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Abstract

In contrast to the literature where local patterns in 3D

point clouds are captured by customized convolutional opera-

tors, in this paper we study the problem of how to effectively

and efficiently project such point clouds into a 2D image

space so that traditional 2D convolutional neural networks

(CNNs) such as U-Net can be applied for segmentation. To

this end, we are motivated by graph drawing and refor-

mulate it as an integer programming problem to learn the

topology-preserving graph-to-grid mapping for each individ-

ual point cloud. To accelerate the computation in practice,

we further propose a novel hierarchical approximate algo-

rithm. With the help of the Delaunay triangulation for graph

construction from point clouds and a multi-scale U-Net for

segmentation, we manage to demonstrate the state-of-the-art

performance on ShapeNet and PartNet, respectively, with

significant improvement over the literature. Code is avail-

able at https://github.com/Zhang-VISLab.

1. Introduction

Recently point cloud processing has been attracting more

and more attention [45, 44, 17, 46, 10, 61, 34, 25, 57, 29, 66,

30, 73, 72, 33, 71, 18, 39, 27, 38, 60, 28, 53, 47, 70]. As a

fundamental data structure to store the geometric features, a

point cloud saves the 3D positions of points scanned from

the physical world as an orderless list. In contrast, images

have regular patterns on 2D grid with well-organised pixels

in local neighborhood. Such local regularity is beneficial for

fast 2D convolution, leading to well-designed convolutional

neural networks (CNNs) such as FCN [35], GoogleNet [54]

and ResNet [16] that can efficiently and effectively extract

local features from pixels to semantics with state-of-the-art

performance for different applications.

Motivation. In fact PointNet1 [45] for point cloud classi-

fication and segmentation can be re-interpreted from the

perspective of CNN. In general, PointNet projects each 3D

∗Part of this work was done when the author was an intern at Mitsubishi

Electric Research Laboratories (MERL).
1For simplicity in our explanation, we assume no bias term in PointNet.

Figure 1: State-of-the-art part segmentation performance comparison on

ShapeNet, where IoU denotes intersection-over-union.

(x, y, z)-point into a higher dimensional feature space using

a multilayer perceptron (MLP) and pools all the features

from a cloud globally as a cloud signature for further usage.

As an equivalent CNN implementation, one can construct

an (x, y, z)-image with all the 3D points as the pixels in

a random order and (0, 0, 0) for the rest of the image, and

apply 1× 1 convolutional kernels sequentially to the image,

followed by a global max-pooling operator. Different from

conventional RGB images, here (x, y, z)-images define a

new 2D image space with x, y, z as channels. Same image

representation has been explored in [37, 36, 41, 64, 65] for

LiDAR points. Unlike CNNs, PointNet lacks of the ability

of extracting local features that may limit its performance.

This observation inspires us to investigate whether in the

literature there exists a state-of-the-art method that applies

conventional 2D CNNs as backbone to image representa-

tions for 3D point cloud segmentation. Surprisingly, as we

summarize in Table 1, we can only find a few, indicating that

currently such integrated methods for point cloud segmen-
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tation may be significantly underestimated. Clearly the key

challenge for developing such integrated methods is:

How to effectively and efficiently project 3D point clouds

into a 2D image space so that we can take advantage of

local pattern extraction in conventional 2D CNNs for point

cloud semantic segmentation?

Approach. The question above is nontrivial. A bad pro-

jection function can easily lead to the loss of structural in-

formation in a point cloud with, for instance, many point

collisions in the image space. Such structural loss is fatal as

it may introduce so much noise that the local patterns in the

original cloud are completely changed, leading to poor per-

formance even using 2D conventional CNNs. Therefore, a

good point-to-image projection function is the key to bridge

the gap between the point cloud inputs and 2D CNNs.

At the system level, our integrated method is as follows:

Step 1. Construct graphs from point clouds.

Step 2. Project graphs into images using graph drawing.

Step 3. Segment points using U-Net.

We are motivated by the graph visualization techniques

in graph drawing, an area of mathematics and computer

sciences whose goal is to present the nodes and edges of a

graph on a plane with some specific properties [7, 49, 21,

11]. Particularly the Kamada-Kawai (KK) algorithm [21] is

one of the most widely-used undirected graph visualization

techniques. In general, the KK algorithm defines an objective

function that measures the energy of each graph layout w.r.t.

some graph distance, and searches for the (local) minimum

that gives a reasonably good 2D visualization. Note that the

KK algorithm works in a continuous 2D space, rather than

2D grid (i.e., a discrete space).

Therefore, intuitively we propose an integer programming

(IP) to enforce the KK algorithm to learn projections on 2D

grid, leading to an NP-complete problem [63]. Considering

that the computational complexity of the KK algorithm is

at least O(n2) [24] with the number of nodes n in a graph

(e.g., thousands of points in a cloud), it would be still too

expensive to compute even if we relax the IP with rounding.

In order to accelerate the computation in our approach,

we follow the hierarchical strategy in [12, 40, 19] and further

propose a novel hierarchical approximation with complexity

of O(n
L+1

L ), roughly speaking, where L denotes the number

of the levels in the hierarchy. In fact, such a hierarchical

scheme can also help us reduce the complexity in graph

construction from point clouds using Delaunay triangulation

[9] with worst-case complexity of O(n2) for 3D points [1].

Once we learn the graph-to-grid projection for a point

cloud, we accordingly generate an (x, y, z)-image by filling

it in with 3D points and zeros. We further feed these image

representations to a multi-scale U-Net [48] for segmentation.

Performance Preview. To demonstrate how well our ap-

proach works, we summarize 32 state-of-the-art performance

on a benchmark data set, ShapeNet [69], in Fig. 1 and com-

pare ours with these results under the same training/testing

protocols. Clearly our results are significantly better than

all the others with large margins. Similar observations have

been made on PartNet [71] as well. Please refer to our ex-

perimental section for more details.

Contributions. In summary, our key contributions in this

paper are as follows:

• We are the first, to the best of our knowledge, to explore

the graph drawing algorithms in the context of learning 2D

image representations for 3D point cloud segmentation.

• We accordingly propose a novel hierarchical approximate

algorithm that accounts for computation to map point

clouds into image representations as well as preserving

the local information among the points in each cloud.

• We demonstrate the state-of-the-art performance on both

ShapeNet and PartNet with significant improvement over

the literature for 3D point cloud segmentation, using the

integrated method of our graph drawing algorithm with

the Delaunay triangulation and a multi-scale U-Net.

2. Related Work

Table 1 summarizes some existing works. In particular,

Representations of 3D Point Clouds. Voxels are popular

choices because they can benefit from the efficient CNNs.

PointGrid [27], O-CNN [60], VV-Net [39] and InterpConv

[38] sample a point cloud in volumetric grids and apply 3D

CNNs. Some other works represent a point cloud in specific

2D domains and perform customized network operators [53,

47, 70]. However, these works have difficulty in sampling

from a non-uniformly distributed point cloud and result in a

serious problem of point collisions. Graph-based approaches

[56, 20, 67, 43, 31, 62, 50, 32, 59, 26] construct graphs

from point clouds for network processing by sampling all

points as graph vertices. However, they often struggle in

assigning edges between the graph vertices. There also exist

some works [45, 44, 17, 46, 10, 61, 34, 25, 57, 29, 66, 30,

73, 72, 33, 71] that directly use points as network inputs.

Though they do not have to consider the sampling and local

connections among the points, significant effort has been

made to hierarchically partition and extract features from

the local point sets. FoldingNet [68] introduced 2D grid as

a latent space, rather than the output space, to capture the

geometry of a point cloud.

There are some works in the literature of light detection

and ranging (LiDAR) point processing that utilize depth im-

ages [52] or (x, y, z)-images [37, 36, 41, 64, 65] generated

from LiDAR points for training networks. In Table 1 we

summarize these works as well, even though they are not

developed for point cloud segmentation.

In contrast, we propose an efficient hierarchical approx-

imate algorithm with Delaunay triangulation to map each
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Table 1: Summary of state-of-the-art methods for point segmentation.

Method Raw Data
Data-to-Input

Mapping

Network

Input

Network

Architecture

Ours Point Cloud Graph Drawing (x,y,z)-Image Multi-scale U-Net

Lyu et al. [37] LiDAR Frame Sphere Mapping (x,y,z,φ,θ,ρ,i)-Image 2D CNN

ChipNet [36] LiDAR Frame Sphere Mapping (x,y,z,φ,θ,ρ,i)-Image 2D CNN

LoDNN [6] LiDAR Frame 2D Grid Samp. Statistics-Image 2D CNN

RangeNet++ [41] LiDAR Frame Sphere Mapping (r,x,y,z,i)-Image 2D CNN

SqueezeSeg [64] LiDAR Frame Sphere Mapping (x,y,z,i)-Image 2D CNN

SqueezeSegV2 [65] LiDAR Frame Sphere Mapping (x,y,z,i)-Image 2D CNN

PointNet [45] Point Cloud - Point MLP

JSIS3D [44] Point Cloud - Point MT-PNet

PCNN [17] Point Cloud - Point Pointwise Conv.

PointNet ++ [46] Point Cloud FPS Point MLP

SRN [10] Point Cloud FPS Point SRN

SGPN [61] Point Cloud FPS Point MLP

RS-CNN [34] Point Cloud Ball Query Point RS Conv.

A-CNN [25] Point Cloud Ball Query Point A-CNN

KPConv [57] Point Cloud Ball Query Point KPConv

So-Net [29] Point Cloud KNN Point SOM

PointConv [66] Point Cloud KNN Point PointConv

PointCNN [30] Point Cloud KNN Point X -Conv

PointWeb [73] Point Cloud KNN Point AFA

ShellNet [72] Point Cloud KNN Point ShellNet

DensePoint [33] Point Cloud Rand. Samp. Point PConv.

PartNet [71] Point Cloud Latent Tree Point MLP

Kd-Net [23] Point Cloud Kd-Tree Point ConvNets

MAP-VAE [15] Point Cloud Latent Tree Point GRU

RGCNN [56] Point Cloud Complete Graph Graph Graph Conv.

Point-Edge [20] Point Cloud FPS Graph Point-Edge Net

SpiderCNN [67] Point Cloud KNN Graph SpiderConv

PAN [43] Point Cloud KNN Graph Point Atrous Conv.

GANN [31] Point Cloud KNN Graph Graph Attention

DG-CNN [62] Point Cloud KNN Graph Edge-Conv

Kc-Net [50] Point Cloud KNN Graph MLP

HDGCN [32] Point Cloud KNN Graph MLP

GAC-Net [59] Point Cloud Rand. Samp. Graph Graph Attention

SPGraph [26] Point Cloud Voronoi Adj. Graph Graph GRU

RS-Net [18] Point Cloud 3D Grid Samp. Voxel RNN

VV-Net [39] Point Cloud 3D Grid Samp. Voxel VAE

PointGrid [27] Point Cloud 3D Grid Samp. Voxel 3D CNN

InterpConv [38] Point Cloud 3D Grid Interpolate Voxel InterpConv

O-CNN [60] Point Cloud Octree Voxel MLP

Ψ-CNN [28] Point Cloud Spherical 3D Grid Voxel Spherical Conv.

SPLATNet [53] Point Cloud Lattice Interpolate Lattice Bilateral Conv.

SFCNN [47] Point Cloud Sphere Mapping Sphere Sph. Fractal Conv.

SyncSpecCNN [70] Point Cloud 3D Grid Samp. Spectral SpecTN

point cloud onto a 2D image space.

Network Architectures. Network operations are the key to

hierarchically learn the local context and perform seman-

tic segmentation on point clouds. Grid-based approaches

usually apply regular 2D or 3D CNNs on the grid represen-

tations. Graph-based approaches usually apply customized

convolutions on graph representations. For point-based ap-

proaches, MLP is the most widely used network. For some

other point-based approaches, customized convolution op-

erators are designed as well to support their own network

architectures. Recurrent neural networks (RNNs) are ap-

plied in some works to handle the unfixed-sized point inputs.

Please refer to Table 1 for more references.

In contrast, we apply the classic U-Net to our image rep-

resentations for point cloud segmentation. In our ablation

study later, we also test several alternative 2D CNN architec-

tures and all of them get comparable results to the literature.

Graph Drawing. According to the purposes of graph lay-

out, there exist two families of graph drawing algorithms,

in general. N-planar graph [49] focuses on presenting the

graph on a plane with least edge intersections regardless

the implicit topological features. Force-directed approaches

such the KK algorithm, on the other hand, focus on minimiz-

ing the difference of graph node adjacency before and after

2D layout. Fruchterman-Reingold (FR) [12], FM3 [40] and

ForceAtlas2 [19] speed up the force-directed layout com-

putation for large-scale graphs by introducing hierarchical

schemes and optimized iterating functions.

Note that graph drawing can be considered as a subdisci-

pline of network embedding [14, 8, 5] whose goal is to find

a low dimensional representation of the network nodes in

some metric space so that the given similarity (or distance)

function is preserved as much as possible. In summary,

graph drawing focuses on the 2D/3D visualization of graphs,

while network embedding emphasizes the learning of low

dimensional graph representations.

In this paper, we propose a hierachical graph drawing

algorithm based on the KK algorithm, where we apply the

FR method as layout initialization and then apply a novel

discretization method to achieve grid layout.

3. Our Method: A System Overview

3.1. Graph Construction from Point Clouds

In the literature a graph from a point cloud is usually

generated by connecting the K nearest neighbours (KNN)

of each point. However, such KNN approaches suffer from

selecting a suitable K. When K is too small, the points

are intended to form small subgraphs (i.e., clusters) with no

guarantee of connectivity among the subgraphs. When K

is too large, points are densely connected, leading to much

more noise in local feature extraction.

In contrast, in this work we employ the Delaunary trian-

gulation [9], a widely-used triangulation method in compu-

tational geometry, to create graphs based on the positions

of points. The triangulation graph has three advantages: (1)

The connection of all the nodes in the graph is guaranteed;

(2) All the local nodes are directly connected; (3) The total

number of graph connections is relatively small. In our ex-

periments we found that the Delaunary triangulation gives

us slightly better segmentation performance than the best

one using KNN (K = 20) with margin of about 0.7%.

The worst-case computational complexity of the Delau-

nay triangulation is O(n⌈ d
2
⌉) [1] where d is the feature di-

mension and ⌈·⌉ denotes the ceiling operation. Thus in the

3D space the complexity is O(n2) with d = 3. In our experi-

ments we found that its running time on 2048 points is about

0.1s (CPU:Intel Xeon E5-2687W@3.1GHz), on average.

3.2. Graph Drawing: from Graphs to Images

Let G = (V, E) be an undirected graph with a vertex set

V and an edge set E ⊆ V × V . sij ≥ 1, ∀i 6= j is the graph-

theoretic distance such as shortest-path between two vertices

vi, vj ∈ V on the graph that encodes the graph topology.

Now we would like to learn a function f : V → Z
2 to

map the graph vertex set to a set of 2D integer coordinates

on the grid so that the graph topology can be preserved as
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Figure 2: Illustration of our multi-scale U-Net architecture.

much as possible given a metric d : R2×R
2 → R and a loss

ℓ : R × R → R. As a result, we are seeking for f to mini-

mize the objective minf
∑

i 6=j ℓ(d(f(vi), f(vj)), sij). Let-

ting xi = f(vi) ∈ Z
2 as reparametrization, we can rewrite

this objective as an integer programming (IP) problem

minX⊆Z2

∑

i 6=j ℓ(d(xi,xj), sij), where the set X = {xi}
denotes the 2D grid layout of the graph, i.e., all the vertex

coordinates on the 2D grid.

For simplicity we set ℓ and d above to the least-square loss

and Euclidean distance to preserve topology, respectively.

This leads us to the following objective for learning:

min
X⊆Z2

∑

i 6=j

1

2

(

‖xi − xj‖

sij
− 1

)2

, s.t. xi 6= xj , ∀i 6= j. (1)

In fact the KK algorithm shares the same objective as

in Eq. 1, but with different feasible solution space in R
2,

leading to relatively faster solutions that are used as the

initialization in our algorithm later (see Alg. 2). Once the

location of a point on the grid is determined, we associate

its 3D feature as well as label, if available, with the location,

finally leading to the (x, y, z)-image representation and a

label mask with the same image size for network training.

In general an IP problem is NP-complete [63] and thus

finding exact solutions is challenging. Relaxation and round-

ing is a widely used heuristic for solving IP due to its effi-

ciency [3], where rounding is applied to the solution from the

relaxed problem as the solution for the IP problem. However,

considering that the computational complexity of the KK

algorithm is at least O(n2) [24] with the number of nodes n

in a graph (i.e., thousands of points in a cloud for our case),

it would be still too expensive to compute even if we relax

the IP with rounding. Empirically we found that the run-

ning time of the KK algorithm on 2048 points is about 38s

(CPU:Intel Xeon E5-2687W@3.1GHz), on average, which

is considerably long. To accelerate the computation in prac-

tice, we propose a novel hierarchical solution in Sec. 4.

3.3. Multi­Scale U­Net for Point Segmentation

Eq. 1 enforces our image representations for the point

clouds to be compact, indicating that the local structures in a

Figure 3: Illustration of hierarchical approximation for a point cloud.

Each color represents a cluster where all the points share the same color.

point cloud are very likely to be preserved as local patches

in its image representation. This is crucial for 2D CNNs

to work because as such small convolutional kernels (e.g.,

3× 3) can be used for local feature extraction.

To capture these local patterns in images, multi-scale

convolutions are often used in networks such as the inception

module in GoogLeNet [55]. U-Net [48] was proposed for

biomedical image segmentation, and its variants are widely

used for different image segmentation tasks. As illustrated

in Fig. 2, in this paper we propose a multi-scale U-Net that

integrates the inception module with U-Net, where FC stands

for the fully connected layer, ReLU activation is applied

after each Inception module and FC layer, and the softmax

activation is applied after the last Conv1× 1 layer.

Table 2: Performance comparison on

ShapeNet using different U-Nets.

Scales in U-Net 1x1 3x3 Inception

Instance mIoU (%) 83.1 82.5 88.8

Single-Scale vs. Multi-

Scale. We only consider

two sizes of 2D convo-

lution kernels, i.e., 1× 1
and 3×3, because in our

experiments we found

that larger sizes of kernels do not bring significant improve-

ment but heavier computational burden. We also compare

the performance using single vs. multiple scales in Table 2.

As we see the multi-scale U-Net with the inception module

significantly outperforms the other single scale U-Nets.

Table 3: Instance mIoU comparison on

ShapeNet using different CNNs.

CNNs Conv1x1 Conv3x3 SegNet [2] U-Net

mIoU (%) 81.6 78.1 86.9 88.8

U-Net vs. CNNs.

We also compare

our U-Net with

some other CNN

architectures in

Table 3. A base-

line is an autoencoder-decoder network with similar architec-

ture in Fig. 2 but no multi-scales and skip connections. We

test it with 1× 1 and 3× 3 kernels, respectively, as shown

in Table 3. A second baseline is SegNet [2], a much more

complicated autoencoder-decoder. Again our U-Net works

the best. By comparing Table 3 and Table 2, we can see

that the skip connections in U-Net really help improve the

performance. Note that our simple baselines can achieve

comparable performance with the literature already.

All the comparisons above are based on the same image

representations under the same protocols. Please refer to our

experimental section for more details.
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Algorithm 1 Balanced KMeans for Clustering

Input :point cloud P = {p}, number of clusters K, parameter α,

distance metric s, cluster center computing function c
Output :balanced point clustersH

H ← KMeans(P,K);

while ∃h∗ ∈ H, |h∗| > α
|P|
K

do

h′ ∈ argmin
h̃:|h̃|<

|P|
K

{

s(c(h∗), c(h̃))
}

;

p′ ∈ argmin
p∈h∗ {s(p, c(h′))};

h∗ ← h∗ \ {p′}; h′ ← h′ ∪ {p′};
end

Algorithm 2 Fast Graph-to-Image Drawing Algorithm

Input :Graph G, 2D grid S ⊆ Z
2

Output :Graph layout X ⊆ Z
2

X ← KK_2D_layout(G);a← mean(X );b← std(X );

foreach x ∈ X do x← round((x− a)./b ∗
√

|X |) ;

while ∃xi = xj , i 6= j,xi ∈ X ,xj ∈ X do
x∗ ∈ argmin

x∈S\X ‖xi − x‖;xi ← x∗;

end

return X ;

4. Efficient Hierarchical Approximation

4.1. Two­Level Graph Drawing

For simplicity, in this section we will use the example in

Fig. 3 to explain the key components in our hierarchical ap-

proximation. All the operations here can be easily extended

to hierarchical cases with no change.

Given a point cloud, we first cluster these points hierar-

chically. We then apply the Delaunay triangulation and our

graph drawing algorithms sequentially to the cluster centers

as well as the within-cluster points per cluster, respectively,

producing higher and lower-level graph layouts. Finally we

embed all the lower-level graph layouts into the higher-level

layout (recursively along the hierarchy) to produce the 2D

image representation. For instance, we cluster a 2048-point

cloud from ShapeNet into 32 clusters, and build a higher-

level grid with size 16 × 16 using these 32 cluster centers.

Within each cluster we build a lower-level grid with size

16× 16 as well using the points belonging to the cluster. We

finally construct the image representation for the cloud with

size 256× 256.

4.1.1 Balanced KMeans for Clustering

The key to accelerate computation in graph construction

from point clouds is to reduce the number of points that

the triangulation and graph drawing algorithms process at a

time. Therefore, without loss of information we introduce

hierarchical clustering, following the strategy in [12, 40, 19].

Recall that the complexity of the Delaunay triangula-

tion and KK algorithms is O(n2), roughly speaking. Now

consider the problem where given n points how we should

determine K clusters so that the complexity in our graph

construction from point clouds is minimize. The solution

of this problem is that, ideally, all the clusters should have

equal size of n
K

, i.e., balancing. Some algorithms such as

normalized cut [51] are developed for learning balanced

clusters, however, suffering from high complexity. Fast algo-

rithms such as KMeans, unfortunately, do not provide such

balanced clusters by nature.

We thus propose a heuristic post-processing step on top of

KMeans to approximately balance the clusters with condition

|h| ≤ α
|P|
K

, ∀h ∈ H where P = {p} denotes a point cloud

with size |P|, H = {h} denotes a set of clusters (i.e., point

sets) with size K, |h| denotes the size of cluster h, and α ≥ 1
is a predefined constant. We list our algorithm in Alg. 1.

We first apply Kmeans to generate the cluster initials.

We then target on one of the oversized clusters, h∗, at each

iteration and change the cluster association for only one

point. We determine the target cluster h′ as the closest not-

full cluster to h∗ to receive a point. To send a point from h∗

to h′, the selected point is a boundary point that is closest

to the center of h′. By default we set α = 1.2, although

we observed that higher values has little impact on either

running time or performance.

4.1.2 Fast Graph-to-Image Drawing Algorithm

Recall that our graph drawing algorithm in Eq. 1 is an IP

problem with complexity of NP-complete. Even though we

use hierarchical clustering to reduce the number of points

for processing, solving the exact problem is still challenging.

To overcome this problem, we propose a fast approximate

algorithm in Alg. 2, where |X | denotes the number of points.

Layout Discretization. After the layout initialization with

the KK algorithm, we discrete the layouts onto the 2D grid.

We first normalize the layout to a Gaussian distribution with

a zero mean and an identity standard deviation (std). Then

we rescale each 2D point in the layout with a scaling factor
√

|X |, followed by a rounding operator. The intuition behind

this is to organize the layout within a
√

|X |×
√

|X | patch as

tightly as possible while minimizing the topological change.

We finally replace each collided point with its nearest empty

cell on the grid sequentially as our final graph layout.

Point Collision. In order to control the running time and

image size in practice, we make a trade-off to predefine the

maximum number of iterations as well as the maximum size

of the 2D grid in Alg. 2. This may incur that some 3D points

will collide at the same location on the grid. Such point

collision scenarios, however, are very rare in our experi-

ments. For instance, using our implementation for ShapeNet

we observe 26 collisions with 2 × 26 = 52 points (i.e., 2

points per collision) among 5,885,952 points in the testing

set when projected onto 2D grid, leading to a 8.8 × 10−6

point collision ratio.

Once point collision occurs, we randomly select a point
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Figure 4: Illustration of our pipeline for point cloud semantic segmentation. Input: point cloud of a skateboard from ShapeNet. (I): point cloud clustering,

(II): within-cluster image representation from graph drawing, (III): image embedding to generate a representation for the cloud, (IV): image segmentation

using U-Net, (V): prediction reversion from the image representation to the point cloud. Here colors indicate either (x, y, z) features or the predicted labels.

from the collided points and put the selected point at the

location with its 3D feature (x, y, z) and label, if available,

for training U-Net. We observe that max pooling or average

pooling is not appropriate to be applied here, because the

labels of collided points can vary, e.g., points at the boundary

of different parts, leading to confusion for training U-Net.

At test time, we propagate the predicted label of the se-

lected point to all its collided points. We observe only 4 out

of 52 points mislabelled on ShapeNet due to point collision.

4.2. Generalization

Figure 5: Full-tree

illustration for our hi-

erarchical clustering.

Recall that we would like to achieve

balanced clusters in our hierarchical

method for computational efficiency.

Therefore, as generalization we propose

using the full tree data structure, as il-

lustrated in Fig. 5, to organize the hier-

archical clusters, where at each cluster a higher-level graph

is built using the Delaunay triangulation on the cluster cen-

ters, following by graph drawing to generate an image patch.

Then we embed all the patches hierarchically to produce

an image representation for a point cloud, and apply the

remaining steps in Fig. 4 for segmentation.

Complexity. For simplicity and without loss of generality,

assume that the full tree has L ≥ 1 levels, and each cluster

at the same level contains the same number of points. Let

ai, bi be the numbers of clusters and sub-clusters per cluster

at the i-th level, respectively, and n be the total number of

points. For instance, in Fig. 5 we have L = 3, a1 = 1, b1 =
2, a2 = 2, b2 = 3, a3 = 6, b3 = 1, n = 6. Then it holds that
∏L

j=i bi =
n
ai
, ∀i. We observe that in practice the running

time of our hierarchical approximation is dominated by the

KK initialization in Alg. 2 (see Table 4 for more details).

Proposition 1 (Complexity of Hierarchical Approximation).

Given a full tree with (ai, bi), ∀i ∈ [L] as above, the com-

plexity of our hierarchical approximation is dominated by

O
(

n
L+1

L

)

, at least.

Proof. Here we focus on the complexity of the KK algo-

rithm as it dominates the whole. Since for each cluster this

complexity is O(b2i ), the total complexity of our approach is

O(
∑L

i=1
aib

2
i ). Because

L
∑

i=1

aib
2
i = n

L
∑

i=1

bi
∏L

j=i+1
bj

≥ nL

[

∏

i

(

bi
∏L

j=i+1
bj

)]
1
L

= nL

(

n
∏L

i=2
bi−1

i

)
1
L

= O
(

n
L+1

L

)

, (2)

we can complete the proof accordingly.

5. Experiments

We evaluate our works on two benchmark data sets for

point cloud segmentation: ShapeNet [69] and PartNet [42].

We follow exactly the same experimental setups as in Point-

Net [45] for ShapeNet and [42] for PartNet, respectively.

ShapeNet contains 16,881 CAD shape models (14,007

and 2,874 for training and testing, respectively) from 16 cate-

gories with 50 part categories. From each shape model 2048

points are scanned and labeled with their part categories. The

shapes come from the same object category share the same

part label sets, while shapes from different object categories

have no shared part category. For performance evaluation

there are two mean intersection-over-union (mIoU) metrics,

namely, class mIoU and instance mIoU. Class mIoU is the

average over points in each shape category, while instance

mIoU is the average over all shape instances.

PartNet is a semantic segmentation benchmark focusing

on fine-grained part-level 3D object understanding. Com-

pared with ShapeNet, it has 24 shape categories and 26,671

shape instances. In addition, PartNet samples 10,000 points

from each shape instance and defines up to 82 part semantics

in one shape category, which calls for better local context

learning to recognize them. Different from training a single

network for all shape categories as done in ShapeNet, Part-

Net defines three segmentation levels in each shape category

where a network is trained and tested for each category at

each level separately.

5.1. Our Pipeline for Point Cloud Segmentation

In all of our experiments, we utilize the pipeline as illus-

trated in Fig. 4 for point cloud segmentation. As we expect,
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Table 4: Running time of each component in our pipeline on ShapeNet.

CPU: Intel Xeon E5-2687W@3.1GHz, GPU: NVidia RTX 2080Ti

Component
KMeans

Clustering

Delaunay

Tribulation

Graph

Drawing

Network

Inference
Total

Time (ms) 65.0±7.2 41.0±7.1 696.5±30.0 18.6±2.6 1054.8

Device CPU CPU CPU GPU -

the 3D points are mapped to the 2D image space smoothly

following their relative distances in the 3D space, leading

to similar distributions in the neighborhood among image

pixels to those in the local regions of the point cloud.

Implementation. We use the KMeans solver in the Scikit-

learn library [4] with 100 iterations in maximum, the Delau-

nay triangulation implementation in the Scipy library [58],

and the spring-layout implementation for graph drawing in

the Networkx library [13]. In the mask image, we ignore the

pixels with no point association that do not contribute to the

loss of network training.

In our pipeline there are there hyper-parameters: the num-

ber of clusters K, the maximum ratio α, and the grid sizes

for both lower and higher-level graph drawing. By default,

we set K = 32 and K = 100 on ShapeNet and PartNet,

respectively. On both data sets we use α = 1.2, and set

both lower and higher-level grid size to 16× 16, leading to

a 256× 256 image representation per cloud.

We implement our multi-scale U-Net in Keras with Ten-

sorflow backend on a desktop machine with an Intel Xeon

E5-2687W@3.1GHz CPU and an NVidia RTX 2080Ti GPU.

During training we follow PointNet [45] to rotate and jitter

the shape models as input. We use the Adam [22] optimizer

and set the learning rate to 0.0001. We train the network for

100 epochs with single batch in each iteration.

Running Time. We also list the average running time of

each component in our pipeline in Table 4 for analysis. Com-

pared with the running time on 2048 points, both Delaunay

triangulation and graph drawing algorithms are accelerated

significantly (recall 0.1s and 38s, respectively). Still graph

drawing dominates the overall running time. Further acceler-

ation will be considered in our future work.

5.2. State­of­the­art Performance Comparison

5.2.1 Ablation Study

In this section we evaluate the effects of different factors on

our segmentation performance using ShapeNet. We keep

using the default parameters and components in our pipeline,

unless we explicitly mention what to change accordingly.

Table 5: Instance mIoU results (%) under

different settings for sij .

sij
Triangulation +

Shortest Path [59]

KNN (K=20) +

Shortest Path

3D Distance

[56]

mIoU 88.8 87.1 86.4

Graph Distance

sij in Eq. 1.

There are multiple

choices to com-

pute sij that our

algorithm aims to

Figure 6: Visual comparison among different methods. Ours: U-Net.

preserve. We demonstrate three ways in Table 5 to verify

their effects on performance. Note that for the 3D distance

method, we do not construct graphs from point cloud. Rather

we directly compute the (x, y, z)-distance between pairs of

points. As we see, different sij’s do have impact on our

segmentation performance, but relatively small. Compared

with the results in Fig. 1, even using the 3D distance our

pipeline can still outperform all the competitors.

Table 6: Result comparison with different

sizes of image representation.

Grid Size 10 × 10 16 × 16 24 × 24

Image Size100 × 100256 × 256576 × 576

mIoU (%) 82.4 88.8 87.5

Time (ms) 13.6 18.6 63.3

Grid Size in Graph

Drawing. Such grid

size affects not only

our segmentation per-

formance but also the

inference time of our

pipeline. As demon-

stration we list three

grid sizes in Table 6. As we expect, larger image sizes lead

to significantly longer inference time, but marginal change

in performance. Using smaller sizes it may be difficult to

preserve the topological information among points, leading

to performance degradation but faster inference time.

Table 7: Result comparison

with different numbers of clusters,

K, in KMeans.

K 32 64 128

mIoU (%) 88.8 86.7 85.9

Time (ms) 821.2 775.4 1164.5

Number of Clusters. Similar

to grid size, the number of clus-

ters also has an impact on both

segmentation performance and

inference time. To verify this,

we show a result comparison

in Table 7. With larger K, the

performance decreases. This

is probably because the higher-level graph loses more local

context in the cloud so that even after pooling such loss

cannot be recovered in learning. For timing, the numbers

fluctuate due to different hierarchies as we prove in Prop. 1.

5.2.2 Comparison Results

We first illustrate some visual results on ShapeNet in Fig. 6.

Clear differences within the circulated regions can be ob-

served and our result is much closer to the ground-truth.

We then list more detailed comparison on ShapeNet with

some recent publications in 2018-2019 on ShapeNet in Ta-

ble 8 that are also included in our summary in Fig. 1 before.

Clearly our approach achieves the best and second best in

4 and 6 out of 16 categories, respectively. Our class-mIoU

performance is on par with the state-of-the-art and instance-

mIoU result improves the state-of-the-art by 1.4%.
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Table 8: Result comparison (%) with recent works on ShapeNet. Numbers in red are the best in the column, and numbers in blue are the second best.

Method
class

mIoU

instance

mIoU

air

plane
bag cap car chair

ear

phone
guitar knife lamp laptop

motor

bike
mug pistol rocket

skate

board
table

DGCNN [62] 82.3 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.8 93.3 82.6 59.7 75.5 82.0

RS-CNN [34] 84.0 86.2 83.5 84.8 88.8 79.6 91.2 81.1 91.6 88.4 86.0 96.0 73.7 94.1 83.4 60.5 77.7 83.6

DensePoint [33] 84.2 86.4 84.0 85.4 90.0 79.2 91.1 81.6 91.5 87.5 84.7 95.9 74.3 94.6 82.9 64.6 76.8 83.7

SpiderCNN [67] 84.1 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8

PointGrid [27] 82.2 86.4 85.7 82.5 81.8 77.9 92.1 82.4 92.7 85.8 84.2 95.3 65.2 93.4 81.7 56.9 73.5 84.6

VV-Net [39] 84.2 87.4 84.2 90.2 72.4 83.9 88.7 75.7 92.6 87.2 79.8 94.9 73.4 94.4 86.4 65.2 87.2 90.4

PartNet [71] 84.1 87.4 87.8 86.7 89.7 80.5 91.9 75.7 91.8 85.9 83.6 97.0 74.6 97.3 83.6 64.6 78.4 85.8

Ψ-CNN [28] 83.4 86.8 84.2 82.1 83.8 80.5 91.0 78.3 91.6 86.7 84.7 95.6 74.8 94.5 83.4 61.3 75.9 85.9

SFCNN [47] 82.7 85.4 83.0 83.4 87.0 80.2 90.1 75.9 91.1 86.2 84.2 96.7 69.5 94.8 82.5 59.9 75.1 82.9

PAN [43] 82.6 85.7 82.9 81.3 86.1 78.6 91.0 77.9 90.9 87.3 84.7 95.8 72.9 95.0 80.8 59.6 74.1 83.5

SRN [10] 82.2 85.3 82.4 79.8 88.1 77.9 90.7 69.6 90.9 86.3 84.0 95.4 72.2 94.9 81.3 62.1 75.9 83.2

PointCNN [30] 84.6 86.1 84.1 86.5 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0

Ours 84.6 88.8 86.5 78.9 83.4 80.9 92.6 77.6 93.3 91.6 90.0 96.7 70.0 87.2 84.5 58.8 83.0 88.1

Table 9: Result comparison on PartNet using part-category mIoU (%). P, P+, S and C refer to PointNet [45], PointNet++ [46], SpiderCNN [67] and

PointCNN [30]. 1, 2 and 3 refer to three tasks: coarse-, middle- and fine-grained. Short lines denote the undefined levels. Numbers are cited from [42].

Avg Bag Bed Bott Bowl Chair Clock Dish Disp Door Ear Fauc Hat Key Knife Lamp Lap Micro Mug Frid Scis Stora Table Trash Vase

P1 57.9 42.5 32.0 33.8 58.0 64.6 33.2 76.0 86.8 64.4 53.2 58.6 55.9 65.6 62.2 29.7 96.5 49.4 80.0 49.6 86.4 51.9 50.5 55.2 54.7

P2 37.3 —- 20.1 —- —- 38.2 —- 55.6 —- 38.3 —- —- —- —- —- 27.0 —- 41.7 —- 35.5 —- 44.6 34.3 —- —-

P3 35.6 —- 13.4 29.5 —- 27.8 28.4 48.9 76.5 30.4 33.4 47.6 —- —- 32.9 18.9 —- 37.2 —- 33.5 —- 38.0 29.0 34.8 44.4

Avg 51.2 42.5 21.8 31.7 58.0 43.5 30.8 60.2 81.7 44.4 43.3 53.1 55.9 65.6 47.6 25.2 96.5 42.8 80.0 39.5 86.4 44.8 37.9 45.0 49.6

P+1 65.5 59.7 51.8 53.2 67.3 68.0 48.0 80.6 89.7 59.3 68.5 64.7 62.4 62.2 64.9 39.0 96.6 55.7 83.9 51.8 87.4 58.0 69.5 64.3 64.4

P+2 44.5 —- 38.8 —- —- 43.6 —- 55.3 —- 49.3 —- —- —- —- —- 32.6 —- 48.2 —- 41.9 —- 49.6 41.1 —- —-

P+3 42.5 —- 30.3 41.4 —- 39.2 41.6 50.1 80.7 32.6 38.4 52.4 —- —- 34.1 25.3 —- 48.5 —- 36.4 —- 40.5 33.9 46.7 49.8

Avg 58.1 59.7 40.3 47.3 67.3 50.3 44.8 62.0 85.2 47.1 53.5 58.6 62.4 62.2 49.5 32.3 96.6 50.8 83.9 43.4 87.4 49.4 48.2 55.5 57.1

S1 60.4 57.2 55.5 54.5 70.6 67.4 33.3 70.4 90.6 52.6 46.2 59.8 63.9 64.9 37.6 30.2 97.0 49.2 83.6 50.4 75.6 61.9 50.0 62.9 63.8

S2 41.7 —- 40.8 —- —- 39.6 —- 59.0 —- 48.1 —- —- —- —- —- 24.9 —- 47.6 —- 34.8 —- 46.0 34.5 —- —-

S3 37.0 —- 36.2 32.2 —- 30.0 24.8 50.0 80.1 30.5 37.2 44.1 —- —- 22.2 19.6 —- 43.9 —- 39.1 —- 44.6 20.1 42.4 32.4

Avg 53.6 57.2 44.2 43.4 70.6 45.7 29.1 59.8 85.4 43.7 41.7 52.0 63.9 64.9 29.9 24.9 97.0 46.9 83.6 41.4 75.6 50.8 34.9 52.7 48.1

C1 64.3 66.5 55.8 49.7 61.7 69.6 42.7 82.4 92.2 63.3 64.1 68.7 72.3 70.6 62.6 21.3 97.0 58.7 86.5 55.2 92.4 61.4 17.3 66.8 63.4

C2 46.5 —- 42.6 —- —- 47.4 —- 65.1 —- 49.4 —- —- —- —- —- 22.9 —- 62.2 —- 42.6 —- 57.2 29.1 —- —-

C3 46.4 —- 41.9 41.8 —- 43.9 36.3 58.7 82.5 37.8 48.9 60.5 —- —- 34.1 20.1 —- 58.2 —- 42.9 —- 49.4 21.3 53.1 58.9

Avg 59.8 66.5 46.8 45.8 61.7 53.6 39.5 68.7 87.4 50.2 56.5 64.6 72.3 70.6 48.4 21.4 97.0 59.7 86.5 46.9 92.4 56.0 22.6 60.0 61.2

Ours1 72.3 51.9 42.3 58.9 90.7 77.8 72.0 89.9 92.5 82.3 85.6 77.8 43.8 55.0 64.3 51.3 67.5 95.7 75.8 97.6 50.5 70.1 88.6 65.2 88.4

Ours2 55.6 —- 37.7 —- —- 45.2 —- 51.1 —- 57.3 —- —- —- —- —- 44.4 —- 87.6 —- 48.1 —- 61.1 68.2 —- —-

Ours3 52.3 —- 38.6 57.1 —- 43.2 57.8 36.3 93.0 68.5 42.9 39.5 —- —- 61.3 33.1 —- 83.4 —- 34.2 —- 39.0 40.5 59.1 62.1

Avg 63.0 51.9 39.5 58.0 90.7 55.4 64.9 59.1 92.8 69.4 64.3 58.7 43.8 55.0 62.8 42.9 67.5 88.9 75.8 60.0 50.5 56.7 65.8 62.2 75.3

On PartNet our approach improves the state-of-the-art

much more significantly, as listed in Table 9, with marginals

of 6.8%, 9.1%, 5.9% on the three different segmentation

levels, leading to an average improvement of 3.2%. Notice

that PartNet is much more challenging given the number of

categories as well as shapes. For instance, PointNet achieves

83.7% on ShapeNet but only 57.9% on PartNet. Our method,

however, is much more robust and reliable with only 16.5 %

decrease. Taking into account all the categories in the three

levels, i.e., 50 in total, we achieve the best in 31 out of 50.

6. Conclusion

In this paper we address the problem of point cloud se-

mantic segmentation by taking advantage of conventional

2D CNNs. To this end, we propose a novel segmentation

pipeline, including graph construction from point clouds,

graph-to-image mapping using graph drawing, and point seg-

mentation using U-Net. The computational bottleneck in our

pipeline is the graph drawing algorithm, which is essentially

an integer programming problem. To accelerate the compu-

tation, we further propose a novel hierarchical approximate

algorithm with complexity dominated by O(n
L+1

L ), leading

to a save of about 97% running time. To better capture the lo-

cal context embedded in our image presentations from point

cloud, we also propose a multi-scale U-Net as our network.

We evaluate our pipeline on ShapeNet and PartNet, achiev-

ing new state-of-the-art performance on both data sets with

significantly large margins compared with the literature.
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