be a

unique Fi,k associated with every detection produced by the

RetinaNet architecture (Figure 2c). We will refer to this first

segment of the model as the task-shared post-FPN layers

which use separate parameters θk for each of the K anchor

shapes, but share θk across FPN layers (as well as the two

tasks of classification and localization).

The Fi,k are not task-specific features, but we next apply

two parallel sequences of task-specific post-FPN layers to

each Fi,k. Each sequence consists of m2 3 × 3 convolu-

tions followed by a 3 × 3 final convolution with N output

channels in the case of classification logits (where N is the

number of classes) and 4 output channels in the case of box

regression offsets. For our two task specific subnetworks,

we share parameters θcls, φcls, θloc and φloc across both

the K anchor shapes as well as all FPN layers so that af-

ter the task-shared layers, all features can be considered as

belonging to compatible spaces.

3.3. Embedding architecture

Having the instance level features Fi,k now in hand, we

additionally apply a third sequence of task-specific layers
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consisting of m3 1 × 1 convolution layers projecting the

instance level features to a final track embedding space with

each convolution layer mapping to 256 output channels:

Y emb
i,k ≡ Conv(m3)(Fi,k; θ

emb). (6)

We use batch norm [28] and ReLU nonlinearities after each

convolution except at the final embedding layer and use the

same shared parameters across all FPN layers and all K

anchor shapes (see again Figure 2c).

To summarize, RetinaTrack predicts per-anchor

instance-level features Fi,k. Given a detection d, there is

a unique anchor that generated d — and the feature maps

Fi,k now give us a unique feature vector associated with

d. Where RetinaNet models run 4 convolutional layers for

each of the two task-specific subnetworks, in RetinaTrack ,

each output tensor is the result of m1+m2+1 (or m1+m3

in the case of the track embeddings) convolutional layers

where m1, m2 and m3 are structural hyperparameters. We

discuss ablations for these settings further in Section 4.

3.4. Training details

At training time we minimize an unweighted sum of

the two standard RetinaNet losses (Sigmoid Focal Loss for

classification, and Huber Loss for box regression) as well

as an additional embedding loss which encourages detec-

tions corresponding to the same track to have similar em-

beddings. Specifically we train with triplet loss [10, 49] us-

ing the BatchHard strategy for sampling triplets [25].

LBH(θ; X) =
A
∑

j=1

SoftPlus






m+ max

p=1...A
tj=tp

Djp − min
ℓ=1...A
tj 6=tℓ

Djℓ






,

(7)

where A is the number of anchors that match to groundtruth

boxes, ty is the track identity assigned to anchor y, Dab

is the non-squared Euclidean distance between the embed-

dings of anchor a and anchor b and m is the margin (set to

m = 0.1 in experiments). Thus triplets are produced by

finding a hard positive and a hard negative for each anchor.

In practice, we sample 64 triplets for computing the loss.

For detection losses we follow a target assignment con-

vention similar to that described in [36]. Specifically, an

anchor is assigned to a groundtruth box if it has intersection-

over-union (IOU) overlap of 0.5 or higher and to back-

ground otherwise. Additionally, for each groundtruth box,

we force the nearest anchor (with respect to IOU) to be

a match even if this IOU is less than the threshold. For

triplet losses, we follow a similar convention for assigning

track identities to anchors, using a more stringent criterion

of IOU = .7 or higher for positive matches — finding that

this more stringent criterion leads to improved tracking re-

sults. Only anchors that match to track identities are used to

produce triplets. Further, triplets are always produced from

within the same clip.

We train on Google TPUs (v3) [30] using Momentum

SGD with weight decay 0.0004 and momentum 0.9. We

construct each batch using 128 clips, drawing two frames

for each clip spaced 8 frames apart (Waymo sequences run

at 10Hz, so this corresponds to a temporal stride of 0.8 sec-

onds). Batches are placed on 32 TPU cores, colocating

frames from the same clip, yielding a per-core batch size

of 4 frame pairs. Unless otherwise specified, images are

resized to 1024 × 1024 resolution, and in order to fit this

resolution in TPU memory, we use mixed precision training

with bfloat16 type in all our training runs [1].

We initialize the model using a RetinaTrack model (re-

moving embedding projections) pretrained on the COCO

dataset. Next (unless otherwise stated) we train using a lin-

ear learning rate warmup for the first 1000 steps increasing

to a base learning rate of 0.001, then use a cosine annealed

learning rate [40] for 9K steps. Following RetinaNet, we

use random horizontal flip and random crop data augmen-

tations. We also allow all batch norm layers to update inde-

pendently during training and do not force them to be tied

even if neighboring convolution layers are shared.

3.5. Inference and Tracking Logic

We use our embeddings within a simple single hypoth-

esis tracking system based on greedy bipartite matching.

At inference time we construct a track store holding

stateful track information. For each track we save previous

detections (including bounding boxes, class predictions and

scores), embedding vectors and “track states” indicating

whether a track is alive or dead (for simplicity, we do not

consider tracks to ever be in a “tentative” state, c.f. [58]).

We initialize the track store to be empty, then for each frame

in a clip, we take the embedding vectors corresponding to

the top scoring 100 detections from RetinaTrack .

These detections are filtered by score thresholding and

then we compare the surviving embedding vectors against

those in the track store via some specified similarity func-

tion S and run greedy bipartite matching disallowing

matches where the cosine distance is above a threshold 1−ǫ.

Based on this greedy matching, we then add a detection to

an existing track in the track store or we use it to initialize a

new track. In our experiments, our similarity function S is

always a uniformly weighted sum of IOU overlap (using a

truncation threshold of 0.4) and a cosine distance between

embeddings.

For each live track in the track store, we save up to

H of its most recent (detection, embedding vector, state)

triplets thus allowing new detections to match to any of

these H most recent observations for all tracks. Tracks are

kept alive for up to 40 frames for re-identification purposes.

Conversely we mark a track as dead if it has not been re-

identified in over 40 frames.
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Architecture Share task weights m1 m2 K mAP Inference time (ms per frame)

RetinaNet No - - 6 36.17 45

RetinaNet Yes - - 6 35.35 40

RetinaNet No - - 1 31.45 37

RetinaNet Yes - - 1 30.71 30

RetinaTrack - 1 3 6 35.11 83

RetinaTrack - 2 2 6 35.55 75

RetinaTrack - 3 1 6 35.74 74

Figure 4: COCO17 ablations. Performance of vanilla RetinaNet and RetinaTrack (without tracking embedding layers) in terms of single image object

detection performance on COCO17. m1 denotes the number of task-shared post-FPN layers and m2 denotes the number of task-specific post-FPN layers.

4. Experiments

In our experiments we focus on the recently released

Waymo Open dataset [2] v1 (Waymo for short). We also

report results on the larger v1.1 release in Section 4.4. This

dataset contains annotations on 200K frames collected at 10

Hz in Waymo vehicles and covers various geographies and

weather conditions. Frames come from 5 camera positions

(front and sides). For the purposes of this paper, we focus

on 2d detection and tracking and more specifically only on

the ‘vehicle’ class as the dataset has major class imbalance,

which is not our main focus. In addition to Waymo, we

report ablations on the COCO17 dataset [37].

Finally we evaluate both detection and tracking metrics

as measured by standard mean AP [15,18,37] (mAP) as well

as CLEAR MOT tracking metrics [5,42], specifically using

the COCO AP (averaging over IOU thresholds between 0.5

and 0.95) and the py-motmetrics library.1 We also bench-

mark using Nvidia V100 GPUs reporting inference time in

milliseconds per frame. For all models we only benchmark

the “deep learning part”, ignoring any bookkeeping logic

required by the tracker which is typically very lightweight.

Evaluating a model simultaneously for detection and

tracking requires some care. Detection mAP measures a

model’s average ability to trade off between precision and

recall without requiring a hard operating point — it’s there-

fore better to use a low or zero score threshold for detec-

tion mAP. However CLEAR MOT tracking metrics such as

MOTA require selecting a single operating point as they di-

rectly reference true/false positives and in practice are fairly

sensitive to these hyperparameter choices. It is often better

to use a higher score threshold to report tracking metrics so

as to not admit too many false positives. In our experiments

we simple use separate thresholds for evaluation: we evalu-

ate our model as a detector using a near-zero score threshold

and as a tracker using a higher score threshold.

4.1. Evaluating RetinaTrack as a detector

As a preliminary ablation (Table 4), we study the ef-

fect of our architectural modifications to RetinaNet on stan-

dard single image detection by evaluating on COCO17. In

these experiments we drop the embedding layers of Retina-

Track since COCO is not a video dataset.

1https://github.com/cheind/py-motmetrics

For these experiments only, we train with a slightly dif-

ferent setup compared to our later Waymo experiments. We

use Resnet-50 as a base feature extractor (Imagenet initial-

ized), and train at 896 × 896 resolution with bfloat16 [1]

mixed precision. We train with batches of size 64 split

across 8 TPU v3 cores, and performing per-core batch nor-

malization. We use a linear learning rate warmup for the

first 2K steps increasing to a base learning rate of 0.004,

then use a cosine annealed learning rate [40] for 23K steps.

Note that we could use heavier feature extractors or higher

image resolutions to improve performance, but the main ob-

jective of these ablations is to shed light on variations of the

Post-FPN subnetworks of RetinaNet and RetinaTrack .

Recall that m1 and m2 refer to the number of convolu-

tions for the task-shared and task-specific post-FPN subnet-

works respectively. We set m1 +m2 = 4 so as to be com-

parable to RetinaNet. K is the number of anchor shapes

per location which we set to 6 by default but to show that

having multiple anchor shapes per location is important for

detection, we also compare against a simplified RetinaNet

which uses only 1 box per location. Finally we experiment

with a version of vanilla RetinaNet where the task-specific

subnetworks are forced to share their weights (the “Share

task weights” column in Table 4) since this is closer to the

task-shared post-FPN layers of RetinaTrack .

We note firstly that using K = 6 anchors per location

is very important to strong performance on COCO and that

it is better to have separate task-specific subnetworks than

it is to share, confirming observations by [36]. We also

observe that by using RetinaTrack , we are able to extract

per-instance features by design (which we will next use

for tracking, but could be generally useful) while achieving

similar detection performance on COCO. If one does not

need per-instance level features, one can still get slightly

better numbers with the original prediction head layout of

RetinaNet (which is similar to that of SSD [39] and the RPN

used by many papers, e.g., [23, 47]). Among the 3 settings

of (m1,m2) for RetinaTrack , we find that using 3 task-

shared layers (m1 = 3) followed a single task-specific layer

(m2 = 1), has a slight edge over the other configurations.

We report running times (averaged over 500 COCO im-

ages) in Table 4. Our modifications increase running time

over vanilla RetinaNet — this is unsurprising since the
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Architecture Share task weights m1 m2 m3 K MOTA mAP Inference time (ms per frame)

RetinaNet No - - - 6 - 38.19 34

RetinaNet∗ No - - - 6 38.02 37.43 44

RetinaNet Yes - - - 6 - 37.95 30

RetinaNet∗ Yes - - - 6 37.63 36.75 40

RetinaNet No - - 2 1 30.94 35.20 33

RetinaNet Yes - - 2 1 31.20 35.08 29

RetinaTrack - 1 3 2 6 38.71 37.96 88

RetinaTrack - 2 2 2 6 39.08 38.14 81

RetinaTrack - 3 1 2 6 39.12 38.24 70

Figure 5: Waymo ablations. Performance of vanilla RetinaNet and RetinaTrack (including tracking embedding layers) in terms of detection mAP and

tracking MOTA on the Waymo Open Dataset. m1 denotes the number of task-shared post-FPN layers, m2 denotes the number of task-specific post-FPN

layers, and m3 denotes the number of embedding layers. RetinaNet∗ is a vanilla RetinaNet model (with K = 6) trained with tracking losses where instance

embedding vectors are shared among “colliding anchors”.

# embedding layers MOTA mAP

0 38.52 37.93

2 39.19 38.24

4 38.85 38.24

Figure 6: Track embedding subnetwork depth ablation. We train ver-

sions of RetinaTrack with m3 = 0, 2, and 4 projection layers.

cost of the post-FPN subnetworks have now been multi-

plied by K. Among the three variants of RetinaTrack ,

(m1 = 3,m2 = 1) is again the fastest.

4.2. Architectural ablations

For our remaining experiments we evaluate on Waymo,

this time including the embedding network with triplet loss

training and additionally evaluating tracking performance

using the system described in Section 3.5.

We first ablate the depth of the embedding network (see

Table 6) in which we train models using m3 = 0, 2 and 4

projection layers (fixing m1 = 3 and m2 = 1 as was shown

to be best on the COCO ablation above), obtaining best per-

formance for both detection and tracking with 2 layers.

Setting m3 = 2 layers for the embedding subnetwork,

we present our ablations on the Waymo dataset in Table 5,

training via the method described in Section 3.4.

To demonstrate the value of RetinaTrack ’s anchor-level

features for tracking, we evaluate two baseline versions of

the vanilla RetinaNet architecture — (1) one where we use

K = 1 anchor shapes since in this case it is possible to

extract per-instance feature vectors, and (2) the standard

K = 6 setting where during tracking we simply force em-

beddings for anchors that “collide” at the same spatial cen-

ter to be the same (we refer to this baseline as RetinaNet∗).

As with the COCO ablations, we see that using mul-

tiple (K = 6) anchor shapes is important to both de-

tection and tracking metrics. Thus it is unsurprising that

RetinaTrack significantly outperforms the RetinaNet based

(K = 1) tracking baseline likely mostly by virtue of be-

ing a stronger detector. However both RetinaNet∗ rows ex-

hibit lower MOTA and mAP results compared to their non-

starred counterparts, suggesting that “abusing” vanilla Reti-

naNet to perform tracking by ignoring colliding anchors is

harmful both for detection and tracking, thus underscoring

the importance of RetinaTrack ’s per-anchor embeddings.

Our best RetinaTrack configuration reaches 39.12

MOTA and has a mAP of 38.24. In contrast to the COCO

ablations where vanilla RetinaNet retains a slight edge over

RetinaTrack , here we see that RetinaTrack outperforms

RetinaNet as a detector, suggesting that by including

tracking losses, we are able to boost detection performance.

Finally with a running time of 70ms per frame, we note

that inference with RetinaTrack is faster than the sensor

framerate (10 Hz) in the Waymo dataset. Compared to the

COCO setting, RetinaTrack must run additional convolu-

tion layers for embeddings, but since COCO has 80 classes

which makes the top of the network slightly heavier, the fi-

nal running time is slightly lower in the Waymo setting.

4.3. Joint vs Independent training

To demonstrate the benefit of joint training with de-

tection and tracking tasks, we now compare Retina-

Track against three natural baselines which use the same

tracking system as RetinaTrack but change the underlying

data association similarity function (Table 8):

• An IOU baseline, where detection similarity is mea-

sured only by IOU overlap (with no embeddings),

• RetinaTrack w/o triplet loss, in which we ignore the

triplet loss (and thus do not train the model specifically

for tracking) and measure embedding similarity via the

per-instance feature vectors Fi,k, and

• RetinaTrack w/R-50 ReID, in which again we ignore

triplet loss when training RetinaTrack and feed the de-

tections to an offline-trained re-identification (ReID)

model. For the ReID model, we train a Resnet-50

based TriNet model [25] to perform ReID on Waymo.

We observe that even the IOU-only tracker provides a rea-

sonably strong baseline on Waymo, most likely by virtue

of have a strong detection model — it is likely that this

tracker is more accurate when the car is driving slowly

(compared to, e.g., highway driving). However, using visual
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Model MOTA TP FP ID switches mAP Inference time (ms per frame)

Tracktor 35.30 106006 15617 16652 36.17 45

Tracktor++ 37.94 112801 15642 10370 36.17 2645

RetinaTrack 39.19 112025 11669 5712 38.24 70

Figure 7: We compare RetinaTrack to Tracktor/Tracktor++ [4] which are currently state of the art on the MOT17 Challenge.

Model MOTA mAP Inference

time (ms)

IOU baseline 35.36 38.53 70

RetinaTrack w/o triplet loss 37.92 38.58 70

RetinaTrack , w/R-50 ReID 37.39 38.58 80

RetinaTrack 39.19 38.24 70

Figure 8: Comparison of joint training (RetinaTrack ) with alternatives:

(1) IOU based similarity tracker, (2) RetinaTrack w/o triplet loss, (3) Reti-

naTrack w/R-50 ReID,

embeddings allows us to outperform this simple baseline in

all cases, and RetinaTrack when trained with detection and

metric learning losses jointly outperforms these baselines.

4.4. Comparison against state of the art

We finally compare (Table 7) against the recent Tracktor

and Tracktor++ algorithms which are currently state of the

art on MOT Challenge. For these experiments we use our

own Tensorflow reimplementations of Tracktor and Track-

tor++ which adds a ReID component and camera motion

compensation (CMC). Our implementation differs in some

details from that described in the original paper in that it

is based on the Tensorflow Object Detection API [27] and

does not use an FPN. We use the same ReID model as

the one in Section 4.3, which matches the approach taken

in the Tracktor paper. To verify that our reimplementa-

tions are competitive, we submitted results from our Resnet-

101 based Tracktor models to the official MOT Challenge

server, which achieve nearly identical MOTA numbers as

the official submission which uses an FPN (53.4 vs. 53.5).

We also submitted results from a Resnet-152 based Tracktor

which currently outperforms all entries on the public leader-

board (with 56.7 MOTA).

On Waymo, we use a Resnet-50 based Tracktor running

at 1024 × 1024 resolution to be comparable to our model.

If we compare the Tracktor (without CMC or ReID) MOTA

score to the IOU tracking performance in Table 8, we see

that the two approaches are roughly on par. We believe that

IOU based tracking can achieve parity with Tracktor here

due to (1) having highly accurate detections to begin with,

and (2) significant camera motion which hurts Tracktor.

In fact we observe that Tracktor needs the ‘++‘ to sig-

nificantly outperform the IOU based tracker. However it is

far slower — in addition to running Faster R-CNN, it must

run a second Resnet-50 model for ReID followed by CMC

(which is time consuming).2

2To benchmark the runtime of CMC on Waymo, we use the same func-

tion used by the authors of [4] (OpenCV’s findTransformECC function

Model MOTA mAP Inference

time (ms)

IOU baseline 38.25 45.78 70

Tracktor++ 42.62 42.41 2645

RetinaTrack 44.92 45.70 70

Figure 9: Evaluations on the Waymo v1.1 dataset (which has a 4× larger

training set than the v1 dataset).

RetinaTrack outperforms both variants on tracking and

detection. It is able to achieve these improvements by sig-

nificantly reducing the number of false positives and ID

switches. And despite being slower than vanilla Tracktor

(whose running time is dominated by Faster R-CNN), Reti-

naTrack is significantly faster than Tracktor++.

Evaluation on the Waymo v1.1 dataset. As a baseline

for future comparisons, we also reproduce our evaluations

on the Waymo v1.1 release with ∼ 800K frames for train-

ing containing ∼ 1.7M annotated vehicles. For these

evaluations, we train for 100K steps with a base learning

rate of 0.004 (and all other hyperparameters fixed). Re-

sults are shown in Table 9, where we again see the same

trends with RetinaTrack significantly outperforming a base-

line IOU based tracker as well as outperforming Tracktor++

with a significantly faster running time.

5. Conclusion

In this paper we have presented a simple but effective

model, RetinaTrack , which trains jointly on detection and

tracking tasks and extends single stage detectors to handle

instance-level attributes, which we note may be of indepen-

dent interest for applications beyond tracking.

Additionally we have demonstrated the effectiveness of

joint training over the prevailing approach of training inde-

pendent detection and tracking models. This approach al-

lows RetinaTrack to outperform the current state of the art

in multi-object tracking while being significantly faster and

able to track through long periods of object disappearance.

Finally we hope that our work can serve as a strong baseline

for future research in detection and tracking.
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