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Abstract

Handwritten text and scene text suffer from various

shapes and distorted patterns. Thus training a robust recog-

nition model requires a large amount of data to cover diver-

sity as much as possible. In contrast to data collection and

annotation, data augmentation is a low cost way. In this pa-

per, we propose a new method for text image augmentation.

Different from traditional augmentation methods such as

rotation, scaling and perspective transformation, our pro-

posed augmentation method is designed to learn proper and

efficient data augmentation which is more effective and spe-

cific for training a robust recognizer. By using a set of cus-

tom fiducial points, the proposed augmentation method is

flexible and controllable. Furthermore, we bridge the gap

between the isolated processes of data augmentation and

network optimization by joint learning. An agent network

learns from the output of the recognition network and con-

trols the fiducial points to generate more proper training

samples for the recognition network. Extensive experiments

on various benchmarks, including regular scene text, irreg-

ular scene text and handwritten text, show that the proposed

augmentation and the joint learning methods significantly

boost the performance of the recognition networks. A gen-

eral toolkit for geometric augmentation is available1.

1. Introduction

The last decade witnessed the tremendous progress

brought by the deep neural network in the computer vision

community [3, 11, 14, 21]. Limited data is not sufficient

to train a robust deep neural network, because the network

may overfit to the training data and produce poor general-

ization on the test set [5]. However, data collection and

annotation require a lot of resources. Different from sin-

gle object classification task [21], the annotation work of

text string is more tough, because there are multiple charac-

∗Corresponding author.
1https://github.com/Canjie-Luo/Text-Image-Augmentation

Figure 1. (a) Existing geometric augmentation, including rotation,

scaling and perspective transformation; (b) Our proposed flexible

augmentation. Moreover, a joint learning method bridges the iso-

lated processes of data augmentation and network training.

ters in a text image. This is also a reason why most state-

of-the-art scene text recognition methods [23, 28, 38] only

used synthetic samples [13, 17] for training. The data lim-

itation also effects handwritten text recognition. There ex-

ists a wide variety of writing styles. Collecting large scale

annotated handwritten text image is high-cost and cannot

cover all diversities [47]. It is also challenging to generate

synthetic data for handwritten text, because it is difficult to

imitate various writing styles.

To obtain more training samples, it is possible to apply

random augmentation to the existing data [9]. Handwritten

text with varying writing styles, and scene text with dif-

ferent shapes, such as perspective and curved text, are still

very challenging to be recognized [5, 28, 38]. Therefore,

geometric augmentation is an important way to gain robust-

ness for recognition methods. As shown in Figure 1 (a),

the common geometric transformations are rotation, scal-

ing and perspective transformation. Multiple characters in

an image are regarded as one entity, and a global augmen-

tation is performed on the image. However, the diversity

of each character should be taken into account. Given a

text image, the augmentation goal is to increase the diver-
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sity of every character in the text string. Therefore, existing

augmentation is limited to the over-simple transformations,

which are inefficient for training.

In addition, the effective training samples that contribute

to the robustness of the network may still be rare because of

the long-tail distribution [31], which is another reason that

causes inefficient training. The strategy of random augmen-

tation is the same for every training sample, neglecting the

difference among the samples and the optimization proce-

dure of the network. Under the manually controlled static

distribution, the augmentation may produce many “easy”

samples which are useless for the training. Therefore, ran-

dom augmentation under the static distribution can hardly

meet the requirement of the dynamic optimization. Simulta-

neously, the manually designed best augmentation strategy

on a dataset, usually cannot be transferred to another dataset

as expected. Our goal is to study a learnable augmentation

method that can automatically adapt to other tasks without

any manual modification.

In this paper, we propose a new data augmenta-

tion method for text recognition, which is designed for

sequence-like characters [36] augmentation. Our augmen-

tation method focuses on the spatial transformation of im-

ages. We first initialize a set of fiducial points on the image

and then move the points to generate a new image. The

moving state, which represents the movement of the points

to create “harder” training samples, is sampled from the pre-

dicted distribution of the agent network. Then the augmen-

tation module takes the moving state and image as input,

and generates a new image. We adopt similarity transfor-

mation based on moving least squares [35] for image gen-

eration. Besides, a random moving state is also fed to the

augmentation module to generate a randomly augmented

image. Finally, the agent learns from the moving state that

increases recognition difficulty. The difficulty is measured

under the metric of edit distance, which is highly relevant

to the recognition performance.

To summarize, our contributions are as follows:

• We propose a data augmentation method for text im-

ages that contain multiple characters. To the best of our

knowledge, this may be the first augmentation method

specially designed for sequence-like characters.

• We propose a framework that jointly optimizes the data

augmentation and the recognition model. The aug-

mented samples are generated through an automatic

learning process, and are thus more effective and use-

ful for the model training. The proposed framework is

end-to-end trainable without any fine-tuning.

• Extensive experiments conducted on various bench-

marks, including scene text and handwritten text, show

that the proposed augmentation and joint learning

methods remarkably boost the performance of the rec-

ognizers, especially on small training dataset.

2. Related Work

Scene Text Recognition As an essential process in com-

puter vision tasks, scene text recognition has attracted much

research interest [22, 23, 28, 38]. There are multiple char-

acters in a scene text image. Thus the text string recognition

task is more difficult than single character recognition. Typ-

ically, scene text recognition approaches can be divided into

two types: localization-based and segmentation-free.

The former attempts to localize the position of char-

acters, recognize them and group all the characters as a

text string [41, 42]. The latter benefits from the success

of deep neural network and models the text recognition

as a sequence recognition problem. For instance, He et

al. [15] and Shi et al. [36] applied recurrent neural net-

works (RNNs) on the top of convolutional neural networks

(CNNs) for spatial dependencies of sequence-like objects.

Furthermore, the sequence-to-sequence mapping issue was

addressed by attention mechanism [38].

The great progress in regular text recognition led the

community to irregular text recognition. Luo et al. [28] and

Shi et al. [38] proposed rectification networks to remove

distortion and decrease recognition difficulty. Zhan and Lu

[46] iteratively removed perspective distortion and text line

curvature. Yang et al. [43] gave an accurate description of

text shape by using more geometric constraints and supervi-

sions for every character. Though the methods above made

a notable step forward, irregular scene text recognition still

remains a challenging problem.

Handwritten Text Recognition Due to various writing

styles, handwritten text recognition is still a challenging

field [5]. Early methods used hybrid hidden Markov model

[10] and embedded both word images and text strings in

a common vectorial subspace to cast recognition tasks as

nearest neighbor problems [1].

In the deep learning era, Sueiras et al. [39] and Sun

et al. [40] extracted feature by using CNNs followed by

RNNs, and obtained superior results. Zhang et al. [47] ad-

dressed handwriting style diversity problem by proposing

a sequence-to-sequence domain adaptation Network. Bhu-

nia et al. [5] adversarially warped the intermediate feature-

space to alleviate the lack of variations in some sparse train-

ing datasets. While great progress has been made, hand-

written text recognition remains an open and challenging

problem because of various writing styles.

Data Augmentation Data augmentation is critical to

avoid overfitting in the training of deep neural networks

[9, 16, 31]. Nevertheless, few research addresses the aug-

mentation issue for text images. Common geometric aug-

mentations including flipping, rotation, scaling and per-

spective transformation, are typically useful for single ob-

ject recognition [21]. However, a text image contains multi-

ple characters. Existing over-simple transformations do not

significantly contribute to the diversity of text appearance.
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Figure 2. Overview of the proposed framework. First, the learnable agent predicts a distribution of the moving state aiming to create a

harder training sample. Then the augmentation module generates augmented samples based on the random and predicted moving state,

respectively. The difficulty of the pair of samples is measured by the recognition network. Finally, the agent takes the moving state that

increases difficulty as guidance and updates itself. The unified framework is end-to-end trainable.

Simultaneously, the static augmentation policy does not

meet the dynamic requirement of optimization. Cubuk et al.

[9] searched the policy for augmentation by using reinforce-

ment learning. Ho et al. [16] generated flexible augmenta-

tion policy schedules to speed up the searching procedure

(5000 GPU hours to 5 GPU hours on CIFAR-10). Peng et

al. [31] augmented samples by adversarial learning with

pre-training processes.

With respect to text recognition, the training of the rec-

ognizer requires much data. The widely used synthetic

datasets [13, 17] provide more than 10 million samples.

However, Li et al. [22] additionally used approximately 50k

public real datasets for training and significantly improved

recognition performance, which suggests that the recogni-

tion models are still data-hungry. As for handwritten text,

existing training data can hardly cover various writing styles

and generating synthetic handwritten data is also challeng-

ing. Unlike scene text synthesis, there is few font in writing

style to render on a canvas.

Our method is proposed for multiple characters augmen-

tation in an automatic manner. An agent network searches

hard training samples online. Moreover, the framework is

end-to-end trainable without any fine-tuning.

3. Methodology

3.1. Overall Framework

As illustrated in Figure 2, the proposed framework con-

sists of three main modules: an agent network, an augmen-

tation module and a recognition network. First, we initial-

ize a set of custom fiducial points on the image. A mov-

ing state predicted by the agent network and a randomly

generated moving state are fed to the augmentation module.

The moving state indicates the movement of a set of custom

fiducial points. Then the augmentation module takes the im-

age as input, and applies transformation based on the mov-

ing states respectively. The recognizer predicts text strings

on the augmented images. Finally, we measure the recogni-

tion difficulty of the augmented images under the metric of

edit distance. The agent learns from the moving state that

increases difficulty, and explores the weakness of the recog-

nizer. As a result, the recognizer gains robustness from the

hard training samples.

As we only use the prediction of the recognition net-

work and the difficulty is measured by edit distance rather

than other loss functions, the recognition network can be re-

placed by recent advanced methods [36, 38], which we will

demonstrate in the section 4. In this section, we describe

the augmentation module and the joint training scheme of

the proposed framework.

3.2. Text Augmentation

Given a text image, the augmentation goal is to increase

the diversity of every character in the text string. This mo-

tivates us to use more custom fiducial points for transfor-

mation. As shown in Figure 3, we averagely divide the im-

age into N patches and initialize 2(N + 1) fiducial points

p along the top and bottom image borders. After that, we

augment images by following a certain distribution and ran-

domly moving the fiducial points to q within the radius R.

To generate an augmented image, we apply similarity de-

formation based on moving least squares [35] on the input

image. Given a point u in the image, the transformation for

u is

T (u) = (u− p∗)M + q∗, (1)

where M ∈ R
2×2 is a linear transformation matrix that is

constrained to have the property MTM = λ2I for some

scalar λ. Here p∗ and q∗ are the weighted centroids of ini-

tialized fiducial points p and moved fiducial points q, re-

spectively:

p∗ =

∑2(N+1)
i=1 wipi

∑2(N+1)
i=1 wi

, q∗ =

∑2(N+1)
i=1 wiqi

∑2(N+1)
i=1 wi

. (2)
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Figure 3. Text augmentation. The image is divided into three

patches (N = 3) and the moving radius is limited to ten (R = 10).

The red points denote control points.

The weight wi for point u has the form

wi =
1

|pi − u|
2α , u 6= pi. (3)

Note that as u approaches pi, the weight wi increases.

This means that u mostly depends on the movement of the

nearest fiducial point. The wi is bounded. If u = pi, then

T (u) = u. Here we set α = 1.

The best transformation T (u) is obtained by minimizing

∑2(N+1)

i=1
wi |Tu (pi)− qi|

2
, (4)

to yield the unique minimizer [35].

Discussion Though Thin Plate Spline Transformation

(TPS) [6] has achieved success in shape rectification [38]

and feature-level adversarial learning [5], it is reported that

TPS appears non-uniform scaling and shearing, which is

undesirable in many applications [35]. One possible rea-

son why previous work used TPS may be all the operators in

TPS are differentiable and can be found in most mainstream

Figure 4. Comparison of the elastic (similarity) and rigid transfor-

mation. The movements of the fiducial points on all the images

are the same. The rigid transformation retains relative shape (re-

alistic for general object), but text image augmentation requires

more flexible deformation for every character. Therefore, the elas-

tic (similarity) transformation is more suitable for text image aug-

mentation.

deep learning libraries. As the learning of our augmentation

is free of backward calculation of recognition loss, and our

goal is to setup a general augmentation, we choose sim-

ilarity deformation based on moving least squares as our

transformation strategy. Besides, we also compare simi-

larity transformation with rigid transformation [35], which

is regarded as the most realistic transformation for general

object. As illustrated in Figure 4, the rigid transformation

retains relative shape (realistic for general object), but the

similarity transformation is more suitable for text image

augmentation, because it provides more flexible deforma-

tion for every character. Further analysis is given in Section

4.4 and Table 2.

3.3. Learnable Agent

Different from the previous smart augmentation method

[9] that used reinforcement learning to search for best poli-

cies, we solve the learning problem in a faster and more

efficient fashion. Inspired by heuristic algorithms, we find

solutions among all possible ones. As the training proce-

dure is dynamic, approximate solutions are sufficient and

exact solutions are computationally expensive. For every

step in the training procedure, we generate a variation of

the predicted moving state. It serves as a candidate of learn-

ing target. If the random moving state increases recognition

difficulty, then the agent learns from the moving state. In

contrast, we reverse the learning target if the moving state

decreases recognition difficulty.

We formulate the problem of finding harder distorted

sample as a movement learning problem. As illustrated in

Figure 3, given an image, we randomly move the fiducial

points to warp the image. The moving operation (∆x,∆y)
for every fiducial point is associated with two factors: 1)

the direction of movement, namely, the signs of (∆x,∆y);
2) the distance of movement, namely, (|∆x|, |∆y|). In our

practice, the learning of distance fails to converge. It is

hard for the agent network to precisely learn the distance

of the movement. Another interesting observation is that the

failed agent network always predicts maximum moving dis-

tance to create excessive distorted samples, which reduced

the stability of recognizer training. Therefore, we limit the

learning space to the direction of movement. Based on the

moving direction, the moving distance is randomly gener-

ated within the range of radius. It avoids tedious movement

predicted by the agent network, because the randomness in-

troduces uncertainties in the augmentation. Moreover, the

agent network can be designed as a lightweight architecture.

As shown in Table 1, the agent network consists of only six

convolutional layers and a fully connected layer. The stor-

age requirement of the agent network is less than 1.5M.

The learning scheme of the agent network is shown in

Algorithm 1. First, the learnable agent predicts a moving

state distribution aiming to create a harder training sample.
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Algorithm 1 Joint Learning Scheme

Input image Iin and Ground truth GT ;

Patch number N and Moving radius R;

Initialized fiducial points p.

1: Sample moving state as S from predicted distribution:

S = Agent(Iin).

2: Generate random moving state S′ (randomly select one

point in S and switch to the opposite direction).

3: Both S and S′ contain direction for movement.

4: Within the range of R, randomly move p based on S

and S′ to obtain q and q′, respectively.

IAug = Augment(Iin, p, q),

I ′Aug = Augment(Iin, p, q
′).

5: Recognize IAug and I ′Aug:

Reg = Recognizer(IAug),

Reg′ = Recognizer(I ′Aug).

6: Update Recognizer using IAug .

7: Measure difficulty by edit distance ED(·):
8: if ED(Reg,GT ) ≤ ED(Reg′, GT ) then

S′ increases recognition difficulty.

Update Agent network with S′ by minimizing:

Loss = −

2(N+1)
∑

i=1

log
(

P (S′

i|Iin)
)

(5)

9: else

Update Agent network with reversed direction −S′

by minimizing:

Loss = −

2(N+1)
∑

i=1

log
(

P (−S′

i|Iin)
)

(6)

A random moving state is also fed to the augmentation mod-

ule. Then the augmentation module generates augmented

samples based on the two moving state, respectively. After

that, the recognition network takes the augmented samples

as input and predicts text strings. The difficulty of the pair

of samples is measured by the edit distance between the

ground truth and predicted text strings. Finally, the agent

takes the moving state that increase difficulty as guidance

and updates itself. The unified framework is end-to-end

trainable.

4. Experiments

In this section, we conduct extensive experiments on var-

ious benchmarks, including regular and irregular scene text,

and handwritten text. We first conduct ablation studies to

analyze the impact of the size of training data, the number

of divided patches N and the moving radius R on perfor-

mance. Our method is also compared to existing affine and

rigid transformations. Then we integrate state-of-the-art

recognition models with our method to show the effective-

ness of our learnable data augmentation. Finally, we com-

bine our method with the feature-level adversarial learning

method [5] to further boost the recognition performance,

which suggests that our method is flexible and can be ap-

plied in other augmentation systems.

4.1. Scene Text Datasets

The widely used synthetic datasets [17] and [13] contain

9-million and 8-million synthetic words respectively. We

randomly sample 10k, 100k and 1 million images (refered

to as Syn-10k, Syn-100k and Syn-1m respectively) for ab-

lation studies.

Real-50k is collected by Li et al. [22] from all the public

real datasets, containing approximately 50k samples.

IIIT 5K-Words [30] (IIIT5K) contains 3000 cropped

word images for testing.

Street View Text [41] (SVT) consists of 647 word im-

ages for testing. Many images are severely corrupted by

noise and blur.

ICDAR 2003 [27] (IC03) contains 867 cropped images

after discarding images that contained non-alphanumeric

characters or had fewer than three characters [41].

ICDAR 2013 [20] (IC13) inherits most of its samples

from IC03. It contains 1015 cropped images.

Street View Text Perspective [33] (SVT-P) contains 645

cropped images for testing. Most of them are perspective

distorted.

CUTE80 [34] (CT80) contains 80 high-resolution im-

ages taken in natural scenes. It was specifically collected

to evaluate the performance of curved text recognition. It

contains 288 cropped natural images.

ICDAR 2015 [19] (IC15) is obtained by cropping the

words using the ground truth word bounding boxes and in-

cludes more than 200 irregular text images.

Table 1. Architecture of the agent network. “AP” denotes 2 × 2
average pooling. “BN” represents batch normalization. The kernel

size, stride and padding size of all the convolutional layers are 3,

1 and 1, respectively. The output size means 2(N + 1) points, two

coordinates and two moving directions.

Type Size

Input 1× 32× 100

Conv-16, ReLU, AP 16× 16× 50

Conv-64, ReLU, AP 64× 8× 25

Conv-128, BN, ReLU 128× 8× 25

Conv-128, ReLU, AP 128× 4× 12

Conv-64, BN, ReLU 64× 4× 12

Conv-16, BN, ReLU, AP 16× 2× 6

FC-8(N+1) 8(N + 1)

Reshape 2(N + 1)× 2× 2
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4.2. Handwritten Text Datasets

IAM [29] contains more than 13,000 lines and 115,000

words written by 657 different writers.

RIMES [2] contains more than 60,000 words written in

French by over 1000 authors.

4.3. Implementation Details

Network The architecture of the agent network is de-

tailed in Table 1, which is a lightweight network (less than

1.5M) consisting of six convolutional layers and a fully con-

nected layer. The output size means 2(N + 1) points, two

coordinates and two moving directions. As we use the edit

distance as the metric of difficulty, the framework is inde-

pendent of various recognition losses. For instance, Shi et

al. [36] adopted CTC loss [12] for convolutional recurrent

neural network and the attentional decoders [28, 38] are

guided by the cross-entropy loss. Therefore, our framework

is friendly to different recognizers. We show the flexibility

of our method in the following experiments.

Optimization In the ablation study, we use ADADELTA

[45] with default learning rate as the optimizer. The batch

size is set to 64. All the images are resized to (32, 100).
When our method is integrated with recent state-of-the-art

recognizers, the experiment settings, including optimizer,

learning rate, image size, and training and testing datasets,

are the same as those of the recognizers for the sake of fair

comparison.

Environment All experiments are conducted on

NVIDIA 1080Ti GPUs. The augmentation module takes

less than 2ms to generate a (32, 100) image on a 2.0GHz

CPU. It is possible to take advantage of multi-threaded

acceleration. For every iteration, the end-to-end training

with learnable augmentation takes less than 1.5 times of the

training time of the single recognizer. If it is trained with

random augmentation, there is nearly no extra time con-

sumption.

4.4. Ablation Study

In this section, we perform a series of ablation studies.

As the released scene text datasets [13, 17] provide tens of

millions of training samples, it is possible to sample small

datasets with three orders of scales. Therefore, we con-

duct ablation studies on scene text datasets. The training

datasets are Real-50k, Syn-10k, Syn-100k and Syn-1m. We

use ADADELTA [45] with default learning rate as the opti-

mizer. The batch size is set to 64. All the images are resize

to (32, 100). In Table 2, we combine all the scene text test-

ing sets as a unified large dataset for evaluation.

As the attentional recognizer is the most cutting-edge

method, we choose the network equipped with ResNet and

attentional decoder in [38] as the recognizer. The recognizer

trained without any augmentation serves as a baseline. Fol-

lowing the widely used evaluation metric [28, 38], the per-

Table 2. Ablation studies on the size of training data and transfor-

mation with the settings of N = 3 and R = 10. “Aug.” denotes

our augmentation method under a randomly initialized distribution

for direction sampling.

Method Real-50k Syn-10k Syn-100k Syn-1m

baseline 54.1 7.7 39.5 60.9

Affine 58.6 16.9 43.9 61.7

Rigid 58.7 17.5 44.9 63.9

Aug. 63.4 20.1 48.6 65.9

Aug.+Agent 66.5 21.7 51.2 67.4

formance is measured by word accuracy in Table 2-4. To

ensure that the training is sufficient, we train the models 10

more epochs after they achieve highest accuracy.

Size of Training data As shown in Table 2, the recog-

nizer using our learnable augmentation method outperforms

the baseline by a large margin. For instance, the largest mar-

gin of 14.0% is on the Syn-10k dataset. This suggests that

our proposed method greatly improves the generalization of

recognizer in small-data settings. With the increase of the

dataset size, the gap reduces. But there is still a significant

accuracy increase of 6.5% on the one million training data

Syn-1m.

Transformation Affine transformation [18] including

rotation, scaling and translation, is compared with our aug-

mentation method in Table 2. The results show that the rec-

ognizer using affine augmentation outperforms the baseline

but still falls behind the recognizer that uses our augmen-

tation method, because the affine transformation is limited

to designed geometric deformations, which are unable to

cover the diversity of text appearance. We also conduct

an experiment to study the effectiveness of the rigid trans-

formation. As discussed in Section 3.2, although the rigid

transformation is realistic for general object [35], the sim-

ilarity transformation is more suitable for text image aug-

mentation.

Learnable Agent In Table 2, the agent network further

boosts the performance by jointly learning data augmenta-

tion and recognizer training. In particular, it achieves an

Figure 5. Training loss on Real-50k and testing accuracy on the

large evaluation dataset.
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Table 3. Ablation studies on the number of patches. R is set to 10.

N IIIT5K SVT IC03 IC13 SVT-P CT80 IC15

1 23.5 6.6 19.6 22.3 6.0 10.4 10.6

2 29.8 10.5 29.3 29.3 8.2 14.6 14.3

3 29.4 10.8 27.2 29.6 9.1 16.3 14.3

4 26.5 7.3 22.6 25.6 5.8 11.5 11.0

5 26.1 7.4 22.6 26.9 6.0 13.5 11.2

Table 4. Ablation studies on the moving radius. N is set to 3.

R IIIT5K SVT IC03 IC13 SVT-P CT80 IC15

0 10.9 2.3 9.0 13.0 1.8 5.2 3.6

2 13.4 2.2 9.8 14.2 2.0 5.2 4.3

5 20.3 4.6 17.0 20.4 4.2 9.0 7.8

10 29.4 10.8 27.2 29.6 9.1 16.3 14.3

15 28.8 8.3 26.1 27.8 6.3 13.2 12.2

accuracy increase of 3.1% when the recognizer is trained

using Real-50k. The curves of training loss on Real-50k

and testing accuracy on the large evaluation dataset are il-

lustrated in Figure 5. An interesting observation is that the

loss of the recognizer with learnable agent decreases slower

than others, which suggests that the agent network explores

the weakness of the recognizer and generates harder sam-

ples for training. Thus the recognizer keeps learning and

gains robustness. In contrast, the traditional recognizer

stops learning when the loss is close to zero.

Patch Number and Moving Radius We study two key

parameters N and R respectively. The training dataset is

Syn-10k. Table 3 and Table 4 show the experiment results.

We find that for regular text, to achieve the best perfor-

mance, the patch number N can be set to 2 or 3. As for

irregular text (SVT-P, CT80 and IC15), it is better to set N

to 3, because under this setting, numerous curve text images

are generated for training. The recognizer thus gains ro-

bustness. We further illustrate the effectiveness of the vari-

ance of moving radius R in Table 4. The best setting for a

(32, 100) image is R = 10. In the following experiments,

we use the best setting for N and R for further studies.

4.5. Integration with State­of­the­art Methods

In this section, we integrate our proposed method with

state-of-the-art recognizers. The augmented samples for

different tasks are shown in Figure 6. We first show the

improvement of attention-based recognizer [38] on irregu-

lar scene text benchmarks. Then we validate the general-

ization of our method by using CTC-based recognizer [5]

and conducting experiments on handwritten text. Note that

our method automatically adapt to general text recognition

tasks without any manual modification. Moreover, we show

that our method is flexible and can be integrated with other

augmentation systems to further boost the performance.

Irregular Scene Text Recognition Irregular shape is

Figure 6. Visualization of augmented samples on (a) scene text and

(b) handwritten text.

one of the challenges for scene text recognition. ASTER

proposed by Shi et al. [38] is an attention-based recognizer

equipped with rectification network. We study the robust-

ness of the recognizer by augmenting training samples and

increasing the diversity of text appearance. The experiment

settings, including optimizer, learning rate, image size, and

training datasets, are the same as ASTER [38].

The performance improved by our method is compared

to state-of-the-art methods. Although using real samples

[22] and character-level geometric constraints [43] to train

the recognizer can significantly improve the performance,

we follow the setting of most methods for fair comparison.

As Zhan and Lu [46] rectified images for several times and

Shi et al. [38] only performed rectification once, we choose

the result with one rectification iteration reported in the pa-

per. The performance of scene text recognizers is measured

Table 5. Word accuracy on irregular text. “*” denotes the result is

from one rectification iteration for fair comparison.

Method
Irregular Text

SVT-P CT80 IC15

Shi, Bai, and Yao [36] 66.8 54.9 -

Shi et al. [37] 71.8 59.2 -

Liu et al. [25] 73.5 - -

Yang et al. [44] 75.8 69.3 -

Cheng et al. [7] 71.5 63.9 70.6

Liu, Chen, and Wong [24] - - 60.0

Cheng et al. [8] 73.0 76.8 68.2

Bai et al. [4] - - 73.9

Liu et al. [26] 73.9 62.5 -

Luo, Jin, and Sun [28] 76.1 77.4 68.8

Liao et al. [23] - 78.1 -

Shi et al. [38] 78.5 79.5 76.1

Zhan and Lu [46]* 77.3 78.8 75.8

baseline (ASTER [38]) 77.7 79.9 75.8

+ Ours 79.2 84.4 76.1
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by word accuracy.

As shown in Table 5, we first reproduce the same rec-

ognizer as ASTER [38], which serves as a baseline. The

results of the reimplemented ASTER are comparable to the

results in the original paper. Then we integrate our method

with the recognizer. A significant accuracy gain occurs on

CT80 (4.5%). It is noteworthy that there is still a notable

improvement (1.5%) on SVT-P, which contains images with

noise, blur and low-resolution. Though abundant synthetic

samples may cover a lot of variation of text appearance, our

augmentation shows reasonable improvement on irregular

text recognition. The result is competitive with recent state-

of-the-art methods.

Handwritten Text Recognition As the diversity of

handwriting styles is the main challenge of handwritten text

recognition [1] and limited training data is difficult to cover

all handwriting styles, we evaluate our model on two popu-

lar datasets IAM [29] and RIMES [2] to validate the effec-

tiveness of our method. We use Character Error Rate (CER)

and Word Error Rate (WER) as metrics for handwritten text

recognition. The CER measures the Levenshtein distance

normalized by the length of the ground truth. The WER de-

notes the ratio of the mistakes at the word level, among all

words of the ground truth.

We compare our method to state-of-the-art methods in

the Table 6 and Table 7. Besides, a comparison with previ-

ous augmentation method of Bhunia et al. [5] is conducted.

For fair comparisons, our experiment settings are the same

with [5].

We apply the same CTC-based recognition network as

[5]. The baseline shown in Table 6 and Table 7 is the re-

produced result. Further, we reproduce Adversarial Feature

Deformation Module (AFDM) [5] in the recognition net-

work. The AFDM is the key module proposed by Bhunia et

al. [5] for smart augmentation. The accuracy increases as

Table 6. Comparison with previous methods on IAM. AFDM is

the key module of [5].

Method
Unconstrained Lexicon

WER CER WER CER

Bosquera et al. [10] - - 20.01 11.27

Almazán et al. [1] - - 15.50 6.90

Sun et al. [40] - - 11.51 -

Sueiras et al. [39] 23.80 8.80 19.70 9.50

Ptucha et al. [32] - - 8.22 4.70

Zhang et al. [47] 22.20 8.50 - -

Bhunia et al. [5] 17.19 8.41 8.87 5.94

baseline 19.12 7.39 10.07 5.41

+ Ours 14.04 5.34 7.52 3.82

+ AFDM [5] 16.40 6.40 8.77 4.67

+ Ours + AFDM [5] 13.35 5.13 7.29 3.75

Table 7. Comparison with previous methods on RIMES. AFDM is

the key module of [5].

Method
Unconstrained Lexicon

WER CER WER CER

Sueiras et al. [39] 15.90 4.80 13.10 5.70

Ptucha et al. [32] - - 5.68 2.46

Bhunia et al. [5] 10.47 6.44 6.31 3.17

baseline 13.83 3.93 4.94 2.02

+ Ours 9.23 2.57 4.41 1.49

+ AFDM [5] 11.81 3.33 4.85 1.92

+ Ours + AFDM [5] 8.67 2.42 3.90 1.37

expected. Note that our reproduced results are better than

most of the results (7 of 8) in the original paper, which ver-

ifies the effectiveness of our implementations and experi-

ments. We find that our augmentation greatly contributes

to the robustness of the recognizer. It improves the perfor-

mance by a large margin (5.08% unconstrained WER reduc-

tion on IAM) and significantly performs better than AFDM.

The recognizer trained using our method also outperforms

all the state-of-the-art methods.

Finally, we use both AFDM and our method for training

and further boost the performance of the recognizer by a

notable accuracy increase. This suggests that our method is

a meta framework, which can be applied in other augmen-

tation systems.

5. Conclusion

In this paper, we propose a learnable augmentation

method for the training of text recognizer. Our method

may be the first geometric augmentation method specifi-

cally designed for sequence-like characters. Furthermore,

our method bridges the gap between the data augmentation

and network optimization by joint learning. The proposed

method is simple yet effective. It is able to automatically

adapt to general text recognition tasks without any manual

modification. Extensive experiments show that our method

boosts the performance of the recognizers for both scene

text and handwritten text. Moreover, our method is a meta

framework that potentially can be incorporated into other

augmentation systems. In future, we will extend our method

for more general applications in multiple object detection

and recognition.
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