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Figure 1: Overview of our method. Given a single overhead image, our multi-task, multi-feature deep network generates

2D building outline proposals, a pixel-wise heightmap, a modified signed distance function (BPSH), and pixel-wise semantic

labels. Building outlines are then refined using the BPSH and combined with the height estimates to produce a 3D model.

Abstract

We propose a boundary-aware multi-task deep-learning-

based framework for fast 3D building modeling from a sin-

gle overhead image. Unlike most existing techniques which

rely on multiple images for 3D scene modeling, we seek to

model the buildings in the scene from a single overhead im-

age by jointly learning a modified signed distance function

(SDF) from the building boundaries, a dense heightmap of

the scene, and scene semantics. To jointly train for these

tasks, we leverage pixel-wise semantic segmentation and

normalized digital surface maps (nDSM) as supervision, in

addition to labeled building outlines. At test time, buildings

in the scene are automatically modeled in 3D using only

an input overhead image. We demonstrate an increase in

building modeling performance using a multi-feature net-

work architecture that improves building outline detection

by considering network features learned for the other jointly

learned tasks. We also introduce a novel mechanism for ro-

bustly refining instance-specific building outlines using the

learned modified SDF. We verify the effectiveness of our

method on multiple large-scale satellite and aerial imagery

datasets, where we obtain state-of-the-art performance in

the 3D building reconstruction task.

1. Introduction

Automated scene understanding and detection from

overhead images has long been of interest to the computer

vision community [8, 37, 15, 9, 35, 16, 39, 24, 53]. Iden-

tifying and modeling 3D buildings from overhead imagery

plays an important role in a number of applications. After a

major disaster like a hurricane or an earthquake, automated

building modeling from overhead imagery, e.g. satellite and

aerial images and LIDARs, can provide a vital clue indicat-

ing the effect on human settlements and can aid in disaster

preparation and assessment. Such modeling can also facili-

tate urban planning and analysis, digital mapping, overhead

surveillance, and city modeling in video games and movies.

For this task, satellite and aerial imaging services offer a

unique advantage in providing reasonably high-resolution

images while remaining relatively cost-effective to capture.

In comparison, while aerial or satellite LIDAR can provide

highly accurate scene geometry, such scans are often costly

to capture and provide low-resolution geometry. Ground-

level views are also ineffective: dedicated photography can

only efficiently capture a small area, street-view imagery

does not necessarily capture buildings from all sides, and

city-scale reconstruction requires careful registration of po-

tentially millions of images that still may not completely

capture sparsely imaged regions [19, 7]. For large-scale
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scene analysis, satellite and aerial imaging provides the best

trade-off for overall resolution and spatial coverage.

Many existing methods of reconstruction from satellite

or aerial imagery utilize geometric constraints induced by

multiple views of the scene and rely on photometric match-

ing [30, 41, 31, 56, 57, 27]. The assumption of similar

appearance across images restricts these approaches to use

images captured preferably over a short period of time (e.g.

several days or weeks). In contrast, reconstruction from a

single satellite or aerial image does not have this require-

ment. Single-view approach can provide fast 3D recon-

struction while being economic in data capturing. This ap-

proach can model sparsely imaged regions, for which one

might have just one view of the region. Moreover, obtain-

ing multi-view aerial/satellite images or LIDAR data is typi-

cally infeasible for historical remote sensing data [50], mak-

ing single-image scene understanding and geometry model-

ing an important problem to solve.

Several methods have proposed to perform building de-

tection and height estimation directly from a single satellite

image [29, 40, 55]. This task, however, comes with its own

set of challenges. Without the geometric and appearance-

matching constraints afforded by having multiple views,

modeling — and even detecting — individual buildings is

made difficult due to the relatively low ground resolution of

the imagery, especially for satellite images.1 Appearance

cues, such as the texture differences between a sidewalk

next to a building and the building roof, are often degraded

in overhead views. On the other hand, having a prior knowl-

edge of (low-resolution) overhead appearance, and how it

relates to semantics and height above the ground, can pro-

vide the vital context needed for solving what would other-

wise be an ill-posed problem of surface modeling.

We sub-divide the problem of single-view building re-

construction into two sub-problems: (1) detecting 2D out-

line for each building, and (2) modeling each building’s

height. To tackle both of these sub-problems together, we

propose a multi-task framework that jointly learns four cor-

related tasks using a deep neural network (Fig. 1):

Task 1: Generate 2D building instance proposals in the

form of pixel-wise masks.

Task 2: Predict a modified signed distance function from

each building boundary.

Task 3: Predict per-pixel height from the ground (nDSM).

Task 4: Predict pixel-level semantic scene composition.

We propose a technique to resolve overlapping proposals

from building detection (Task 1) using learned 2D bound-

ary distance reasoning (Task 2). Notably, we introduce a

mixed boundary-label and -distance function, which we call

Boundary Proximity Signed Heatmap (BPSH) that substan-

1 For instance, Digital Globe’s WorldView-3 [4], which is one of

the most advanced imaging satellites, captures panchromatic and multi-

spectral images with 0.31m and 1.24m resolution respectively.

tially boosts building outline prediction in Task 1. We pro-

pose to learn height regression (Task 3) and semantic seg-

mentation (Task 4) in a joint formulation, which provides

additional context for scene understanding. While jointly

learning the tasks, we propose a multi-feature approach that

fuses network features learned for Tasks 2-4 with upstream

network features, which serves to improve the instance pro-

posals obtained in Task 1. We demonstrate that our holis-

tic four-part formulation designed to learn generalized fea-

ture representations of the scene, along with the novel over-

lap refinement technique using learned boundary distance

reasoning, leads to superior performance in the task of 3D

building modeling from a single overhead image.

2. Related Work

Our multi-task formulation is inspired by several existing

works, including approaches in different imaging modal-

ities, and methods that aim to solve a subset of our four

tasks. Next, we review works related to estimating 3D ge-

ometry from overhead images, including single-view meth-

ods; multi-task learning for overhead image understanding;

and object instance detection from images.

2.1. Building and ground surface reconstruction

The most common technique for overhead image recon-

struction is multi-view stereo [13, 58, 36, 52, 54, 60, 48,

18, 21] using dense image-to-image appearance matching

to infer the underlying scene. In [47], Rudner et al. use

multi-resolution, multi-spectral images from before and af-

ter a flood to identify flooded buildings. In contrast to these

methods, we target scenarios where reconstruction from a

single view is the only viable option.

Historically, techniques for single-view building recon-

struction in overhead imagery utilized shadow information

from the known pose of the remote camera and the sun-earth

relative position. Ok et al. [40] use a fuzzy landscape gener-

ation approach to model the directional spatial relationship

between buildings and their shadows. They detect the build-

ing outlines by pruning the non-building regions and using a

GrabCut partitioning [46]. Izadi and Saeedi [29] use image

primitives such as lines and line intersections, and examine

their relationships using a graph search to establish rooftop

hypotheses. Height information is then derived from the

sun-earth position and shadows. These methods have draw-

backs in requiring precise knowledge of the sun-earth rela-

tive position, and sun illumination intensity.

A number of works have extended deep-learning ap-

proaches for monocular depth estimation from [17, 32]

to satellite or aerial domains, sometimes jointly learning

an auxiliary task. Wang and Frahm [55] develop a deep

framework for parametric building modeling by extending

the single-shot multi-box detector (SSD) [34] architecture

to 3D space. They predict 2D rectangular building foot-
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prints with confidence along each default box and extend

the SSD framework by also predicting mean height and

orientation of the detected building to generate 3D cuboid

building models. This method is limited, however, in its

capacity to model non-rectangular buildings. Srivastava et

al. [50] jointly estimate the nDSM and semantic labeling

from monocular satellite images using an encoder-decoder

convolutional network. Mou and Zhu [38] propose a sim-

ilar architecture with skip connections to directly regress

height, alone. Mou et al. [37] propose spatial relation rea-

soning for learning semantic segmentation from aerial im-

ages. They demonstrate that modeling global relationship

between spatial positions and feature maps in networks can

provide useful features for segmentation.

2.2. Multitask learning for overhead imagery

Multi-task CNNs have been shown to boost performance

for a variety of correlated tasks compared to single-task ar-

chitectures [43, 59]. Dai et al. [14] design a multi-task

network cascade for instance-aware semantic segmentation.

Brahmbhatt et al. [12] learn convolutional features to pre-

dict segmentation between objects and amorphous cate-

gories such as ground and water, and utilize this semantic

segmentation features at a single stage, for object detection.

In addition to the multi-task ground surface learning

methods introduced in the previous subsection, a number

of approaches have investigated combining building identi-

fication with related tasks for single-view overhead images.

Bischke et al. [10] and Hui et al. [28] jointly learn a binary

instance segmentation and a distance function for detecting

building outlines from remote sensing images. They show

that learning the distance representation guides the network

to distinguish between the interior points and boundaries

of buildings. Pandey et al. [42] train a multi-task CNN

to identify indicative factors of urban development and use

these features to predict poverty rates across satellite im-

ages. Sun et al. [51] adopt a similar approach for predicting

road topologies, distance functions, and binary masks. In

contrast, our approach improves building detection by mod-

eling building outline extraction as an instance detection

problem and by learning a novel distance function, which

along with the learned scene geometry and scene seman-

tics, provides rich features to the detection task, leading to

an overall improvement in the detection performance.

2.3. Object detection

Our method uses Mask R-CNN [25, 6, 33] to generate

a set of building outline proposals given an overhead im-

age. Mask R-CNN works by, first, proposing a sparse set

of class-agnostic object regions of interest (ROIs) in the im-

age. In the second stage, features are extracted from each

of the proposed ROI, and the class of each object is pre-

dicted along with its bounding box and mask. Among

related work, the precursor R-CNN [22] formulated the

classification and localization task in the second stage us-

ing a convolutional network, leading to greater accuracy

compared to earlier methods. Faster R-CNN [44] for-

mulated both stages with learned sub-networks that utilize

the CNN feature map. Mask R-CNN [25] builds on top

of this and adds an object mask prediction branch to the

classification/localization branch in the second stage. The

mask branch predicts one mask for each object category.

It also introduces ROIAlign, to avoid any quantization ef-

fects when extracting features from the ROIs, allowing for

the generation of pixel-wise-accurate masks. Recently, Fu

et al. [20] demonstrated that object detection prediction can

provide good features for semantic segmentation, as well.

3. Our Approach

Given a single satellite or aerial image, we develop

a multi-task, multi-feature, and building-boundary-aware

deep-learning framework to solve the problem of 3D build-

ing modeling. For best performance, we expect overhead

images to be captured from on or close to nadir views.

As mentioned in the introduction, we design a deep net-

work to jointly learn four tasks that are jointly trained in an

end-to-end fashion (Fig. 2), with shared feature representa-

tions serving as the backbone for each individual task pre-

diction. We propose to use feature representations for Tasks

2-4 to provide rich high-level information to Task 1 for

learning more robust initial building outline proposals. By

design, all four tasks are intertwined and work together to

improve contextual information for building identification.

By predicting boundaries, recovering ground and building

surfaces, and identifying building pixels versus surrounding

objects like trees — all within an object detection frame-

work — our method can accurately identify, localize, and

ultimately model the buildings in a given image.

We address the first two tasks in the next subsection and

then describe how we solve the remaining tasks. Finally,

we present our multi-feature learning approach, plus a tech-

nique to refine the boundary prediction with instance-level

information, both of which improve the final reconstruction.

3.1. Building outline detection

We formulate the estimation of a building outline as a 2D

object detection problem. These initial detection proposals

(Task 1) are subsequently refined using a novel modified

signed distance function (BPSH, Task 2) learned by our

network. While the building detection proposal is tasked

with identifying building instances, the BPSH learning is

designed to sharply learn the boundaries of the instances,

especially for buildings close to each other. Our experi-

ments show that learning a shared feature representation for

these tasks improves performance for both tasks.
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Figure 2: Our final multi-task, multi-feature learning framework. Features from BPSH prediction, nDSM prediction, and

semantic segmentation prediction tasks are added to the features of FPN at different scales to aid the building outline proposal.

3.1.1 Building proposal generation

We use the Mask R-CNN [25, 6] framework to generate

initial building proposals. In contrast to regular multi-class

detection, we are only interested in a single class of ob-

jects: buildings. The Feature Pyramid Network (FPN) [33]

built on top of ResNet-101 [26] is used as the backbone

of Mask R-CNN. FPN uses a top-down architecture with

lateral connections to build an in-network feature pyramid

from a single-scale input. This creates high-level seman-

tic feature maps with fine details at different scales, each

of which is used to generate a set of foreground regions of

interest (ROI) proposals using a region proposal network.

Features for each ROI are then extracted and used to predict

a building-label confidence, bounding box, and a (28× 28)
building mask. The generated masks with high confidence

give us an initial set of 2D building outline proposals.

3.1.2 Signed distance function regression

Mask R-CNN often yields overlapping building instance

proposals for buildings positioned close to each other. In

practice, however, buildings will rarely overlap in near-

nadir overhead images. To resolve true building proposals

from the overlapped ones, one naı̈ve approach is to use an

extreme non-maximum suppression, removing all propos-

als that overlap a proposal of higher confidence. However,

the low ground resolution of overhead images usually leads

to lower-confidence proposals for smaller buildings. As a

result, smaller buildings near larger buildings are often sup-

pressed, reducing the overall detection recall drastically.

Task 2 of our multi-task learning framework tackles this

problem. We learn to regress a modified truncated signed

20 15 10 5 0 5 10 15 20
2

1

0

1

2

Figure 3: BPSH function. X-axis: signed distance in pixels

from the closest building boundary. Y-axis: BPSH score.

distance function – the boundary proximity signed heatmap

(BPSH) – from individual building boundaries. The BPSH

is similar to a traditional 2D truncated signed distance for

the building boundaries in the scene, except that it clearly

distinguishes the zero level set (Fig. 3). The BPSH of pixel

p is positive inside of buildings and negative outside:

BPSH(p) =











0 if Db(p) = 0

1 + min(Db(p),τ)
τ

if p is inside

−1− min(Db(p),τ)
τ

if p is outside

(1)

Here, τ is the truncation distance, set to 10 px for all of our

experiments. Db(p) is the Euclidean distance to the nearest

pixel that lies on a building boundary. The behavior is simi-

lar to a ternary labeling function, with the additional context

of nearness to the boundary. Thus, learning the BPSH en-

courages the network to learn the outlines of the buildings.

We create a new sub-network for predicting the BPSH

from the spatially largest layer of FPN [33] (P2 in Fig. 2).

P2 is 4× down-sampled compared to the original image

dimension; our predicted BPSH has this dimension. From

P2, we extract a shared feature representation (see supple-

mentary) used for Tasks 2, 3, and 4. Two further 1 × 1
convolutions finally generate the BPSH prediction.

444



3.1.3 Overlap refinement using the BPSH

During inference, we generate the BPSH prediction along

with the building outline proposals from Mask R-CNN.

We extract the BPSH zero level set as all pixels p having

BPSH(p) ∈ [−0.5, 0.5]. A score Si for each proposal is

then computed as the sum of its detection confidence ci and

the agreement between its mask and BPSH:

Si = ci +max



1−
λ

|Mi|

∑

p∈Mi

|DM (p)−DB(p)|, 0



 ,

(2)

where Mi is the set of building-labeled pixels in the pro-

posed mask, DM (p) is the distance of pixel p from the

mask’s building boundary, and DB(p) is the distance to the

BPSH zero-level set. In our experiments, we use λ = 0.1.

By design, the boundary-agreement term in Si promotes

correctly proposed smaller buildings that overlap with other

incorrect larger proposals, since these smaller buildings are

likely to have higher conformity to the BPSH zero-level set.

Based on these scores, we run non-maximum suppres-

sion (NMS), removing the proposals that overlap other,

higher-scored proposals. This NMS retains the buildings

that have high prediction confidence and higher conformity

to the predicted BPSH. However, while NMS can correctly

suppress low-score proposals that overlap with higher-

scored correct proposals, the situation can arise where an

incorrect proposal overlaps with a lower-scored correct one,

but both are removed by NMS. Thus, after NMS, we add

back non-overlapping suppressed proposals where both the

building outline detector and the BPSH predict a building

with high confidence (see supplementary). We find that this

step greatly improves the recall of our final detection.

3.2. Building height generation

The second sub-problem we tackle is generating the

height of each detected building (Task 3). Our framework

predicts the per-pixel height from the ground, known as the

normalized digital surface model (nDSM). The nDSM sub-

network is similar to the BPSH sub-network and utilizes

the same shared feature representation obtained by the three

convolutions applied after layer P2. We then use two task-

specific 1×1 convolutions to generate the height prediction.

3.3. Semantic segmentation

We learn a pixel-wise semantic segmentation for the

classes of building, ground, water, high vegetation and low

vegetation. As before, two 1 × 1 convolutions are applied

on the shared feature representation to generate the pixel-

wise joint class probability distribution. We show that train-

ing for semantic segmentation (when such data is available)

along with the other three tasks improves the building out-

line detection; see Sec. 5.2 for an ablation study.

3.4. Multifeature learning

In the original Mask R-CNN with a FPN backend [33],

layers P6 down to P2 (Fig. 2) are used to generate the re-

gion proposals, and the feature maps of P5 down to P2
are used to generate the second-stage predictions of classi-

fication, bounding-box regression, and mask prediction at

different scales. Instead of using these layers to generate

proposals directly, we combine the high-level features from

the three other tasks just before the final prediction layers,

and fuse them together at different scales (P2 through P6)

to generate P2′, P3′, P4′, P5′, and P6′ (Fig. 2). These

augmented layers carry rich contextual information about

the scene, as well as features from the semantic segmenta-

tion, nDSM, and BPSH predictions at different scales. The

region proposal network and ROI-specific network in turn

can utilize this to generate richer sets of building proposals.

3.5. Instancelevel reasoning to improve BPSH

The building outline prediction task is modeled as an ob-

ject instance detection problem, utilizing instance-level rea-

soning. On the other hand, the BPSH seeks to sharply learn

the building boundaries in a pixel-level reasoning fashion.

To boost the final boundary prediction, we propose to fuse

the two predicted modalities together in a post-processing

stage to induce instance-level reasoning explicitly into the

learned BPSH. We use a small skip-connected encoder-

decoder network that takes as input the rasterized predic-

tions of building outlines (Task 1), predicted BPSH (Task

2), and original image. The network outputs a refined BPSH

that is improved by the context of the rasterized mask. We

apply the final predicted BPSH for the overlap refinement

task (Sec. 3.1.3) to generate our final set of building predic-

tions. This gives a slight, but notable, increase to the final

accuracy. Note that this second network is trained sepa-

rately from our primary multi-task, multi-feature network.

4. Network Training

We use ground-truth building masks, BPSH maps de-

fined from these masks, ground-truth nDSMs, and ground-

truth semantic label maps to train our network. When

nDSMs and/or semantic labels are not available (i.e. in the

SpaceNet dataset), we train only using building masks and

BPSH maps. We next detail our loss functions for training.

Overall building estimation loss Our multi-task frame-

work optimizes our four tasks together in an end-to-end

fashion. The overall loss function is a combination of the

loss functions of individual tasks:

Loss = α1Loutline+α2Lbpsh+α3Lndsm+α4Lsem. (3)

We use (α1, α2, α3, α4) = (1, 2, 3, 2.5), which were exper-

imentally chosen by analyzing the training loss to approxi-

mately balance the overall loss contributions of the tasks.
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Building outline detection loss Loutline penalizes the

error in our initial 2D building outline proposal. We use the

same loss as Mask R-CNN [25] that considers the region

proposal loss and ROI-specific classification, regression,

and mask prediction loss. For ROI Ri, loss LRi

detection =

LRi

cls+LRi

box+LRi

mask. Here, Lcls is the building-label cross-

entropy classification loss, Lbox penalizes the axis-aligned

bounding box using a smooth L1 loss, and Lmask is the

mean binary cross-entropy loss over the (28 × 28) predic-

tion window. The latter two losses are defined for candidate

ROIs that are assigned a ground-truth building. The final

loss, Loutline, combines Ldetection and the region-proposal

loss [44]. We use “approximate” joint training [44], where

the partial gradient of the ROIAlign layer is computed while

ignoring the gradient w.r.t. ROI coordinates.

BPSH prediction loss Lbpsh robustly penalizes the

BPSH error Ebpsh(p) = BPSHgt(p) − BPSHpred(p) at

each output pixel p:

Lbpsh =
1

N

∑

p

Wbpsh(p) · SmoothL1 (Ebpsh(p)) . (4)

Here, N is the number of pixels in the output image, and

Wbpsh is a set of per-pixel weights. Each weight is a com-

bination of two different weighting functions:

W
(1)
bpsh(p) = exp

(

−
BPSHgt(p)

2

2σ2
bpsh

)

, (5)

W
(2)
bpsh(p) = exp

(

−
(d1(p) + d2(p))

2

2σ2
unet

)

. (6)

The first weighting function gives higher emphasis on the

zero level set of the BPSH. We use σbpsh = 2 for our ex-

periments. The higher the value of σbpsh, the lower the em-

phasis on the zero level set. The second weighting func-

tion is inspired by U-Net [45]. Here, d1(p) denotes the dis-

tance (in pixels, in the input image at its original resolution)

to the nearest ground-truth building boundary, and d2(p)
is the distance to the border of the second-nearest build-

ing’s boundary. We set σunet = 5. U-Net weighting puts

high emphasis on the pixels that are between two building

boundaries close to each other. The final BPSH weight is

Wbpsh(p) = W
(1)
bpsh(p) + αbpsh ·W

(2)
bpsh(p). (7)

Following [45], we set αbpsh = 10 for our experiments.

This weighting forces the network to learn the building

boundaries with high importance, while also emphasizing

the pixels that are between two nearby buildings. Our BPSH

refinement network (Sec. 3.5) is also trained using this loss.

nDSM prediction loss Lndsm penalizes the height pre-

diction error Endsm(p) = NDSMgt(p)−NDSMpred(p):

Lndsm =
1

N

∑

p

Wndsm(p) · L′(Endsm(p)). (8)

Wndsm(p) prioritizes building height prediction by up-

weighting building pixels. We use a heuristic weight of 5

for ground-truth building pixels and 1 for all other pixels.

For L′, we initially use the BerHu loss [32] for fast conver-

gence, and then switch to the smooth L1 loss for fine-tuning.

Semantic segmentation loss Lsem evaluates the average

softmax cross-entropy loss for the pixel-wise class predic-

tions. Due to class imbalance for the different semantic la-

bels, the loss at each pixel is weighted by the label’s inverse

frequency among all pixels in the training set.

5. Experiments

We evaluate our approach on three large-scale satellite

datasets: the 2019 IEEE GRSS Data Fusion Contest dataset

(GRSS DFC 2019) [11, 1, 49] containing images, seman-

tic segmentations, and nDSMs (train/test split of 92/16 re-

gions), USSOCOM Urban 3D dataset [23] containing im-

ages and nDSMs (130/44 regions), and the SpaceNet Build-

ings Dataset v2 [5] containing building outlines (7128/1254

images). We also evaluate on two aerial imagery datasets

containing images, semantic segmentation, and nDSMs:

Potsdam [2] (10/7 regions) and Vaihingen [3] (11/5 re-

gions). A more detailed discussion of these datasets and

train-test splits can be found in our supplementary material.

5.1. Evaluation

Table 1 shows results for the SpaceNet and

GRSS DFC 2019 datasets, comparing our proposed

method versus the state-of-the-art methods of Wang and

Frahm [55], Mou and Zhu [38], and Srivastava et al. [50],

each of which performs a subset of our four network tasks.

We use the GRSS DFC 2019 dataset to evaluate height,

2D building outlines, and semantic labels. We evaluate

2D building outlines for the SpaceNet dataset, which does

not have height or semantic data. For 2D building outline

evaluation, we compute the F1 score at an intersection over

union (IoU) threshold of 0.5. Building height errors are

evaluated using mean absolute error (MAE) in meters and

root-mean-squared error (RMSE) in meters; non-building

ground-truth pixels are not considered in this metric. In

addition to evaluating pixel-wise height regression, we also

evaluate median building height regression to account for

small misalignments between the overhead imagery and

ground-truth labels. Semantic segmentation is evaluated

using F1 for the dominant classes of building, ground,

and vegetation. In all cases, we demonstrate that our pro-

posed learning framework leads to better accuracy for 2D

building outline detection, height regression, and semantic

segmentation, often with substantial gains over the state of

the art. See Fig. 4 and our supplementary material for a

qualitative comparison of the different methods.

Wang and Frahm’s [55] method predicts building out-

lines and heights according to cuboid models. However,
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SpaceNet GRSS DFC 2019

Bldg. Outline Bldg. Outline Median Height Pixelwise Height Semantic Segmentation (F1)

Method F1 F1 MAE RMSE MAE RMSE Building Ground Tree

Ours 68.87 68.34 1.85 2.79 3.34 5.02 94.2 95.2 81.0

Wang & Frahm [55] 61.60 57.86 1.89 2.94 - - - - -

Mou & Zhu [38] - - 2.26 3.19 3.62 5.40 - - -

Srivastava et al. [50] - - 2.45 3.59 3.74 5.85 76.8 92.6 76.6

Table 1: Our method achieves higher F1 scores for 2D building outline detection in single-view satellite image datasets

versus state-of-the-art methods, indicating its superior performance. We also achieve lower MAE and RMSE in median and

pixelwise building height prediction, and we show superior performance in class-wise F1 scores for semantic segmentation.

Building median height is evaluated to account for small misalignments between the images and ground-truth labels.

Outline
Median

Height

Pixelwise

Height

Method F1 MAE RMSE MAE RMSE

Ours 82.89 1.05 2.25 2.34 6.15

[55] 69.98 1.06 2.35 - -

[38] - 1.05 2.24 2.35 6.62

[50] - 1.31 2.64 2.90 7.70

Table 2: Results on the Urban 3D dataset. Our method

achieves the best performance in building outline detection

and comparable performance in the height prediction.

SpaceNet GRSS DFC 2019

Outline F1 Outline F1

MRCNN 65.0 63.3

+ TSDF 65.6 62.7

+ BPSH 66.4 64.3

+ Sem. Seg. - 65.1

+ nDSM - 66.9

+ Multi-feat. - 67.5

Table 3: Ablative results for our multi-task method, with

each row adding an additional network component to the

previous row. “+ TSDF” is a comparison to “+ BPSH”. The

“Mask R-CNN” result does not include overlap refinement.

we found that this approach did not generalize well in our

datasets, since many of the buildings do not have a rect-

angular footprint as required by their method, leading to

poor detections. To improve their method’s competitive per-

formance, we removed the building orientation regression

output by their approach. We also changed their detection

method to Faster R-CNN [44] with ROIAlign and FPN, giv-

ing it a more competitive performance than SSD [34]. Ta-

bles 2 and 4 demonstrate the performance of our proposed

model against these methods on the Urban 3D dataset and

the Potsdam and Vaihingen datasets, respectively. In all

cases, we obtain building reconstruction with higher outline

detection and height prediction accuracy. Our auxiliary task

compares favorably to the state-of-the-art semantic segmen-

tation results on the Potsdam and Vaihingen datasets. We

especially demonstrate the superior performance in the F1

score for building detection against [55].

3D Modeling. We generate 3D models using the ex-

tracted building outlines and the median nDSM height per

building. Fig. 4 shows these models for various inputs. Ad-

ditional results can be found in our supplementary material.

5.2. Ablation

To evaluate the overall effectiveness of our framework,

we perform an ablation analysis of our network with differ-

ent sub-tasks activated. Table 3 shows these results, start-

ing from a baseline Mask R-CNN building detection net-

work and successively adding BPSH regression, semantic

segmentation, height regression, and our expanded multi-

feature architecture. It can be observed that as new tasks are

added to the multitasking framework, the final building out-

line detection accuracy consistently improves. We observe

the best performance using the multi-feature architecture,

which supports our hypothesis that the features related to

semantic segmentation, height, and BPSH prediction at dif-

ferent scales provide a richer set of features for the building

outline proposal task.

Table 3 (second row) shows the result of learning trun-

cated signed distance function (TSDF) instead of the BPSH.

We used a TSDF cutoff of 10 px, linearly scaled to the range

[-1, 1]. We found the BPSH to outperform the TSDF when

trained for a similar number of epochs. We hypothesize

that this is due to the ternary behavior of the BPSH: cost in

misidentifying a building boundary is higher for the BPSH

than the TSDF, and thus the TSDF network is not inclined to

converge as fast to finely localize building outlines. When

trained for a much longer period of time, we noticed a simi-

lar performance between these two techniques. See the sup-

plementary materials for more ablative analysis.

6. Conclusion

We presented a multi-task, multi-feature learning formu-

lation for 3D building modeling from a single overhead im-

age. Unlike the existing multi-tasking-learning-based for-

mulations for building footprint detection, we additionally

utilize scene geometry and semantics learning to robustly
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Bldg. Outline Median Height Pixelwise Height Semantic Segmentation (F1)

Dataset Method F1 MAE RMSE MAE RMSE Building Impervious Tree

Ours 71.98 1.86 2.75 2.55 3.73 97.31 92.09 80.36

Wang & Frahm [55] 57.97 1.96 2.88 - - - - -

Potsdam Mou & Zhu [38] - 2.57 3.48 3.32 4.26 - - -

Srivastava et al. [50] - 2.63 3.59 3.6 4.67 93.93 87.27 76.16

Mou et al. [37] - - - - - 94.70 91.33 83.47

Ours 72.85 1.10 1.51 1.43 1.93 97.33 92.11 87.56

Wang & Frahm [55] 60.70 1.17 1.55 - - - - -

Vaihingen Mou & Zhu [38] - 1.34 1.80 1.74 2.30 - - -

Srivastava et al. [50] - 1.57 2.05 2.02 2.59 95.56 88.98 88.09

Mou et al. [37] - - - - - 94.97 91.47 88.57

Table 4: For the Potsdam and Vaihingen aerial datasets, our method achieves state-of-the-art performance in building de-

tection and height regression. We also demonstrate that the auxiliary semantic segmentation task learned by our method has

competitive performance for different semantic object categories, and much superior performance for building segmentation.

Image Wang and Frahm [55] Srivastava et al. [50] Our Mask Ground-truth Mask Our 3D Model

Figure 4: Comparison of building mask predictions for [55], [50], and our method. Right: Our 3D reconstruction.

detect building footprints. Our multi-feature formulation

demonstrates that high-level features from these learned

tasks provide rich information to the detector, improving

the detection performance. Our boundary-aware approach

to BPSH prediction, as well as our overlap and BPSH re-

finement techniques, also boost performance substantially.

Several avenues of future work arise from the method

presented here. The BPSH with its ternary structure has

potential use in general applications that require accu-

rate boundary prediction. Our approach to overlap refine-

ment can also be extended in other detection modalities

where targets should not overlap each other, such as over-

head crowd counting and clustered object detection. Fi-

nally, we anticipate that mixed object-detection and 3D-

reconstruction frameworks will continue to show mutual

benefits, especially for single-view reconstruction tasks.
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otr Bilinski. Multi3net: Segmenting flooded buildings via

fusion of multiresolution, multisensor, and multitemporal

satellite imagery. CoRR, abs/1812.01756, 2018. 2

[48] Ewelina Rupnik, Marc Pierrot-Deseilligny, and Arthur De-

lorme. 3D reconstruction from multi-view VHR-satellite im-

ages in MicMac. ISPRS Journal of Photogrammetry and Re-

mote Sensing, 139:201–211, 2018. 2

[49] Michael Schmitt, Lloyd Haydn Hughes, Chunping Qiu, and

Xiao Xiang Zhu. Sen12ms–a curated dataset of georefer-

enced multi-spectral sentinel-1/2 imagery for deep learning

and data fusion. arXiv preprint arXiv:1906.07789, 2019. 6

[50] Shivangi Srivastava, Michele Volpi, and Devis Tuia. Joint

height estimation and semantic labeling of monocular aerial

images with cnns. In 2017 IEEE International Geoscience

and Remote Sensing Symposium (IGARSS), pages 5173–

5176. IEEE, 2017. 2, 3, 6, 7, 8

[51] Tao Sun, Zehui Chen, Wenxiang Yang, and Yin Wang.

Stacked u-nets with multi-output for road extraction. In

CVPR Workshops, pages 202–206, 2018. 3

[52] C Vincent Tao and Yong Hu. 3D reconstruction meth-

ods. Photogrammetric Engineering & Remote Sensing,

68(7):705–714, 2002. 2

[53] Vivek Verma, Rakesh Kumar, and Stephen Hsu. 3d building

detection and modeling from aerial lidar data. In 2006 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR’06), volume 2, pages 2213–2220.

IEEE, 2006. 1

[54] Ke Wang and Jan-Michael Frahm. Fast and accurate satellite

multi-view stereo using edge-aware interpolation. In 2017

International Conference on 3D Vision (3DV), pages 365–

373. IEEE, 2017. 2

450



[55] Ke Wang and Jan-Michael Frahm. Single view parametric

building reconstruction from satellite imagery. In 2017 In-

ternational Conference on 3D Vision (3DV), pages 603–611.

IEEE, 2017. 2, 6, 7, 8

[56] Ke Wang, Craig Stutts, Enrique Dunn, and Jan-Michael

Frahm. Efficient joint stereo estimation and land usage clas-

sification for multiview satellite data. In 2016 IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

pages 1–9. IEEE, 2016. 2

[57] Bin Wu, Xian Sun, Qichang Wu, Menglong Yan, Hongqi

Wang, and Kun Fu. Building reconstruction from high-

resolution multiview aerial imagery. IEEE Geoscience and

Remote Sensing Letters, 12(4):855–859, 2014. 2

[58] Xiuchuan Xie, Tao Yang, Jing Li, Qiang Ren, and Yanning

Zhang. Fast and seamless large-scale aerial 3d reconstruction

using graph framework. In Proceedings of the 2018 Interna-

tional Conference on Image and Graphics Processing, pages

126–130. ACM, 2018. 2

[59] Junho Yim, Heechul Jung, ByungIn Yoo, Changkyu Choi,

Dusik Park, and Junmo Kim. Rotating your face using multi-

task deep neural network. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

676–684, 2015. 3

[60] Enliang Zheng, Ke Wang, Enrique Dunn, and Jan-Michael

Frahm. Minimal solvers for 3d geometry from satellite im-

agery. In Proceedings of the IEEE International Conference

on Computer Vision, pages 738–746, 2015. 2

451


