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Abstract

Structures matter in single image super resolution

(SISR). Recent studies benefiting from generative adversar-

ial network (GAN) have promoted the development of SISR

by recovering photo-realistic images. However, there are

always undesired structural distortions in the recovered im-

ages. In this paper, we propose a structure-preserving su-

per resolution method to alleviate the above issue while

maintaining the merits of GAN-based methods to generate

perceptual-pleasant details. Specifically, we exploit gradi-

ent maps of images to guide the recovery in two aspects.

On the one hand, we restore high-resolution gradient maps

by a gradient branch to provide additional structure pri-

ors for the SR process. On the other hand, we propose a

gradient loss which imposes a second-order restriction on

the super-resolved images. Along with the previous image-

space loss functions, the gradient-space objectives help

generative networks concentrate more on geometric struc-

tures. Moreover, our method is model-agnostic, which can

be potentially used for off-the-shelf SR networks. Experi-

mental results show that we achieve the best PI and LPIPS

performance and meanwhile comparable PSNR and SSIM

compared with state-of-the-art perceptual-driven SR meth-

ods. Visual results demonstrate our superiority in restoring

structures while generating natural SR images. 1

1. Introduction

Single image super resolution (SISR) aims to recover

high-resolution (HR) images from their low-resolution (LR)

counterparts. SISR is a fundamental problem in the commu-

nity of computer vision and can be applied in many image

analysis tasks including surveillance and satellite image. It

∗Corresponding author
1Code: https://github.com/Maclory/SPSR

(a) HR (b) RCAN [51]

(c) SRGAN [27] (d) ESRGAN [42]

(e) NatSR [37] (f) SPSR (Ours)

Figure 1. SR results of different methods. RCAN represents

PSNR-oriented methods, typically generating straight but blurry

edges for the bricks. Perceptual-driven methods including SR-

GAN, ESRGAN and NatSR commonly recover sharper but

geometric-inconsistent textures. Our SPSR result is sharper than

that of RCAN, and preserve finer geometric structures compared

with perceptual-driven methods. Best viewed on screen.

is a widely known ill-posed problem since each LR input

may have multiple HR solutions. With the development of

deep learning, a number of SR methods [8, 35] have been

proposed. Most of them are optimized by the mean squared

error (MSE) which measures the pixel-wise distances be-

tween SR images and the HR ones. However, such opti-
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mizing objective impels a deep model to produce an image

which may be a statistical average of possible HR solutions

to the one-to-many problem. As a result, such methods usu-

ally generate blurry images with high peak signal-to-noise

ratio (PSNR).

Hence, several methods aiming to recover photo-realistic

images have recently utilized the generative adversarial net-

work (GAN) [15], such as SRGAN [27], EnhanceNet [34],

ESRGAN [42] and NatSR [37]. While GAN-based meth-

ods can generate high-fidelity SR results, there are always

geometric distortions along with sharp edges and fine tex-

tures. Some SR examples are presented in Figure 1. We

can see RCAN [51] recovers blurry but straight edges for

the bricks, while edges restored by perceptual-driven meth-

ods are sharper but twisted. In fact, GAN-based methods

generally suffer from structural inconsistency since the dis-

criminators may introduce unstable factors to the optimiza-

tion procedure. Some methods have been proposed to bal-

ance the trade-off between the merits of two kinds of SR

methods. For example, Controllable Feature Space Net-

work (CFSNet) [40] designs an interactive framework to

transfer continuously between two objectives of perceptual

quality and distortion reduction. Nevertheless, the intrin-

sic problem is not mitigated since the two goals cannot be

achieved simultaneously. Hence it is necessary to explicitly

guide perceptual-driven SR methods to preserve structures

for further enhancing the SR performance.

In this paper, we propose a structure-preserving super

resolution method to alleviate the above-mentioned issue.

Since the gradient map reveals the sharpness of each local

region in an image, we exploit this powerful tool to guide

image recovery. On the one hand, we design a gradient

branch which converts the gradient maps of LR images to

the HR ones as an auxiliary SR problem. The recovered

gradients can be integrated into the SR branch to provide

structure prior for SR. Besides, the gradients can highlight

the regions where sharpness and structures should be paid

more attention to, so as to guide the high-quality generation

explicitly. This idea is motivated by the observation that

once edges are recovered with high-fidelity, the SR task can

be treated as a color-filling problem with strong clues given

by the LR images. On the other hand, we propose a gradi-

ent loss to explicitly supervise the gradient maps of recov-

ered images. Together with the image-space loss functions

in existing methods, the gradient loss restricts the second-

order relationship of neighboring pixels. Hence the struc-

tural configuration can be better retained with such guid-

ance, and the SR results with high perceptual quality and

fewer geometric distortions can be obtained. Moreover, our

method is model-agnostic, which can be potentially used for

off-the-shelf SR networks. To the best of our knowledge,

we are the first to explicitly consider preserving geometric

structures in GAN-based SR methods. Experimental results

on benchmark datasets show that our method succeeds in

enhancing SR fidelity by reducing structural distortions.

2. Related Work

Here we review SISR methods [7, 10, 12, 13, 14, 19,

22, 25, 38, 44, 46, 47] which can be classified into two

categories: PSNR-oriented methods and perceptual-driven

ones. We also investigate methods relevant to gradient.

PSNR-Oriented Methods: Most previous approaches

target high PSNR. As a pioneer, Dong et al. [8] propose

SRCNN, which firstly maps LR images to HR ones by a

three-layer CNN. DRCN [24] and VDSR [23] are further

proposed by Kim et al. to improve SR performance. More-

over, Ledig et al. [27] propose SRResNet by employing the

idea of ResNet [17]. Zhang et al. [52] propose RDN by

utilizing residual dense blocks in the SR framework. They

further introduce RCAN [51] and achieve superior perfor-

mance on PSNR. Li et al. [28] propose a feedback frame-

work to refine the super-resolved results step by step.

Perceptual-Driven Methods: The methods mentioned

above all focus on achieving high PSNR and thus use the

MSE loss or L1 loss as loss functions. However, these meth-

ods usually produce blurry images. Johnson et al. [20] pro-

pose perceptual loss to improve the visual quality of recov-

ered images. Ledig et al. [27] utilize adversarial loss [15] to

construct SRGAN, which becomes the first framework able

to generate photo-realistic HR images. Furthermore, Saj-

jadi et al. [34] restore high-fidelity textures by texture loss.

Wang et al. [42] enhance the previous frameworks by intro-

ducing Residual-in-Residual Dense Block (RRDB) to the

proposed ESRGAN. Wang et al. [41] exploit semantic seg-

mentation maps as priors to generate more natural textures

for specific categories. Rad et al. [32] propose a targeted

perceptual loss on the basis of the labels of object, back-

ground and boundary. Although these existing perceptual-

driven methods indeed improve the overall visual quality

of super-resolved images, they sometimes generate unnat-

ural artifacts including geometric distortions when recover-

ing details.

Gradient-Relevant Methods: Gradient information has

been utilized in previous work [2, 29]. For SR methods,

Fattal [11] proposes a method based on edge statistics of

image gradients by learning the prior dependency of dif-

ferent resolutions. Sun et al. [39] propose a gradient pro-

file prior to represent image gradients and a gradient field

transformation to enhance sharpness of super-resolved im-

ages. Yan et al. [45] propose a SR method based on gradient

profile sharpness which is extracted from gradient descrip-

tion models. In these methods, statistical dependencies are

modeled by estimating HR edge-related parameters accord-

ing to those observed in LR images. However, the mod-

eling procedure is accomplished point by point, which is

complex and inflexible. In fact, deep learning is outstand-
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Figure 2. Overall framework of our SPSR method. Our architecture consists of two branches, the SR branch and the gradient branch. The

gradient branch aims to super-resolve LR gradient maps to the HR counterparts. It incorporates multi-level representations from the SR

branch to reduce parameters and outputs gradient information to guide the SR process by a fusion block in turn. The final SR outputs are

optimized by not only conventional image-space losses, but also the proposed gradient-space objectives.

ing in handling probability transformation over the distri-

bution of pixels. However, few methods have utilized its

powerful abilities in gradient-relevant SR methods. More-

over, Zhu et al. [53] propose a gradient-based SR method

by collecting a dictionary of gradient patterns and modeling

deformable gradient compositions. Yang et al. [48] pro-

pose a recurrent residual network to reconstruct fine details

guided by the edges which are extracted by off-the-shelf

edge detector. While edge reconstruction and gradient field

constraint have been utilized in some methods, their pur-

poses are mainly to recover high-frequency components for

PSNR-orientated SR methods. Different from these meth-

ods, we aim to reduce geometric distortions produced by

GAN-based methods and exploit gradient maps as structure

guidance for SR. For deep adversarial networks, gradient-

space constraint may provide additional supervision for bet-

ter image reconstruction. To the best of our knowledge, no

GAN-based SR method has exploited gradient-space guid-

ance for preserving texture structures. In this work, we

aim to leverage gradient information to further improve the

GAN-based SR methods.

3. Approach

In this section, we first introduce the overall framework.

Then we present the details of gradient branch, attentive fu-

sion module and final objective functions accordingly.

3.1. Overview

In SISR, we aim to take LR images ILR as inputs and

generate SR images ISR given their HR counterparts IHR

as ground-truth. We denote the generator as G and its pa-

rameters as θG and then we have ISR = G(ILR; θG). I
SR

should be as similar to IHR as possible. If the parameters

are optimized by an loss function L, we have the following

formulation:

θ∗G = argmin
θG

EISRL(G(ILR; θG), I
HR). (1)

The overall framework is depicted as Figure 2. The

generator is composed of two branches, one of which is a

structure-preserving SR branch and the other is a gradient

branch. The SR branch takes ILR as input and aims to re-

cover the SR output ISR with the guidance provided by the

SR gradient map from the gradient branch.

3.2. Details in Architecture

3.2.1 Gradient Branch

The target of the gradient branch is to estimate the transla-

tion of gradient maps from the LR modality to the HR one.

The gradient map for an image I is obtained by computing

the difference between adjacent pixels:

Ix(x) = I(x+ 1, y)− I(x− 1, y),

Iy(x) = I(x, y + 1)− I(x, y − 1),

∇I(x) = (Ix(x), Iy(x)),

M(I) = ‖∇I‖2, (2)

where M(·) stands for the operation to extract gradient map

whose elements are gradient lengths for pixels with coor-

dinates x = (x, y). The operation to get the gradients

can be easily achieved by a convolution layer with a fixed
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kernel. In fact, we do not consider gradient direction in-

formation since gradient intensity is adequate to reveal the

sharpness of local regions in recovered images. Hence we

adopt the intensity maps as the gradient maps. Such gradi-

ent maps can be regarded as another kind of images, so that

techniques for image-to-image translation can be utilized

to learn the mapping between two modalities. The transla-

tion process is equivalent to the spatial distribution transla-

tion from LR edge sharpness to HR edge sharpness. Since

most area of the gradient map is close to zero, the convolu-

tional neural network can concentrates more on the spatial

relationship of outlines. Therefore, it may be easier for the

network to capture structure dependency and consequently

produce approximate gradient maps for SR images.

As shown in Figure 2, the gradient branch incorpo-

rates several intermediate-level representations from the SR

branch. The motivation of such scheme is that the well-

designed SR branch is capable of carrying rich structural in-

formation which is pivotal to the recovery of gradient maps.

Hence we utilize the features as a strong prior to promote

the performance of the gradient branch, whose parameters

can be largely reduced in this case. Between each two inter-

mediate features, there is a gradient block which can be any

basic block to extract higher-level features. Once we get

the SR gradient maps by the gradient branch, we are able to

integrate the obtained gradient features into the SR branch

to guide SR reconstruction in turn. The magnitude of gra-

dient map can implicitly reflect whether a recovered region

should be sharp or smooth. In practice, we feed the feature

maps produced by the next-to-last layer of gradient branch

to the SR branch. Meanwhile, we generate the output gra-

dient maps by a 1 × 1 convolution layer with these feature

maps as inputs.

3.2.2 Structure-Preserving SR Branch

We design a structure-preserving SR branch to get the final

SR outputs. This branch constitutes of two parts. The first

part is a regular SR network comprising of multiple gener-

ative neural blocks which can be any architecture. Here we

introduce the Residual in Residual Dense Block (RRDB)

proposed in ESRGAN [42]. There are 23 RRDB blocks in

the original model. Therefore, we incorporate the feature

maps from the 5th, 10th, 15th, 20th blocks to the gradi-

ent branch. Since regular SR models produce images with

only 3 channels, we remove the last convolutional recon-

struction layer and feed the output feature to the consecu-

tive part. The second part of the SR branch wires the SR

gradient feature maps obtained from the gradient branch as

mentioned above. We fuse the structure information by a

fusion block which fuses the features from two branches to-

gether. Specifically, we concatenate the two features and

then use another RRDB block and convolutional layer to

reconstruct the final SR features. It is noteworthy that we

only add one RRDB block into the SR branch. Thus the pa-

rameter increment is slight compared to the original model

with 23 blocks.

3.3. Objective Functions

Conventional Loss: Most SR methods optimize the

elaborately designed networks by a common pixelwise loss,

which is efficient for the task of super resolution measured

by PSNR. This metric can reduce the average pixel differ-

ence between recovered images and ground-truths but the

results may be too smooth to maintain sharp edges for visual

effects. However, this loss is still widely used to accelerate

convergence and improve SR performance:

LPixI

SR = EISR‖G(ILR)− IHR‖1. (3)

Perceptual loss has been proposed in [20] to improve per-

ceptual quality of recovered images. Features containing se-

mantic information are extracted by a pre-trained VGG net-

work [36]. The Euclidean distances between the features of

HR images and SR ones are minimized in perceptual loss:

LPer
SR = EISR‖φi(G(ILR))− φi(I

HR)‖1, (4)

where φi(.) denotes the ith layer output of the VGG model.

Methods [27, 42] based on generative adversarial net-

works (GANs) [3, 4, 15, 16, 21, 33] also play an important

role in the SR problem. The discriminator DI and the gen-

erator G are optimized by a two-player game as follows:

LDisI
SR = −EISR [log(1−DI(I

SR))]

−EIHR [logDI(I
HR)], (5)

LAdvI

SR = −EISR [logDI(G(ILR))]. (6)

Following [21, 42] we conduct relativistic average GAN

(RaGAN) to achieve better optimization in practice. Mod-

els supervised by the above objective functions merely con-

sider the image-space constraint for images, but neglect the

semantically structural information provided by the gradi-

ent space. While the generated results look photo-realistic,

there are also a number of undesired geometric distortions.

Thus we introduce the gradient loss to alleviate this issue.

Gradient Loss: Our motivation can be illustrated clearly

by Figure 3. Here we only consider a simple 1-dimensional

case. If the model is only optimized in image space by the

L1 loss, we usually get a SR sequence as Figure 3 (b) given

an input testing sequence whose ground-truth is a sharp

edge as Figure 3 (a). The model fails to recover sharp edges

for the reason that the model tends to give an statistical av-

erage of possible HR solutions from training data. In this

case, if we compute and show the gradient magnitudes of

two sequences, it can be observed that the SR gradient is

flat with low values while the HR gradient is a spike with
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(a) HR (b) Blurry SR (c) Sharp SR

(d) HR Gradiant (e) Blurry Gradiant (f) Sharp Gradiant

Figure 3. An illumination of a simple 1-D case. The first row

shows the pixel sequences and the second row shows their cor-

responding gradient maps.

high values. They are far from each other. This inspires

us that if we add a second-order gradient constraint to the

optimization objective, the model may learn more from the

gradient space. It helps the model focus on neighboring

configuration, so that the local intensity of sharpness can

be inferred more appropriately. Therefore, if the gradient

information as Figure 3 (f) is captured, the probability of

recovering Figure 3 (c) is increased significantly. SR meth-

ods can benefit from such guidance to avoid over-smooth or

over-sharpening restoration. Moreover, it is easier to extract

geometric characteristics in the gradient space. Hence ge-

ometric structures can be also preserved well, resulting in

more photo-realistic SR images.

Here we propose a gradient loss to achieve the above

goals. Since we have mentioned the gradient map is an ideal

tool to reflect structural information of an image, it can also

be utilized as a second-order constraint to provide supervi-

sion to the generator. We formulate the gradient loss by di-

minishing the distance between the gradient map extracted

from the SR image and the one from the corresponding HR

image. With the supervision in both image and gradient do-

mains, the generator can not only learn fine appearance, but

also attach importance to avoiding detailed geometric dis-

tortions. Therefore, we design two terms of loss to penalize

the difference in the gradient maps (GM) of the SR and HR

images. One is based on the pixelwise loss as follows:

LPixGM

SR = EISR‖M(G(ILR))−M(IHR)‖1. (7)

The other is to discriminate whether a gradient patch is from

the HR gradient map. We design another gradient discrimi-

nator network to achieve this goal:

LDisGM

SR = −EISR [log(1−DGM (M(ISR)))]

−EIHR [logDGM (M(IHR))]. (8)

The gradient discriminator can also supervise the genera-

tion of SR results by adversarial learning:

LAdvGM

SR = −EISR [logDGM (M(G(ILR)))]. (9)

Note that each step in the operation M(·) is differen-

tiable. Hence the model with gradient loss can be trained

in an end-to-end manner. Furthermore, it is convenient to

adopt gradient loss as additional guidance in any generative

model due to the concise formulation and strong transfer-

ability.

Overall Objective: In conclusion, we have two discrim-

inators DI and DGM which are optimized by LDisI
SR and

LDisGM

SR , respectively. For the generator, two terms of loss

are used to provide supervision signals simultaneously. One

is imposed on the structure-preserving SR branch while the

other is to reconstruct high-quality gradient maps by min-

imizing the pixelwise loss LPixGM

GB in the gradient branch

(GB). The overall objective is defined as follows:

LG = LG
SR + LG

GB

= LPer
SR + βI

SRL
PixI

SR + γI
SRL

AdvI

SR + βGM
SR LPixGM

SR

+γGM
SR LAdvGM

SR + βGM
GB LPixGM

GB . (10)

βI
SR, γI

SR, βGM
SR , γGM

SR and βGM
GB denote the trade-off pa-

rameters of different losses. Among these, βI
SR, βGM

SR and

βGM
GB are the weights of the pixel losses for SR images, gra-

dient maps of SR images and SR gradient maps respec-

tively. γI
SR and γGM

SR are the weights of the adversarial

losses for SR image and their gradient maps.

4. Experiments

4.1. Implementation Details

Datasets and Evaluation Metrics: We evaluate the SR

performance of our proposed SPSR method. We utilize

DIV2K [1] as the training dataset and five commonly used

benchmarks for testing: Set5 [5], Set14 [49], BSD100 [30],

Urban100 [18] and General100 [9]. We downsample HR

images by bicubic interpolation to get LR inputs and only

consider the scaling factor of 4× in our experiments. We

choose Perceptual Index (PI) [6], Learned Perceptual Image

Patch Similarity (LPIPS) [50], PSNR and Structure Simi-

larity (SSIM) [43] as the evaluation metrics. Lower PI and

LPIPS values indicate higher perceptual quality.

Training Details: We use the architecture of ESR-

GAN [42] as the backbone of our SR branch and the RRDB

block [42] as the gradient block. We randomly sample

15 32 × 32 patches from LR images for each input mini-

batch. Therefore the ground-truth HR patches have a size

of 128 × 128. We initialize the generator with the parame-

ters of a pre-trained PSNR-oriented model. The pixelwise

loss, perceptual loss, adversarial loss and gradient loss are

used as the optimizing objectives. A pre-trained 19-layer

VGG network [36] is employed to calculate the feature dis-

tances in the perceptual loss. We also use a VGG-style

network to perform discrimination. ADAM optimizor [26]

with β1 = 0.9, β2 = 0.999 and ǫ = 1 × 10−8 is used for
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Table 1. Comparison with state-of-the-art perceptual-driven SR methods on benchmark datasets. The best performance is highlighted in

red (1st best) and blue (2nd best). Our SPSR obtains the best PI and LPIPS values and comparable PSNR and SSIM values simultaneously.

NatSR is more like a PSNR-oriented method since it has high PSNR and SSIM and relatively poor PI and LPIPS performance.

Dataset Metric Bicubic SFTGAN [41] SRGAN [27] ESRGAN [42] NatSR [37] SPSR

Set5

PI 7.3699 3.7587 3.9820 3.7522 4.1648 3.2743

LPIPS 0.3407 0.0890 0.0882 0.0748 0.0939 0.0644

PSNR 28.420 29.932 29.168 30.454 30.991 30.400

SSIM 0.8245 0.8665 0.8613 0.8677 0.8800 0.8627

Set14

PI 7.0268 2.9063 3.0851 2.9261 3.1094 2.9036

LPIPS 0.4393 0.1481 0.1663 0.1329 0.1758 0.1318

PSNR 26.100 26.223 26.171 26.276 27.514 26.640

SSIM 0.7850 0.7854 0.7841 0.7783 0.8140 0.7930

BSD100

PI 7.0026 2.3774 2.5459 2.4793 2.7801 2.3510

LPIPS 0.5249 0.1769 0.1980 0.1614 0.2114 0.1611

PSNR 25.961 25.505 25.459 25.317 26.445 25.505

SSIM 0.6675 0.6549 0.6485 0.6506 0.6831 0.6576

General100

PI 7.9365 4.2878 4.3757 4.3234 4.6262 4.0991

LPIPS 0.3528 0.1030 0.1055 0.0879 0.1117 0.0863

PSNR 28.018 29.026 28.575 29.412 30.346 29.414

SSIM 0.8282 0.8508 0.8541 0.8546 0.8721 0.8537

Urban100

PI 6.9435 3.6136 3.6980 3.7704 3.6523 3.5511

LPIPS 0.4726 0.1433 0.1551 0.1229 0.1500 0.1184

PSNR 23.145 24.013 24.397 24.360 25.464 24.799

SSIM 0.9011 0.9364 0.9381 0.9453 0.9505 0.9481

optimization. We set the learning rates to 1× 10−4 for both

generator and discriminator, and reduce them to half at 50k,

100k, 200k, 300k iterations. As for the trade-off parame-

ters of losses, we follow the settings in [42] and set βI
SR

and γI
SR to 0.01 and 0.005, accordingly. Then we set the

weights of gradient loss equal to those of image-space loss.

Hence βGM
SR = 0.01 and γGM

SR = 0.005. In terms of βGM
GB ,

we set it to 0.5 for better performance of gradient transla-

tion. All the experiments are implemented by PyTorch [31]

on NVIDIA GTX 1080Ti GPUs.

4.2. Results and Analysis

Quantitative Comparison: We compare our method

quantitatively with state-of-the-art perceptual-driven SR

methods including SFTGAN [41], SRGAN [27], ESR-

GAN [42] and NatSR [37]. Results of PI, LPIPS, PSNR and

SSIM values are presented in Table 1. In each row, the best

result is highlighted in red while the second best is in blue.

We can see in all the testing datasets SPSR achieves the best

PI and LPIPS performance. Meanwhile, we get the second

best PSNR and SSIM values in most datasets. It is note-

worthy that while NatSR gets the highest PSNR and SSIM

values in all the datasets, our method surpasses NatSR by

a large margin in terms of PI and LPIPS. Moreover, NatSR

cannot achieve the second best PI and LPIPS values in any

testing set. Thus NatSR is more like a PSNR-oriented SR

method, which tends to produce relatively blurry results

with high PSNR compared to other perceptual-driven meth-

ods. Besides, we get better performance than ESRGAN

with only a little increment on network parameters in the

SR branch. Therefore, the results demonstrate the superior

ability of our SPSR method to obtain excellent perceptual

quality and minor distortions simultaneously.

Qualitative Comparison: We also conduct visual com-

parison to perceptual-driven SR methods. From Figure 4

we see that our results are more natural and realistic than

other methods. For the first image, SPSR infers sharp edges

of the bricks properly, indicating that our method is capable

of capturing structural characteristics of objects in images.

In other rows, our method also recovers better textures than

the compared SR methods. The structures in our results are

clear without severe distortions, while other methods fail

to show satisfactory appearance for the objects. Gradient

maps for the last row are shown in Figure 5. We can see the

gradient maps of other methods tend to have small values or

contain structure degradation while ours are bold and natu-

ral. The qualitative comparison proves that our proposed

SPSR method can learn more structure information from

the gradient space, which helps generate photo-realistic SR

images by preserving geometric structures.

User Study: We further perform a user study to evaluate

visual quality of different SR methods. Detailed settings

and results are presented in the supplementary material.

Ablation Study: We conduct more experiments on dif-

ferent models to validate the necessity of each part in our

proposed framework. Since we apply the architecture of
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‘im 004’ from General100

HR Bicubic EnhanceNet SFTGAN

SRGAN ESRGAN NatSR SPSR

‘img 054’ from Urban100

HR Bicubic EnhanceNet SFTGAN

SRGAN ESRGAN NatSR SPSR

‘img 003’ from Urban100

HR Bicubic EnhanceNet SFTGAN

SRGAN ESRGAN NatSR SPSR

‘img 030’ from Urban100

HR Bicubic EnhanceNet SFTGAN

SRGAN ESRGAN NatSR SPSR

Figure 4. Visual comparison with state-of-the-art perceptual-driven SR methods. The results show that our proposed SPSR method

significantly outperforms other methods in structure restoration while generating perceptual-pleasant SR images. Best viewed on screen.

‘im 030’ from Urban100

HR Bicubic EnhanceNet SFTGAN

SRGAN ESRGAN NatSR SPSR

Figure 5. Comparison of gradient maps with state-of-the-art perceptual-driven SR methods. The proposed SPSR method can better

preserve gradients and structures. Best viewed on screen.

ESRGAN [42] in our SR branch, we use ESRGAN as the

baseline. We compare three models with it. The first one

has the same architecture as ESRGAN without the gradi-

ent branch (GB) and is trained by both the image-space and

gradient-space loss. The second one is trained without the

gradient loss (GL), but has the gradient branch in the net-

work. The third is our proposed SPSR model, utilizing both

the gradient loss and the gradient branch. Quantitative com-

parison is presented in Table 2. It is observed that SPSR

w/o GB has a significant enhancement on PI performance

over ESRGAN, which demonstrates the effectiveness of the

proposed gradient loss in improving perceptual quality. Be-

sides, the results of SPSR w/o GL also show that the gradi-

ent branch can significantly help improve PI or PSNR while

relatively preserving the other one. In terms of the com-

plete model, we can see SPSR surpasses ESRGAN on all

the measurements in all the testing sets. Therefore, the ef-

fectiveness of our method is verified clearly.

Effects of the Gradient Branch: In order to validate the

effectiveness of the gradient branch, we also visualize the
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Table 2. Comparison of models with different components. The best results are highlighted. SPSR w/o GB has better PI performance than

ESRGAN in all the benchmark datasets. SPSR surpasses ESRGAN on all the measurements in all the testing sets.

Method
Set14 BSD100 Urban100

PI PSNR SSIM PI PSNR SSIM PI PSNR SSIM

ESRGAN [42] 2.926 26.276 0.778 2.479 25.317 0.651 3.770 24.360 0.945

SPSR w/o GB 2.864 26.027 0.785 2.370 25.376 0.659 3.604 23.939 0.940

SPSR w/o GL 3.028 26.547 0.794 2.456 25.214 0.647 3.605 24.309 0.942

SPSR 2.904 26.640 0.793 2.351 25.505 0.658 3.551 24.799 0.948

(a) HR (b) HR gradiant

(c) LR gradiant (Bicubic) (d) Output of the gradiant branch

Figure 6. Visualization of gradient maps (‘im 073’ from Gen-

eral100). The HR gradient map has thin outlines while those in

the LR gradient map are thick. Our gradient branch is able to re-

cover HR gradient maps with pleasant structures.

(a) Only the SR branch (b) Complete model

Figure 7. SR comparison of the models without and with the gradi-

ent branch (‘baboon’ from Set14). Images recovered by the com-

plete model have clearer textures than those generated only by the

features from the SR branch.

output gradient maps as shown in Figure 6. Given HR im-

ages with sharp edges, the extracted HR gradient maps may

have thin and clear outlines for objects in the images. How-

ever, the gradient maps extracted from the LR counterparts

commonly have thick lines after the bicubic upsampling.

Our gradient branch takes LR gradient maps as inputs and

produce HR gradient maps so as to provide explicit struc-

tural information as a guidance for the SR branch. By treat-

ing gradient generation as an image translation problem, we

can exploit the strong generative ability of the deep model.

From the output gradient map in Figure 6 (d), we can see

our gradient branch successfully recover thin and structure-

pleasing gradient maps.

We conduct another experiment to evaluate the effective-

ness of the gradient branch. With a complete SPSR model,

we remove the features from the gradient branch by setting

them to 0 and only use the SR branch for inference. The vi-

sualization results are shown in Figure 7. From the patches,

we can see the furs and whiskers super-resolved by only

the SR branch are more blurry than those recovered by the

complete model. The change of detailed textures reveals

that the gradient branch can help produce sharp edges for

better perceptual fidelity.

5. Conclusion

In this paper, we have proposed a structure-preserving

super resolution method (SPSR) with gradient guidance to

alleviate the issue of geometric distortions commonly ex-

isting in the SR results of perceptual-driven methods. We

have preserved geometric structures in two aspects. Firstly,

we build a gradient branch which aims to recover high-

resolution gradient maps from the LR ones and provides

gradient information to the SR branch as an explicit struc-

tural guidance. Secondly, we propose a new gradient loss to

impose second-order restrictions on the recovered images.

Geometric relationship can be better captured with both the

image-space and gradient-space supervision. Quantitative

and qualitative experimental results on five popular bench-

mark testing sets have shown the effectiveness of our pro-

posed method.
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