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Abstract

Template-based discriminative trackers are currently the

dominant tracking paradigm due to their robustness, but are

restricted to bounding box tracking and a limited range of

transformation models, which reduces their localization ac-

curacy. We propose a discriminative single-shot segmenta-

tion tracker – D3S, which narrows the gap between visual

object tracking and video object segmentation. A single-

shot network applies two target models with complemen-

tary geometric properties, one invariant to a broad range

of transformations, including non-rigid deformations, the

other assuming a rigid object to simultaneously achieve

high robustness and online target segmentation. Without

per-dataset finetuning and trained only for segmentation

as the primary output, D3S outperforms all trackers on

VOT2016, VOT2018 and GOT-10k benchmarks and per-

forms close to the state-of-the-art trackers on the Track-

ingNet. D3S outperforms the leading segmentation tracker

SiamMask on video object segmentation benchmarks and

performs on par with top video object segmentation algo-

rithms, while running an order of magnitude faster, close to

real-time.

1. Introduction

Visual object tracking is one of core computer vision

problems. The most common formulation considers the

task of reporting target location in each frame of the video

given a single training image. Currently, the dominant

tracking paradigm, performing best in evaluations [22, 24],

is correlation bounding box tracking [11, 3, 33, 2, 54, 28]

where the target represented by a multi-channel rectangular

template is localized by cross-correlation between the tem-

plate and a search region.

State-of-the-art template-based trackers apply an effi-

cient brute-force search for target localization. Such strat-

egy is appropriate for low-dimensional transformations like

translation and scale change, but becomes inefficient for

more general situations e.g. such that induce an aspect ra-

tio change and rotation. As a compromise, modern track-

ers combine approximate exhaustive search with sampling
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Figure 1. The D3S tracker represents the target by two mod-

els with complementary geometric properties, one invariant to a

broad range of transformations, including non-rigid deformations

(GIM - geometrically invariant model), the other assuming a rigid

object with motion well approximated by an euclidean transfor-

mation (GEM - geometrically constrained Euclidean model). The

D3S, exploiting the complementary strengths of GIM and GEM,

provides both state-of-the-art localisation and accurate segmenta-

tion, even in the presence of substantial deformation.

and/or bounding box refinement/regression networks [10,

27] for aspect ratio estimation. However, these approaches

are restricted to axis-aligned rectangles.

Estimation of high-dimensional template-based transfor-

mation is unreliable when a bounding box is a poor approx-

imation of the target [31]. This is common – consider e.g.

elongated, rotating, deformable objects, or a person with

spread out hands. In these cases, the most accurate and

well-defined target location model is a binary per-pixel seg-

mentation mask. If such output is required, tracking be-

comes the video object segmentation task recently popular-

ized by DAVIS [38, 40] and YoutubeVOS [51] challenges.

Unlike in tracking, video object segmentation challenges

typically consider large targets observed for less than 100
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frames with low background distractor presence. Top video

object segmentation approaches thus fare poorly in short-

term tracking scenarios [24] where the target covers a frac-

tion of the image, substantially changes its appearance over

a longer period and moves over a cluttered background.

Best trackers apply visual model adaptation, but in the case

of segmentation errors it leads to an irrecoverable tracking

failure [41]. Because of this, in the past, segmentation has

played only an auxiliary role in template-based trackers [1],

constrained DCF learning [33] and tracking by 3D model

construction [20].

Recently, the SiamRPN [28] tracker has been ex-

tended to produce high-quality segmentation masks in two

stages [50] – the target bounding box is first localized by

SiamRPN branches and then a segmentation mask is com-

puted only within this region by another branch. The two-

stage processing misses the opportunity to treat localization

and segmentation jointly to increase robustness. Another

drawback is that a fixed template is used that cannot be dis-

criminatively adapted to the changing scene.

We propose a new single-shot discriminative segmenta-

tion tracker, D3S, that addresses the above-mentioned lim-

itations. The target is encoded by two discriminative vi-

sual models – one is adaptive and highly discriminative, but

geometrically constrained to an Euclidean motion (GEM),

while the other is invariant to broad range of transformation

(GIM, geometrically invariant model), see Figure 1.

GIM sacrifices spatial relations to allow target localiza-

tion under significant deformation. On the other hand, GEM

predicts only position, but discriminatively adapts to the tar-

get and acts as a selector between possibly multiple target

segmentations inferred by GIM. In contrast to related track-

ers [50, 27, 10], the primary output of D3S is a segmentation

map computed in a single pass through the network, which

is trained end-to-end for segmentation only (Figure 2).

Some applications and most tracking benchmarks re-

quire reporting the target location as a bounding box. As

a secondary contribution, we propose an effective method

for interpreting the segmentation mask as a rotated rectan-

gle. This avoids an error-prone greedy search and naturally

addresses changes in location, scale, aspect ratio and rota-

tion.

D3S outperforms all state-of-the-art trackers on most of

the major tracking benchmarks [23, 24, 19, 35] despite not

being trained for bounding box tracking. In video object

segmentation benchmarks [38, 40], D3S outperforms the

leading segmentation tracker [50] and performs on par with

top video object segmentation algorithms (often tuned to a

specific domain), yet running orders of magnitude faster.

Note that D3S is not re-trained for different benchmarks – a

single pre-trained version shows remarkable generalization

ability and versatility1.

1PyTorch implementation will be made available.

2. Related Work

Robust localization crucially depends on the discrimina-

tion capability between the target and the background dis-

tractors. This property has been studied in depth in dis-

criminative template trackers called discriminative corre-

lation filters (DCF) [4]. The template learning is formu-

lated as a (possibly nonlinear) ridge regression problem

and solved by circular correlation [4, 12, 17, 30]. While

trackers based purely on color segmentation [8, 41] are in-

ferior to DCFs, segmentation has been used for improved

DCF tracking of non-rectangular targets [1, 31]. Lukežič et

al. [33] used color segmentation to constrain DCF learning

and proposed a real-time tracker with hand-crafted features

which achieved performance comparable to trackers with

deep features. The method was extended to long-term [32]

and RGB-depth tracking [20] using color and depth seg-

mentation. Further improvements in DCF tracking con-

sidered deep features: Danelljan et al. [11] used features

pre-trained for detection, Valmadre et al. [46] proposed pre-

training features for DCF localization and recently Danell-

jan et al. [10] proposed a deep DCF training using back-

propagation.

Another class of trackers, called Siamese trackers [2,

44, 15], has evolved in direction of generative templates.

Siamese trackers apply a backbone pre-trained offline with

general targets such that object-background discrimination

is maximized by correlation between the search region and

target template extracted in the first frame [2]. The template

and the backbone are fixed during tracking, leading to an

excellent real-time performance [24]. Several multi-stage

Siamese extensions have been proposed. These include ad-

dition of region proposal networks for improved target lo-

calization accuracy [28, 27] and addition of segmentation

branches [50] for accurate target segmentation. Recently a

template adaptation technique by backprop has been pro-

posed [29] to improve tracking robustness.

Segmentation of moving objects is a central problem in

the emerging field of video object segmentation (VOS) [38,

51]. Most recent works [47, 5, 48, 7, 53] achieve impressive

results, but involve large deep networks, which often require

finetuning and are slow. Hu et al. [18] and Chen et al. [6]

concurrently proposed segmentation by matching features

extracted in the first frame, which considerably reduces the

processing time. However, the VOS task considers segmen-

tation of large objects with limited appearance changes in

short videos. Thus, these methods fare poorly on the visual

object tracking task with small, fast moving objects. The

work proposed in this paper aims at narrowing the gap be-

tween visual object tracking and video object segmentation.
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Figure 2. The D3S segmentation architecture. The backbone fea-

tures are processed by the GEM and GIM pathways, producing the

target location (L), foreground similarity (F) and target posterior

(P) channels. The output of the three channels are concatenated

and refined into a detailed segmentation map.

3. Discriminative segmentation network

Two models are used in D3S to robustly cope with target

appearance changes and background discrimination: a geo-

metrically invariant model (GIM) presented in Section 3.1,

and a geometrically constrained Euclidean model (GEM)

presented in Section 3.2. These models process the input

in parallel pathways and produce several coarse target pres-

ence channels, which are fused into a detailed segmentation

map by a refinement pathway described in Section 3.3. See

Figure 2 for the architecture outline.

3.1. Geometrically invariant model pathway

Accurate segmentation of a deformable target requires

loose spatial constraints in the discriminative model. Our

geometrically invariant model (GIM) is thus composed of

two sets of deep feature vectors corresponding to the target

and the background, i.e., XGIM = {XF ,XB}.

Since the pre-trained backbone features are sub-optimal

for accurate segmentation, these are first processed by a

1 × 1 convolutional layer to reduce their dimensionality

to 64, which is followed by a 3 × 3 convolutional layer (a

ReLU is placed after each convolutional layer). Both these

layers are adjusted in the network training stage to produce

optimal features for segmentation. The target/background

models are created in the first frame by extracting the seg-

mentation feature vectors at pixel locations corresponding

to the target (XF ) and from the immediate neighborhood

for the background (XB).

During tracking, the pixel-level features extracted from

the search region are compared to those of GIM (XGIM) to

compute foreground and background similarity channels F

and B following [18]. Specifically, for the F channel com-

putation, each feature yi extracted at pixel i is compared to

all features xF
j ∈ XF by a normalized dot product

sFij(yi,x
F
j ) = 〈ỹi, x̃

F
j 〉, (1)

where (̃·) indicates an L2 normalization. The final per-pixel
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Figure 3. GIM – the geometrically invariant model – features

are matched to the features in the foreground-background model

{XF
,X

B} to obtain the target (F) and background (B) similarity

channels. The posterior channel (P) is the softmax of F and B.

foreground similarity at pixel i, Fi, is obtained by average

of top-K similarities at that pixel, i.e.,

Fi = TOP({sFij}j=1:NF
,K), (2)

where TOP(·,K) is a top-K averaging operator over the set

of NF similarities. Computation of the background similar-

ity channel B follows the same principle, but with similar-

ities computed with the background model feature vectors,

i.e., xB
j ∈ XB . Finally, a softmax layer is applied to pro-

duce a target posterior channel P. The GIM pathway archi-

tecture is shown in Figure 3.

3.2. Geometrically constrained model pathway

While GIM produces an excellent target-background

separation, it cannot well distinguish the target from sim-

ilar instances, leading to a reduced robustness (see Fig-

ure 1, first line). Robust localization, however, is a well-

established quality of the discriminative correlation filters.

Although they represent the target by a geometrically con-

strained model (i.e., a rectangular filter), efficient tech-

niques developed to adapt to the target discriminative fea-

tures [13, 33, 10] allow tracking reliably under considerable

appearance changes.

We thus employ a recent deep DCF formulation [10]

in the geometrically constrained Euclidean model (GEM)

pathway. Following [10], the backbone features are first re-

duced to 64 channels by 1 × 1 convolutional layer. The re-

duced features are correlated by a 64 channel DCF followed

by a PeLU nonlinearity [45]. The reduction layer and DCF

are trained by an efficient backprop formulation (see [10]

for details).

The maximum of the correlation response is considered

as the most likely target position. The D3S output (i.e., seg-

mentation), however, requires specifying a belief of target

presence at each pixel. Therefore, a target location channel

is constructed by computing a (Euclidean) distance trans-

form from the position of the maximum in the correlation

map to the remaining pixels in the search region. The GEM

pathway is shown in Figure 4.
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Figure 4. GEM – the geometrically constrained Euclidean model –

reduces the backbone features dimensionality and correlates them

with a DCF. The target localisation channel (L) is the distance

transform to the maximum correlation response, representing the

per-pixel confidence of target presence.

3.3. Refinement pathway

The GIM and GEM pathways provide complementary

information about the pixel-level target presence. GEM pro-

vides a robust, but rather inaccurate estimate of the target re-

gion, whereas the output channels from GIM show a greater

detail, but are less discriminative (Figure 1). Furthermore,

the individual outputs are low-resolution due to the back-

bone encoding. A refinement pathway is thus designed to

combine the different information channels and upscale the

solution into an accurate and detailed segmentation map.

The refinement pathway takes the following inputs: the

target location channel (L) from GEM and the foreground

similarity and posterior channels (F and P) from the GIM.

The channels are concatenated and processed by a 3×3 con-

volutional layer followed by a ReLU, resulting in a tensor of

64 channels. Three stages of upscaling akin to [42, 39] are

then applied to refine the details by considering the features

in different layers computed in the backbone. An upscal-

ing stage consists of doubling the resolution of the input

channels, followed by two 3 × 3 convolution layers (each

followed by a ReLU). The resulting channels are summed

with the adjusted features from the corresponding backbone

layer. Specifically, the backbone features are adjusted for

the upscaling task by a 3 × 3 convolution layer, followed

by a ReLU. The last upscaling stage (which contains only

resolution doubling, followed by a single 3× 3 convolution

layer) is followed by a softmax to produce the final segmen-

tation probability map. The refinement pathway is shown in

Figure 5.

4. Discriminative Segmentation Tracker

This section outlines application of the discriminative

segmentation network from Section 3 to online general ob-

ject tracking. Given a single supervised training example

from the first frame, the network produces target segmen-

tation masks in all the remaining frames. However, some

applications and most tracking benchmarks require target

location represented by a bounding box. For most bench-

marks, the bounding box is trivially obtained by fitting an
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Figure 5. The refinement pathway combines the GIM and GEM

channels and gradually upscales them by using adjusted features

from the backbone. The UP∗ is a modified UP layer (see the text).

axis-aligned bounding box that tightly fits a segmentation

mask. However, for the benchmark requiring a rotated

bounding box, we propose a simple fitting procedure in Sec-

tion 4.1. The tracking steps are outlined in Section 4.2.

4.1. Bounding box fitting module

The segmentation probability map from the discrimina-

tive segmentation network (Section 3) is thresholded at 0.5
probability to yield a binary segmentation mask. Only the

largest connected component within the mask is kept and

an ellipse is fitted to its outline by least squares [14]. The

ellipse center, major and minor axis make up an initial es-

timate of the rotated bounding box. This is typically the

most liberal solution with oversized rectangles, preferring

most of the target pixels lying within its area, but accounts

poorly for the presence of the background pixels within the

region. We therefore further reduce the rectangle sides in di-

rection of the major axes by optimizing the following mod-

ified overlap cost function IoUMOD between the predicted

segmentation mask and fitted rectangle using a coordinate

descent:

IoUMOD =
N+

IN

αN−

IN
+N+

IN
+N+

OUT

, (3)

where N+
IN

and N+
OUT

denote the number of foreground

pixels within and outside the rectangle, respectively, and

N−

IN
denotes the number of background pixels within the

rectangle. The scalar α controls the contribution of N−

IN
.

The bounding box fitting method is very fast and takes on

average only 2ms.
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4.2. Tracking with D3S

Initialization. D3S is initialized on the first frame using

the ground truth target location. The GEM and GIM ini-

tialization details depend on whether the target ground truth

is presented by a bounding box or a segmentation mask.

If a ground truth bounding box is available, the GEM fol-

lows the initialization procedure proposed in [10], which

involves training both the dimensionality reduction network

and the DCF by backprop on the first frame by considering

the region four times the target size. On the other hand,

if a segmentation mask is available, the ground truth target

bounding box is first approximated by an axis-aligned rect-

angle encompassing the segmented target.

In case a segmentation mask is available, the GIM is ini-

tialized by extracting foreground samples from the target

mask and background samples from the neighborhood four

times the target size. However, if only a bounding box is

available, an approximate ground truth segmentation mask

is constructed first. Foreground samples are extracted from

within the bounding box, while the background samples are

extracted from a four times larger neighborhood. A track-

ing iteration of D3S is then run on the initialization region

to infer a proxi ground truth segmentation mask. The final

foreground and background samples are extracted from this

mask. This process might be iterated a few times (akin to

GrabCut [43]), however, we did not observe improvements

and chose only a single iteration for initialization speed and

simplicity.

Tracking. During tracking, when a new frame arrives, a

region four times the target size is extracted at previous tar-

get location. The region is processed by the discriminative

segmentation network from Section 3 to produce the output

segmentation mask. A rotated bounding box is fitted to the

mask (Section 4.1) if required by the evaluation protocol.

The DCF in the GEM is updated on the estimated target

location following the backprop update procedure [10].

5. Experiments

5.1. Implementation details

The backbone network in D3S is composed of the first

four layers of ResNet50, pre-trained on ImageNet for object

classification. The backbone features are extracted from the

target search region resized to 384× 384 pixels. The back-

ground tradeoff parameter from (3) is set to α = 0.25 and

the top K = 3 similarities are used in GIM (2). We verified

in a preliminary analysis that performance is insensitive to

exact values of these parameters, and we therefore keep the

same values in all experiments.

Network pre-training. The GIM pathway and the refine-

ment pathway are pre-trained on 3471 training segmenta-

tion sequences from Youtube-VOS [51]. A training sam-

ple is constructed by uniformly sampling a pair of images

and the corresponding segmentation masks from the same

sequence within a range of 50 frames. To increase the ro-

bustness to possibly inaccurate GEM localization, the tar-

get location channel was constructed by perturbing ground

truth locations uniformly from [− 1

8
σ, 1

8
σ], where σ is target

size. The network was trained by 64 image pairs batches for

40 epochs with 1000 iterations per epoch using the ADAM

optimizer [21] with learning rate set to 10−3 and with 0.2

decay every 15 epochs. The training loss was a crossen-

tropy between the predicted and ground truth segmentation

mask. The training takes 20 hours on a single GPU.

Speed. A Pytorch implementation of D3S runs at 25fps on

a single NVidia GTX 1080 GPU, while 1.3s is required for

loading the network to GPU and initialization.

5.2. Evaluation on Tracking Datasets

D3S was evaluated on four major short-term tracking

datasets: VOT2016 [23], VOT2018 [24], GOT-10k [19] and

TrackingNet [35]. In the following we discuss the results

obtained on each of the datasets.

VOT2016 and VOT2018 datasets each consist of 60 se-

quences. Targets are annotated by rotated rectangles to en-

able a more thorough localization accuracy evaluation com-

pared to the related datasets. The standard VOT evaluation

protocol [26] is used in which the tracker is reset upon track-

ing failure. Performance is measured by accuracy (average

overlap over successfully tracked frames), robustness (fail-

ure rate) and the EAO (expected average overlap), which is

a principled combination of the former two measures [25].

The following state-of-the-art (sota) trackers are con-

sidered on VOT2016: the VOT2016 top performers

CCOT [13] and TCNN [36], a sota segmentation-based

discriminative correlation filter CSR-DCF [33], and most

recently published sota deep trackers SiamRPN [28],

SPM [49], ASRCF [9], SiamMask [50] and ATOM [10].

Results reported in Table 1 show that D3S outperforms

all tested trackers on all three measures by a large margin.

In EAO measure, D3S outperforms the top sota tracker SPM

by 14%, and simultaneously outperforms the top robust sota

ATOM by 25% in robustness. The top sota performer in ac-

curacy is the segmentation-based tracker SiamMask. D3S

outperforms this tracker by over 3% in accuracy and ap-

proximately by 50% in robustness.

The VOT2016 dataset contains per-frame target segmen-

tation masks which can be used to evaluate segmentation

performance on the small and challenging targets present.

We have thus compared D3S with the most recent segmen-

tation tracker SiamMask by computing the average IoU be-

tween the ground truth and predicted segmentation masks

during periods of successful tracks (i.e., segmentation accu-

racy). D3S achieves a 0.66 average IoU, while SiamMask

IoU is 0.63. A nearly 5% improvement speaks of a consid-

erable accuracy of the D3S segmentation mask prediction.
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D3S SPM SiamMask ATOM ASRCF SiamRPN CSRDCF CCOT TCNN

EAO ↑ 1 0.493 2 0.434 3 0.433 0.430 0.391 0.344 0.338 0.331 0.325

Acc. ↑ 1 0.66 3 0.62 2 0.64 0.61 0.56 0.56 0.51 0.54 0.55

Rob. ↓ 1 0.131 0.210 0.214 2 0.180 3 0.187 0.302 0.238 0.238 0.268

Table 1. VOT2016 – comparison with state-of-the-art trackers.

D3S SiamRPN++ ATOM LADCF DaSiamRPN SiamMask SPM ASRCF

EAO ↑ 1 0.489 2 0.414 3 0.401 0.389 0.383 0.380 0.338 0.328

Acc. ↑ 1 0.64 3 0.60 0.59 0.51 0.59 2 0.61 0.58 0.49

Rob. ↓ 1 0.150 0.234 3 0.204 2 0.159 0.276 0.276 0.300 0.234

Table 2. VOT2018 – comparison with state-of-the-art trackers.

D3S ATOM SiamMask SiamFCv2 SiamFC GOTURN CCOT MDNet

AO ↑ 1 59.7 2 55.6 3 51.4 37.4 34.8 34.2 32.5 29.9

SR0.75 ↑ 1 46.2 2 40.2 3 36.6 14.4 9.8 12.4 10.7 9.9

SR0.5 ↑ 1 67.6 2 63.5 3 58.7 40.4 35.3 37.5 32.8 30.3

Table 3. GOT-10k test set – comparison with state-of-the-art trackers .

D3S SiamRPN++ SiamMask ATOM MDNet CFNet SiamFC ECO

AUC ↑ 2 72.8 1 73.3 3 72.5 70.3 60.6 57.8 57.1 55.4

Prec. ↑ 2 66.4 1 69.4 2 66.4 3 64.8 56.5 53.3 53.3 49.2

Prec.N ↑ 76.8 1 80.0 2 77.8 3 77.1 70.5 65.4 66.3 61.8

Table 4. TrackingNet test set – comparison with state-of-the-art trackers.

On the VOT2018 dataset, D3S is compared with the

following sota trackers: the top VOT2018 performer

LADCF [52] and the most recent sota trackers DaSi-

amRPN [54], SiamRPN++ [27], ATOM [10], SPM [49],

ASRCF [9] and SiamMask [50]. Results are reported in

Table 2. Again, D3S outperforms all sota trackers in all

measures. The top sota trackers in EAO, accuracy and ro-

bustness are SiamRPN++, SiamMask and LADCF, respec-

tively. D3S outperforms the SiamRPN++ in EAO by 18%,

SiamMask in accuracy by over 5% and LADCF by over

6% in robustness. Note that SiamMask is a segmentation

tracker, which explains the top accuracy among sota. D3S

outperforms this tracker by over 45% in robustness, which

is attributed to the discriminative formulation within the

single-pass segmentation mask computation.

GOT-10k is a recent large-scale high-diversity dataset

consisting of 10k video sequences with targets annotated

by axis-aligned bounding boxes. The trackers are evaluated

on 180 test sequences with 84 different object classes and

32 motion patterns, while the rest of the sequences form

a training set. A tracker is initialized on the first frame

and let to track to the end of the sequence. Trackers are

ranked according to the average overlap, but success rates

(SR0.5 and SR0.75) are reported at two overlap thresholds

0.5 and 0.75, respectively, for detailed analysis2. The fol-

lowing top-performing sota trackers are used in compar-

ison [19]: SiamFCv2 [46], SiamFC [2], GOTURN [16],

CCOT [13], MDNet [37] and the most-recent ATOM [10]

and SiamMask [50]. We emphasize that D3S is not fine-

tuned on the training set, while some of the top-performing

sota trackers we use in comparison do utilize the GOT-10k

training set. Results on GOT-10k are reported in Table 3.

D3S outperforms all top-performing sota by a large margin

in all performance measures, and achieves approximately

60% boost in average overlap compared to the SiamFCv2,

which is a top-performer on [19] benchmark. It also out-

performs the most recent ATOM and SiamMask trackers

by over 7% and over 15% in average overlap, respectively.

This demonstrates considerable generalization ability over

a diverse set of target types.

TrackingNet is another large-scale dataset for training

and testing trackers. The training set consists of over 30k

video sequences, while the testing set contains 511 se-

quences. A tracker is initialized on the first frame and let

to track to the end of the sequence. Trackers are ranked

according to the area under the success rate curve (AUC),

precision (Prec.) and normalized precision (Prec.N ). The

2Success rate denotes percentage of frames where predicted region

overlaps with the ground-truth region more than the threshold.
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reader is referred to [35] for further details about the per-

formance measures. The performance of D3S is compared

with the top-performing sota trackers according to [35]:

ECO [11], SiamFC [2], CFNet [46], MDNet [37] and

most recent sota trackers ATOM [10], SiamMask [50] and

SiamRPN++ [27]. D3S significantly outperforms the sota

reported in [35] and is on par with SiamRPN++, SiamMask

and ATOM. Note that D3S is trained only on 3471 se-

quences from YouTube-VOS [51], while both, ATOM and

SiamRPN++ are finetuned on much larger datasets (31k,

and over 380k sequences, respectively), which include the

TrackingNet training set. This further supports a consid-

erable generalization capability of D3S, which is primarily

trained for segmentation, not tracking.

5.3. Ablation Study

An ablation study was performed on VOT2018 using the

reset-based protocol [26] to expose the contributions of dif-

ferent components of the D3S architecture. The following

variations of D3S were created: (i) D3S without the GIM

foreground similarity channel F (D3SF̄ ); (ii) D3S without

the GIM target posterior channel P (D3SP̄) ; (iii) D3S with

only the GEM output channel and without GIM channels F

and P (D3SF̄P̄); (iv) D3S without the GEM output channel

L (D3SL̄); (v) D3S in which the DCF is not updated from

the position estimated by D3S, but rather from the position

estimated by the DCF in GEM (D3SŪ ). Two additional D3S

versions with different bounding box fitting methods were

included: a minimal area rotated bounding box that contains

all foreground pixels (D3SMA) and a min-max axis-aligned

bounding box (D3SMM). All variations were re-trained on

the same dataset as the original D3S.

Results of the ablation study are presented in Table 5.

Removal of the foreground similarity channel from GIM

(D3SF̄) causes a 4.5% performance drop, while removal

of the target posterior channel (D3SP̄) reduces the perfor-

mance by 13.5%. The accuracy of both variants is com-

parable to the original D3S, while the number of failures

increases. In conclusion, each, foreground similarity and

posterior channel individually contribute to robust target lo-

calization.

Removal of the entire GIM module i.e., F and P

(D3SF̄P̄) reduces the overall tracking performance by 27%.

The accuracy drops by 14%, while the number of failures

increases by 56%. This speaks of crucial importance of the

GIM module for accurate segmentation as well as tracking

robustness.

Removal of the GEM module (D3SL̄) reduces the track-

ing performance by nearly 50%. This is primarily due to

significant reduction of the robustness – the number of fail-

ures increases by over 270%. Thus the GEM module is cru-

cial for robust target selection in the segmentation process.

Finally, updating the DCF in GEM module by its own

estimated position rather than the position estimated by the

final segmentation (D3SŪ) reduces the overall performance

by 7.5%, primarily at a cost of significant increase in the

number of failures (over 15%). Thus, accurate target posi-

tion estimation from D3S crucially affects the learning of

the DCF in GEM and consequently the overall tracking per-

formance.

Replacing the proposed bounding box fitting method

(Section 4.1) with the minimal area rotated bounding box

(D3SMA) results in a 9% reduction in EAO and a 6% reduc-

tion in accuracy. This is still a state-of-the-art result, which

means that the D3S performance boost can be primarily at-

tributed to the segmentation mask quality. The min-max

bounding box fitting method (D3SMM) leads to a 19% EAO

and 14% accuracy reduction. Thus D3S does benefit from

the rotated bounding box estimation.

5.4. Evaluation on Segmentation Datasets

Segmentation capabilities of D3S were analyzed on

two popular video object segmentation benchmarks

DAVIS16 [38] and DAVIS17 [40]. Under the DAVIS pro-

tocol, the segmentation algorithm is initialized on the first

frame by a segmentation mask. The algorithm is then re-

quired to output the segmentation mask for all the remain-

ing frames in the video. Performance is evaluated by two

measures averaged over the sequences: mean Jaccard index

(JM) and mean F-measure (FM). Jaccard index represents

a per-pixel intersection over union between the ground-truth

and the predicted segmentation mask. The F-measure is a

harmonic mean of precision and recall calculated between

the contours extracted from the ground-truth and the pre-

dicted segmentation masks. For further details on these per-

formance measures, the reader is referred to [38, 34].

D3S is compared to several sota video object segmenta-

tion methods specialized to the DAVIS challenge setup: OS-

VOS [5], OnAVOS [48], OSMN [53], FAVOS [7], VM [18]

and PML [6]. In addition, we include the most recent

segmentation-based tracker SiamMask [50], which is the

only published method that performs well on both, short-

term tracking as well as on video object segmentation

benchmarks.

Results are shown in Table 6. D3S performs on par

with most of the video object segmentation top perform-

ers on DAVIS. Compared to top performer on DAVIS2016,

the performance of D3S is 12% and 14% lower in the av-

erage Jaccard index and the F-measure, respectively. On

DAVIS2017 this difference is even smaller – a 6% drop in

Jaccard index and 8% drop in F-measure compared to the

top-performer OnAVOS. This is quite remarkable, consider-

ing that D3S is 200 times faster. Furthermore, D3S delivers

a comparable segmentation accuracy as pure segmentation

methods ASMN and PML, while being orders of magnitude

faster and achieving a near-realtime video object segmenta-
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D3S F̄ Ū P̄ F̄P̄ L̄ MA MM
EAO 0.489 0.467 0.452 0.423 0.357 0.251 0.444 0.398

Acc. 0.64 0.65 0.63 0.60 0.55 0.60 0.60 0.55

Rob. 0.150 0.187 0.173 0.211 0.234 0.567 0.160 0.173

Table 5. VOT2018 – ablation study. Removing: the GIM foreground similarity channel (F̄), the GIM foreground probability channel (P̄),

both GIM channels (F̄P̄) and the GEM channel (L̄). The DCF in GEM is updated from its own position estimation rather than position

estimated by D3S (Ū). D3S with a minimal area rotated bounding box (MA) and a min-max axis-aligned bounding box (MM).

JM
16 FM

16 JM
17 FM

17 FPS

D3S 75.4 72.6 57.8 63.8 25.0

SiamMask [50] 71.7 67.8 54.3 58.5 55.0

OnAVOS [48] 86.1 84.9 61.6 69.1 0.1

FAVOS [7] 82.4 79.5 54.6 61.8 0.8

VM [18] 81.0 - 56.6 - 3.1

OSVOS [5] 79.8 80.6 56.6 63.9 0.1

PML [6] 75.5 79.3 - - 3.6

OSMN [53] 74.0 72.9 52.5 57.1 8.0

Table 6. State-of-the-art comparison on the DAVIS16 and

DAVIS17 segmentation datasets. Average Jaccard index and F-

measure are denoted as JM
16 and FM

16 on DAVIS16 dataset

and JM
17 and FM

17 on DAVIS17 dataset, respectively.

tion, which is particularly important for many video editing

applications.

D3S also outperforms the only tracking and segmenta-

tion method SiamMask with respect to all measures. On

average the segmentation is improved by over 5% in the

Jaccard index and the contour accuracy-based F-measure.

See Figure 6 for further qualitative comparison of D3S and

SiamMask on challenging targets.

6. Conclusion

A deep single-shot discriminative segmentation tracker

– D3S – was introduced. The tracker leverages two models

from the extremes of the spectrum: a geometrically invari-

ant model and a geometrically restricted Euclidean model.

The two models localize the target in parallel pathways and

complement each other to achieve high segmentation ac-

curacy of deformable targets and robust discrimination of

the target from distractors. The end-to-end trainable net-

work architecture is the first single-shot pipeline with on-

line adaptation that tightly connects discriminative tracking

with accurate segmentation.

D3S outperforms state-of-the-art trackers on the

VOT2016, VOT2018 and GOT-10k benchmarks and per-

forms on par with top trackers on TrackingNet, regardless

of the fact that some of the tested trackers were re-trained

for specific datasets. In contrast, D3S was trained once

on Youtube-VOS (for segmentation only) and the same

version was used in all benchmarks. Tests on DAVIS16 and

DAVIS17 segmentation benchmarks show performance

close to top segmentation methods while running up to

D3
S

D3
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D3
S

Si
am

M
as
k

Si
am

M
as
k

Si
am

M
as
k

Bolt2

Hand

Paragliding

Figure 6. D3S vs. SiamMask segmentation quality. Bolt2:

SiamMask drifts to a similar object, D3S leverages the discrimina-

tive learning in GEM to robustly track the selected target. Hand:

the rigid template in SiamMask fails on a deforming target, the

GIM model in D3S successfully tracks despite a significant defor-

mation. Paragliding: clutter causes drift and failure of SiamMask

while in D3S, the combination of the GIM and GEM models leads

to accurate and robust segmentation.

200× faster, close to real-time. D3S significantly outper-

forms recent top segmentation tracker SiamMask on all

bechmarks in all metrics and contributes towards narrowing

the gap between two, currently separate, domains of

short-term tracking and video object segmentation, thus

blurring the boundary between the two.
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and Matej Kristan. Discriminative correlation filter with

channel and spatial reliability. In Comp. Vis. Patt. Recog-

nition, pages 6309–6318, 2017. 1, 2, 3, 5

[34] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to de-

tect natural image boundaries using local brightness, color,

and texture cues. IEEE Trans. Pattern Anal. Mach. Intell.,

26(5):530–549, 2004. 7

[35] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. TrackingNet: A large-scale

dataset and benchmark for object tracking in the wild. In

Proc. European Conf. Computer Vision, September 2018. 2,

5, 7

[36] Hyeonseob Nam, Mooyeol Baek, and Bohyung Han. Model-

ing and propagating CNNs in a tree structure for visual track-

ing. arXiv preprint arXiv:1608.07242, 2016. 5

[37] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In Comp.

Vis. Patt. Recognition, pages 4293–4302, June 2016. 6, 7

[38] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M.

Gross, and A. Sorkine-Hornung. A benchmark dataset and

evaluation methodology for video object segmentation. In

Comp. Vis. Patt. Recognition, 2016. 1, 2, 7

[39] Pedro O. Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr

Dollár. Learning to refine object segments. In Proc. Euro-

pean Conf. Computer Vision, pages 75–91, 2016. 4

[40] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Ar-
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