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Figure 1. W3Net decouples the pedestrian detection into Where, What and Whether problem as illustrated above from left to right, which

enables us to generate robust representations against occlusion and scale variation.

Abstract

Pedestrian detection benefits greatly from deep convo-

lutional neural networks (CNNs). However, it is inherently

hard for CNNs to handle situations in the presence of occlu-

sion and scale variation. In this paper, we propose W3Net,

which attempts to address above challenges by decompos-

ing the pedestrian detection task into Where, What and

Whether problem directing against pedestrian localization,

scale prediction and classification correspondingly. Specif-

ically, for a pedestrian instance, we formulate its feature by

three steps. i) We generate a bird view map, which is natu-

rally free from occlusion issues, and scan all points on it to

look for suitable locations for each pedestrian instance. ii)

Instead of utilizing pre-fixed anchors, we model the inter-

dependency between depth and scale aiming at generating

depth-guided scales at different locations for better match-

ing instances of different sizes. iii) We learn a latent vector

shared by both visual and corpus space, by which false pos-

itives with similar vertical structure but lacking human par-

tial features would be filtered out. We achieve state-of-the-

art results on widely used datasets (Citypersons and Cal-

tech). In particular. when evaluating on heavy occlusion

subset, our results reduce MR−2 from 49.3% to 18.7% on

Citypersons, and from 45.18% to 28.33% on Caltech.

1. Introduction

Pedestrian detection is a fundamental topic in computer

vision. Generally speaking, the design of pedestrian detec-

tor is deeply influenced by the development of object detec-

tion, which is used to tell where the object is, and how big

it is [24]. Most modern anchor-based detectors [4] [29] [28]

get stuck in a paradigm, namely, expertise-based techniques

to generate a series of anchors and then identify whether it

is a pedestrian or not. It is undeniable that this method has

a extensive impact and is widely used as a powerful base-

line, but a large number of redundant and low-quality pro-

posals it introduces also limit the accuracy and speed. In

contrast, our work falls into the anchor-free fashion, which

takes multi-modal data as input to predict where the target

is, what the scale is, and whether the target is actually a

pedestrian, instead of utilizing pre-fixed anchors.

Where - Object detection actually starts from a basic

problem: where is the target? In previous successful prac-

tices, such as Faster RCNN [19] or SSD [15], this process

is mostly determined by a set of pre-defined anchors, based

on a implicit dependency that objects are evenly distributed

on the image, which is much similar to exhaustion. The re-

cently popular anchor-free methods shake of the yoke (pre-

defined anchors) and detect objects directly from an image,

which makes the detection a more natural way. One of the

typical and effective anchor-free practice in pedestrian de-
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tection is CSP [24], which facilitated the Where problem

as a straightforward center prediction task. Our work is

conceptually similar to CSP, which is also in the scope of

anchor-free, but differs significantly in insights. As the au-

thor states in CSP [24] (Section 4.4), the pedestrian center

is actually a fuzzy point of semantic information, in which

the variation of pedestrian wearing or orientation will have

a negative effect on it. In addition, we discover that the

pedestrian center is vulnerable to occlusion, that is to say,

in some occluded scenes, the pedestrian center is invisible.

The above challenges motivate us to find a unified and ro-

bust representation for locations of pedestrians. In this pa-

per, we attempt to attribute occlusion issues to the interlock-

ing problem caused by the single image view (front view).

If the 2D image is switched to the bird view map, occlusion

would be greatly alleviated. As illustrated in Figure 1 (left),

even if a pedestrian has occlusion in the front view, the bird

view map still performs free from occlusion issues.

What - Another long-standing problem exists in object

detection as well as pedestrian detection is what the scale of

the target is. For the anchor-based methods, obviously, they

rely more on a set of pre-defined scales and aspect ratios.

Or, the anchor-free method such as CSP, stacks with convo-

lutions to predict pedestrian scales and set aspect ratio as a

uniformed value of 0.41 [24] (Section 3.3). Despite these

pipelines have been shown effective in several benchmarks,

the exhaustive proposal sizes in anchor-based methods ap-

pear redundant, and the uniform scale setting, such as 0.41

in CSP [24], seems to be inflexible. In this paper, the pro-

posed W3Net is motivated by the discovery that the scale

distribution of pedestrians in the 2D image is not out of or-

der, on the contrary, is closely related to its geometry. As

is shown in Figure 1(middle), intra-image pedestrian scale

variations vary along with the estimated depth (the distance

from the camera in real world), which means the nearer in-

stances should have lager scales compared to farther one.

Following this intuition, we model the interdependency be-

tween depth and scale aiming at generating proper scales

that flexible and accurate at different locations.

Whether - Neither anchor-based nor anchor-free meth-

ods can stay out of the problem: whether the bounding box

actually filter the pedestrian. Due to the existence of occlu-

sion issues and the diversity of occlusion patterns, instance

features used for the downstream classification show an

obvious difference, and consequently make the ”Whether”

problem difficult. Some efforts have been made to handle

this matter. Part-based methods [29] [28] tends to employ

a weakly-supervised manner to perceive the visible body

parts, while the dual branch method [31] proposes two sub-

networks, one for full body estimation and the other for vis-

ible part. These methods, in the final analysis, treat the oc-

cluded and non-occluded pedestrians in a split way, which

suffers uncertainty of weakly-supervised part labels and im-

balance between the number of occluded and non-occluded

samples. In contrast, we discover that pedestrians with ob-

vious attributes can be represented by corpus, such as head,

arm, body and leg, which offers a possibility to re-encode

both occluded and non-occluded instances into a unified

corpus space, and thus benefits robust feature generation

against ”Whether” problem.

W3Net is evaluated with challenging settings on Cityper-

sons [27] and Caltech [6] pedestrian dataset, and still

achieves state-of-the-art performance. In particular, when

evaluating heavy occlusion subset on Citypersons, our re-

sult reduces MR−2 by a factor of 2 (our model produces

18.7% while prior arts range from 49%-56%).

2. Related Work

With multi-modal learning, the proposed W3Net con-

fronts challenges (occlusion and scale variation), and de-

couples the task into Where, What and Whether problem di-

recting against pedestrian localization, scale prediction and

classification. Therefore, we review recent work on pedes-

trian detection with or without multi-modal data and com-

pare ours with previous state-of-the-art methods.

Most prevalent pedestrian detectors are on the basis of

the framework in general object detection such as Faster

RCNN [19] and SSD [15], and leverage pedestrian-oriented

traits to tackle challenges such as occlusion and scale vari-

ation in the pedestrian detection task. Part-based methods,

for example DeepParts [9], FasterRCNN+ATT [29] or OR-

CNN [28], fully exploit pedestrian part information espe-

cially visible body parts to assist robust feature embeddings.

With the careful discovery that pedestrians usually perform

up-right posture, TLL [20] escapes from pre-defined an-

chors and proposes the line localization, which greatly pro-

motes the development of pedestrian detection.

Recently, some researchers have turned attention to

multi-modal learning, which offers the possibility of captur-

ing correspondences between multiple modalities and gains

an in-depth understanding of natural phenomena. SDS-

RCNN [2] proposes a segmentation infusion network to en-

able joint supervision on semantic segmentation and pedes-

trian detection. F-DNN+SS [7] uses a derivation of the

Faster RCNN framework, and further incorporates pixel-

wise semantic segmentation in a post-processing manner to

suppress background proposals. F-DNN2+SS [8] employs

an ensemble learning approach, and semantic segmentation

network to adjust the confidence in the detector proposals.

Motivated by above, the proposed W3Net takes a further

step in three-folds:

1) We first attempt to explore a new possibility that

pedestrians can be effectively described in the bird view

map, which bypasses the limitation of 2D (front) images

and benefits the generation of robust features against vari-

ous occlusion patterns.
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Figure 2. Overview of the proposed W3Net. ”Where”: Predict the locations of the head (red dots) and width (blue lines) on bird view map.

”What”: Depth-guided proposal alignment from bird view map to front view map. ”Whether”: Features extracted from front view map

are re-encoded to a unified corpus space. The ”Whether” branch is optimized by LDE to learn a latent space shared by both visual features

and attribute embeddings. The overall output is used for the downstream pedestrian localization and classification.

2) We first attempt to model interdependency between

depth and scale for pedestrian detection, which predicts

flexible and proper proposals other than predefined ones.

3) We first attempt to propose a method to embed pedes-

trian features in corpus space, which aligns both occluded

and non-occluded instances.

3. Methodology

W3Net falls into the anchor-free fashion, which decou-

ples the pedestrian detection task into three sub-problems.

With the input of multi-modal data, including bird view

map, depth and corpus information, the three problems

”Where”, ”What” and ”Whether” target at pedestrian local-

ization, scale prediction and classification to benefit robust

feature generation against occlusion and scale variation.

The pipeline is shown in Figure 2. Specially, taking

the front view image IF (Domain A) as input, the network

first generates the corresponding bird view map IB (Do-

main C) through two Cycle GAN [32]. The IB is then

processed by the forward feature extractor to predict prob-

ability of pedestrians at each location and the correspond-

ing width, denoted as ”Where” branch. The connecting

”What” branch, supported by depth relation, aligns results

from ”Where” branch and generating reasonable propos-

als for the following ”Whether” branch without any conv

or fc effort. Proposal features extracted by feature extrac-

tor are subsequently fed into the encoder-decoder, in which

the latent space is occupied by corpus and promotes both

occluded or non-occluded instances to be re-encoded by

common attributes of pedestrians. Overall, the three ”W”

branches link together, complement each other, and consti-

tute the proposed W3Net.

3.1. Bird view: Where the target is

Compared with front view, bird view owns the unique

advantages: 1) The bird view map is naturally free from

occlusion issues. We discover that occlusion, whether it is

intra-class or inter-class [23], could be mostly attributed to

the single detection view (front view). 2) Pedestrians are

more likely to be condensed into a unified feature represen-

tation through bird view, namely ’head’. Previous anchor-

free method, such as CSP which suffers difficulty to decide

an ’exact’ center point during training, the proposed ’head’

prediction on bird view map appends more specific and ac-

curate classification targets for the ”Where” branch.

However, how to obtain the bird view map still remains

to be solved, which we treat as an image-to-image gener-

ation process in this paper. Due to the lack of real bird

view map in most of existing pedestrian datasets, such as

Citypersons [27] and Caltech [6], we attempt to introduce

synthetic data, which directly captured from 3D games to

train a bird view generation model. As the previous prac-

tice in [1], synthetic data such as [18] [21] faces a huge

challenge: the performance would be limited if the model
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trained on synthetic data is directly used on real-world data.

Inspired by above, we design our front-to-bird view gen-

eration network by two steps. The first includes a Cycle-

GAN [32] [13], denoted as GA→B in Figure 2, to transfer

real-world data (Domain A) to the synthetic images (Do-

main B). The following step introduces the other Cycle-

GAN, denoted as GB→C , to train a bird view generation

model over synthetic data captured from the game of GTA5,

which consists of a total 50,000 pairs of images including

front view and bird view from virtual car. Based on the

well-trained Generative Adversarial Network (GAN) [11]

GA→B and GB→C , the input front view map IF could be

transformed to the bird view map IB .

Upon IB , a detection head, which is composed of one

3 × 3 conv and two 1 × 1 conv layers, is attached behind

the feature extractor to predict probability of pedestrians at

each location and the corresponding width. With its inher-

ent superiority on occlusion, the bird view map can bypass

the limitation of front view images, and thus benefit the

generation of robust features. However, it is not well per-

formed yet. On the one hand, bird view map pays for the

loss of pedestrian height information, which brings about

unsatisfied height prediction results on the single bird view

map, and thus derives the following ”What” branch to es-

timate flexible and accurate scales for different instances.

On the other hand, bird view map suffers from false posi-

tives caused by suspected objects, such as the top of street

lamps vs. pedestrian ’head’, thus the introduced ”Whether”

branch is directed against this issue.

3.2. Depth: What the scale is

As is known to us, the bounding box has four-degree-of-

freedom, that is {x, y, w, h}. During the process of proposal

generating, {x, y} are already known, which are evenly dis-

tributed on the feature map, and the corresponding w has

been predicted on the bird view. Therefore, the ”What”

branch only includes two tasks: 1) What the width is on

the front view map. 2) What the corresponding height is.

Subsequently, to address above tasks, we start from a

more general situation with the following definition.

Definition: We define v0,0 as the front view when the

image IF is captured at the front horizontally, and vH,θ as

the view when the image IB is captured with the depression

angle θ at the height of H . Specially, if θ is 90◦, the view

vH,90◦ looks towards perpendicular to horizontal.

On the above basis, we could build up a set of geometric

relations. We suppose the real world 3D coordinates of the

pedestrian P under the view of v0,0 is (X,Y, Z), in which

Z could be also considered as the distance from the cam-

era, that is depth,while the corresponding 2D coordinates

on the image IF is (u, v), in which given the camera intrin-

sic matrix K, the projection from (u, v) → (X,Y, Z) can

be formulated as the following:

[X,Y, Z]T = ZK−1[u, v, 1]T (1)

Following the same steps, 3D coordinates (X ′, Y ′, Z ′)
under the view of vH,θ can also be transformed to 2D co-

ordinates correspondingly, denoted as (u′, v′). All of this,

the ultimate goal is to build the relation between (u, v) and

(u′, v′). After the view transformation, there is a relation-

ship that has already been known, which can be written as:











X ′ = X

Y ′ = (Y −H)cosθ + Zsinθ

Z ′ = −(Y −H)sinθ + Zcosθ

(2)

Besides, same as Equation 1, (u′, v′) can be achieved by:

[u′, v′, 1]T = (Z ′)−1K[X ′, Y ′, Z ′]T (3)

From Equation 1 to Equation 3, the j-th location lj,f with

the coordinates (u, v) on the front view map IF could be re-

lated to the corresponding location li,b on the bird view map

IB , that is (u′, v′). Besides, as discussed in Section 3.1,

each location li,b has been assigned with the probability

score of pedestrian location and the corresponding width,

described as {pi,b, wi,b}, which could be radiated to lj,f .

Above-mentioned formulations are designed to tackle

the first task in ”What” branch: what the width of each lo-

cation is on the front view map. There remains the other

issue: what about the height is. Informally speaking, for

the specific task of pedestrian detection, the difference in

pedestrian height is, to a great extent, depth difference, in

which the scale of an instance in the image is inversely

proportional to the distance from the camera [30]. In an-

other word, it means the farther away from the camera, the

smaller the scale of the target will be. This fact allows us to

model interdependency between depth and scale, and treat

the process of proposal generation as an uneven distribution

problem of scale.

First, still starting from Equation 1, the pedestrian height

∆h in one image could be modeled as the distance from

head d1 = [u1, v1]
T to foot d2 = [u2, v2]

T , formulated

as ∆h = ||d1 − d2||2, while the real height ∆H in the

real world could be mapped to C∆H = Z∆h, in which

C is a constant composed of camera intrinsic parameters

and Z is the depth we mentioned. As analyzed above, Z

(depth) and ∆h (height) are completely inverse when C∆H

is the fixed value. However, due to the influence of gen-

der and age in pedestrian height, it is slightly unreason-

able to set ∆H as a fixed value directly. In our height es-

timates, we assume that the height ∆H of all pedestrians

obeys the uniform distribution and we analyze the error of

the assumption. Previous studies of 63,000 European adults

have shown that the average height of males and females
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is 178cm and 165 cm respectively, with a standard devia-

tion of 7cm in both cases [22]. Besides, the distribution of

human stature follows a Gaussian distribution for male and

female populations [10], denoted as: Hmale ∼ N(µ1, σ
2)

and Hfemale ∼ N(µ2, σ
2), respectively. Specifically, for

each point lj,f in the image IF , its pedestrian height ∆H

in real world is a sample from the above distribution, and

we utilize the normal distribution function to evaluate the

uncertainty of the sampled height ∆H . Take the male dis-

tribution Hmale as an example. if the sampling height is Ĥ ,

the corresponding uncertainty can be formulated as:

ê = P (|x− µ1| < |Ĥ − µ1|) = 2Φ(
|Ĥ − µ1|

σ
)− 1 (4)

in which Φ(·) is function of standard normal distribution.

The above ê models the estimation uncertainty of ∆h due

to variation of pedestrian height ∆H in real world, in which

ê goes smaller when Ĥ gets closer to µ1, and instead goes

larger. This estimation uncertainty also servers as the con-

fidence value to re-weight loss function, described in Sec-

tion 3.4. With the above formulated w and h, the corre-

sponding proposal in the location of (x, y) could be gen-

erated, and subsequently leads to the following ”Whether”

branch.

3.3. Corpus: Whether the target is a pedestrian

After the ”Where” and ”What” branch, a large num-

ber of proposals have been generated, and the correspond-

ing possibility score pj,b, which indicates whether there is

an pedestrian instance or not in the bird view map, could

also be projected to the front view. However, the single

bird view prediction has the problem: the increase of false

positives. Therefore, we introduce visual and attribute em-

bedding, namely ”Whether” branch, to alleviate the above

problem. This branch is based on two observations: one is

that many false positives are mainly with human-like verti-

cal structures, such as railings or tree trunks [26]; another is

the fact that pedestrians, which perform walking or standing

with up-straight pose, have one specific body structure from

top to bottom: Head-Arm-Body-Leg. With this pedestrian-

specific structure, we attempt to re-encode both occluded

and non-occluded ones into the unified representation to

distinguish those false positives with global vertical struc-

ture but lacking human-body based partial features.

The component of the proposed ”Whether” is shown in

Figure 2. It consists of a variational autoencoder (VAE) [5],

which is optimized by LDE to learn a lantent space shared

by both visual features and attribute embeddings. More

specifically, the embedding network takes the attributes em-

bedding vector as input, and after passing through two fully

connected (fc) layers and the Rectified Linear Unit (ReLU),

outputs a visual embedding vector, which has the same di-

mensions as the visual feature vector of each proposal ex-

tracted from the encoder, optimizing:

LDE =
1

N

N
∑

i=1

||E(xi)− ϕ(y)||2
2

(5)

where N is the total number of all proposals, xi is the vi-

sual feature of the i-th proposal, y represents the word vec-

tor of pedestrian attributes including Head, Arm, Body and

Leg, E(·) represents the visual feature encoder and ϕ(·) is

the embedding network. The output feature via the decoder

network used for the following classification and regression

predicts the possibility score of whether there is a pedes-

trian or not, denoted as pj,f , which is combined with pj,b
and thus the overall possibility score of the j-th proposal

could be formulated as:

pj =
1

2
(pj,b + pj,f ) (6)

3.4. Training Details

Towards this task, we resort to depth maps derived from

a CNN-based monocular depth prediction model [1]. The

feature generator consists of FPN [14] with a powerful

backbone ResNet-50 [12], and the overall framework is op-

timized by the following loss function.

In the ”Where” branch, according to Equation 1 to 3, the

horizontal and vertical central axes of each ground truth are

mapped to the bird view, and thus constitute the bird view

ground truth. Same as the loss function in CSP [24], we also

formulate possibility and width prediction as a classification

and regression task via the cross-entropy and smooth L1

loss, respectively, denoted as Lbird and Lwidth.

In the ”What” branch, it is actually a geometric trans-

formation without extra conv layers introduced. It is worth

noting that in order to guarantee the robustness of the de-

tector, pedestrian height ∆H in the real world is sampled

from a distribution rather than using a fixed height value.

Therefore, in order to evaluate the uncertainty of different

samples, we introduce ê in Equation 4 and consequently re-

weight it on the following classification and regression loss.

In the ”Whether” branch, features extracted from each

proposal are first encoded to a latent space, and subse-

quently decoded as the final classification and regression

features, optimized by the loss Lcls and Lreg . The overall

loss can be formulated as:

L =λ1Lbird + λ2Lwidth + λ3LDE

+
λ4

N

N
∑

i=1

(1− êi)(Lcls,i + Lreg,i)
(7)

where i represents the i-th proposal and N is the total num-

ber of all proposals. λ1, λ2, λ3 and λ4 are the weights for

each loss, which are experimentally set as 0.01, 0.1, 0.1 and

1, respectively.

14069



θ Height Reasonable Heavy

10◦
5 21.3 63.4

20 20.8 60.8

30◦
5 18.2 50.6

20 14.3 33.6

60◦
5 15.5 34.9

20 9.3 18.7

90◦
5 16.7 40.9

20 13.5 26.9
Table 1. Comparisons of the bird view vθ,H on Citypersons, in

which θ represents the depression angle and Height represents

the height of camera from horizontal plane. Boldface/Boldface

indicate the best/second best performance.

wb wf hb hf Reasonable Heavy

X 9.3 18.7

X 10.5 29.0

X X 10.3 25.8

X X 9.8 20.1

X X 12.3 43.4

X X 11.0 38.6
Table 2. Comparisons of different prediction combinations

of (wb, hb) and (wf , hf ) on Citypersons, which represents

(width, height) of bird view and front view, respectively. Bold-

face/Boldface indicate the best/second best performance.

4. Experiments

We assess the effectiveness of our proposed method

for pedestrian detection on widely used datasets Cityper-

son [27] and Caltech [6]. Results are the MR−2 evaluation

metric, in which lower is better.

4.1. Experiment Setup

Datasets Citypersons [27] is a diverse dataset built upon

the Cityscapes data, which includes 5000 images (2975 for

training, 500 for validation, and 1525 for testing). In a total

of 5 000 images, it has ∼35k person and ∼13k ignore re-

gion annotations. And it notices the density of persons are

consistent across train/validation/test subsets. The Caltech

Dataset [6] consists of approximately 10 hours of 640x480

30Hz video taken from a vehicle driving through regular

traffic in an urban environment. About 250,000 frames

with a total of 350,000 bounding boxes and 2300 unique

pedestrians were annotated. All of the datasets contain chal-

lenging settings, denoted as Heavy occlusion, in which the

propotion of visible parts of pedestrians is less than 0.65.

Implementation We implemented the proposed method

in Pytorch with the backbone ResNet50 [12] and the Nvidia

GTX1080Ti. We optimize the network using the Stochas-

tic Gradient Descent (SGD) algorithm with 0.9 momentum

and 0.0005 weight decay, respectively. For Citypersons, the

mini-batch contains 2 images and we train the network for

30k iterations with the initial learning rate of 10−3 and de-

Where What Whether Reasonable Heavy

14.6 60.6

X 11.0 23.3

X 12.4 52.6

X 10.8 30.2

X X 9.9 21.7

X X 10.3 20.5

X X X 9.3 18.7

Table 3. Ablation study of W3Net on Citypersons.

Where What Whether Reasonable Heavy

X 10.9 24.6

X 10.3 45.2

X 11.0 31.0
Table 4. Ablation study of CSP on Citypersons.

Method Reasonable Heavy

W3Net (with GA→C) 13.4 32.1

W3Net (with GA→B and GB→C) 9.3 18.7
Table 5. Ablation study of bird view generation with or without

domain transfer from real-world to synthetic data on Citypersons.

cay it to 10−4 for another 6k iterations. For Caltech, the

mini-batch contains 8 images and we train the network for

40k iterations with the initial learning rate of 10−3 and de-

cay it to 10−4 for another 20k iterations.

4.2. Ablation

In this section, we evaluate how each significant compo-

nent of our network contributes to performance using the

Citypersons dataset under the Reasonable and Heavy set-

tings, which are specification for the non-occluded and oc-

cluded pedestrian. It is worth noting that to evaluate the

performance of each branch, such as results in Table 3, we

take each ”W” step as one enhanced component, and re-

place the corresponding module in baseline (Faster RCNN,

Table 3 Line 1). For example, to get the result of ”Where”,

the process of proposal generation in RPN is replaced by

’head’ and width prediction in the bird view map together

with fixed aspect ratio. Or to evaluate the ”What” step, we

replace the fixed aspect ratio with the depth based scale es-

timation. The same is true for experiments in Table 4.

Why is the bird view? Occlusion is one of the great

challenges entrenched in pedestrian detection, which is ul-

timately caused by isolated view point, especially the front

view. However, we could actually discover that in the real

3D world, even if a pedestrian is occluded from the initial

view, bird view still performs free from occlusion issues.

Besides, pedestrian instances are condensed to a point on

the bird view, namely ”head”, which can be seamlessly con-

nected with the anchor-free detectors. Inspired by above,

experiments are conducted and comparisons are reported

in Table 3. The method combined with ”Where” branch
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Figure 3. IoU histogram of different methods, CSP and the pro-

posed W3Net, in which shows the W3Net generates more high

quality proposals with IoU > 0.5.

Reasonable Heavy Test T ime

TLL [20] 15.5 53.6 -

FRCNN [29] 15.4 - -

TLL+MRF [20] 14.4 52.0 -

RepLoss [23] 13.2 56.9 -

OR-CNN [28] 12.8 55.7 -

ALFNet [16] 12.0 51.9 0.27s/img

CSP [24] 11.0 49.3 0.33s/img

W3Net(ours) 9.3 18.7 0.31s/img
Table 6. Comparisons with other state-of-the-art methods on

Citypersons. Boldface/Boldface indicate the best/second best

performance.

achieves 23.3%MR−2 on Heavy occlusion subset, which

is an absolute 37.3-point improvement over our baseline

60.6%. When the ”Where” branch is added to CSP, as is

shown in Table 4, the performance of CSP is boosted by a

large margin from 49.3%MR−2 to 24.6%MR−2. It is in

accordance with our intuition that ”Where” branch is spe-

cially designed for the long-standing occlusion problem. In

addition, ablations are carried out in Table 1 and 5 to inves-

tigate whether the difference in generation of bird view map

will influence the results. Comparisons reported in Table 1

show that the view vθ,H under θ = 60◦ and H = 20 meters

achieves the best performance, and we believe that more de-

tailed exploration of the parameters θ and H can further im-

prove the performance, but it is not in the scope of this work.

In Table 5, the method without domain transfer directly gen-

erate bird view images from the real-world data suffering a

great decline on both Reasonable and Heavy subsets, which

demonstrates the effectiveness of the proposed GA→B .

Why is the depth? Depth is a useful auxiliary informa-

tion, however, it has not been fully identified and utilized

in pedestrian detection. One is that depth implies scale

cues, especially for pedestrians, which share strong intra-

class similarity. The other is that depth plays a connect-

ing role in our framework. Depth, that is ”What” branch,

projects detection results from ”Where” branch to the front

view, and on the basis of interdependency between depth

and scale, generating reasonable proposals for the following

”Whether” branch. As shown in Table 3 and 4, compared

with the baseline or the bare CSP, the proposed ”What”

branch goes a step further and achieves superior perfor-

mance on both subsets. It is still worth noting that ”What”

branch is just a kind of matrix transformation without any

conv or fc layers introduced, which preserves the effec-

tiveness of the detector while ensuring better performance.

To further investigate the effect, we also conduct experi-

ments including a prediction network to estimate pedestrian

height, as reported in Table 2, in which the single wb means

the detector combines width prediction on bird view with

height estimation by depth-scale relations, while wb + hf

combines both width and height prediction on bird view and

front view, respectively. It can be observed that other meth-

ods can achieve comparable but suboptimal results to wb

prediction. This result may be attributed to the accurate and

consistent height estimation with less noise during training,

which has also been proved in Figure 3. Proposals gener-

ated by the proposed method shares better iou performance,

in which the proportion of IoU > 0.5 is improved greatly.

Why is the corpus? A natural question is, for occlusion,

is the bird view enough? The bird view map can effectively

provide the locations of all pedestrians. However, due to

ambiguous pedestrian features, suspected objects, such as

railings, which are similar to pedestrian ’head’ in the bird

view, could also be falsely classified as the pedestrian. In

order to tackle this problem, we introduce the ”Whether”

branch, which falls into the proposal detection fashion on

the basis of the front view map. The difficulty lies in pro-

posal classification is that features of occluded pedestrians

usually perform incomplete compared with those of non-

occluded instances, that is to say, these two types have dif-

ferent feature distribution. Therefore, we re-encode propos-

als into a unified corpus space, which with fixed dimension

and clear semantic information generates robust relations

between visual and semantic cues and thus benefits robust

feature representation. Results are reported in Table 3 and 4.

It can be seen that although ”What” and ”Whether” branch

both focus on occluded pedestrian detection, their detection

uses different modal input, which maximises the comple-

mentary information of different views and thus achieve the

best performance finally.

4.3. Comparisons with the Stateofthearts

Performance compared with state-of-the-art methods on

Citypersons Reasonable, Partial and Heavy dataset is shown
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Figure 4. Visualization results of the proposed method, in which Domain A, Domain B and Domain C represent the front view map, the

domain-transformed map and the bird view map, respectively. Red bounding boxes represent the overall detection results of the W3Net.

RO HO FO RN

ACF++ [17] 17.7 79.51 100 14.68

DeepParts [9] 11.89 60.42 100 12.9

FasterRCNN+ATT [29] 10.33 45.18 90.94 8.11

MS-CNN [3] 9.95 59.94 97.23 8.08

RPN+BF [25] 9.58 74.36 100 7.28

TLL [20] 8.45 - 68.03 -

SDS-RCNN [2] 7.36 58.55 100 6.44

RepLoss [23] - - - 4.0

OR-CNN [28] - - - 4.1

W3Net(Ours) 6.37 28.33 51.05 3.82
Table 7. Comparisons with the state-of-the-art methods on Caltech

dataset. ∗O means the result is under the standard(old) test anno-

tations, and ∗
N means the result is under the new annotations pro-

vided by [26]. R, H , and F represent the subset of Reasonable,

Heavy, Far targeting at non-occluded, occluded and small-scale

pedestrian detection, respectively. Boldface/Boldface indicate the

best/second best performance.

in Table 6, while the result on Caltech is reported in Ta-

ble 7. It can be observed that 1) W3Net leads a new state-of-

the-art result of 9.3% (Citypersons) and 3.82% (Caltech) on

both Reasonable subsets.It is note worthy that at the same

time, the proposed method also achieves promising per-

formance on occluded instances. In particular,when eval-

uating heavy occlusion subset on Citypersons, our model

produces18.7% while prior arts range from 49%-56%. 2)

Result on Far subset of Caltech outperforms previous ad-

vanced detectors, such as TLL [20] by 16.98% which is

specially designed for small-scale targets, demonstrates the

superiority on scale variation. 3) Despite introducing multi-

modal data, the careful discovery of depth relation actually

reduces computational cost without extra conv or fc layers,

and thus the inference time on one GTX 1080Ti with the

1x. image scale is still in line with the state-of-the-arts.

5. Conclusion

In this paper, we propose a novel network confronts chal-

lenges (occlusion and scale variation) preoccupied in pedes-

trian detection, which decouples the task into Where, What

and Whether problem directing against pedestrian localiza-

tion, scale estimation and classification correspondingly. As

a result, the detector achieves the new state-of-the-art per-

formance under various challenging settings. The frame-

work is a customized design for pedestrian detection, but it

is easy to extend into other tasks like face or vehicle detec-

tion, which need re-model interdependency between depth

and scale, and is already in our future plans.
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