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Abstract

Weakly supervised object localization (WSOL) aims to

localize object with only weak supervision like image-level

labels. However, a long-standing problem for available

techniques based on the classification network is that they

often result in highlighting the most discriminative parts

rather than the entire extent of object. Nevertheless, trying

to explore the integral extent of the object could degrade

the performance of image classification on the contrary. To

remedy this, we propose a simple yet powerful approach

by introducing a novel adversarial erasing technique, eras-

ing integrated learning (EIL). By integrating discriminative

region mining and adversarial erasing in a single forward-

backward propagation in a vanilla CNN, the proposed EIL

explores the high response class-specific area and the less

discriminative region simultaneously, thus could maintain

high performance in classification and jointly discover the

full extent of the object. Furthermore, we apply multiple

EIL (MEIL) modules at different levels of the network in a

sequential manner, which for the first time integrates seman-

tic features of multiple levels and multiple scales through

adversarial erasing learning. In particular, the proposed

EIL and advanced MEIL both achieve a new state-of-the-art

performance in CUB-200-2011 and ILSVRC 2016 bench-

mark, making significant improvement in localization while

advancing high performance in image classification.

1. Introduction

Weakly Supervised Learning (WSL) aims to construct

predictive models by learning only with weak supervision

[42] like incomplete, coarse, or inaccurate labels. In the

field of computer vision, as WSL doesn’t require expen-

sive manpower and efforts to obtain pixel-level annotations,

weakly supervised object detection (WSOD) [41, 6, 5, 4,

34, 20, 12, 26, 23, 25, 32, 38, 1, 29, 15, 37] and segmenta-

tion [14, 10, 16, 25, 24, 18, 7] are attracting more and more
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Figure 1: VGG16-EIL with erasing at pool4. Visualization

of different layers as training proceeds. pool4 to conv53

is visualized using channel-wise average map. The left

column of each box is visualization of different layers in

unerased branch Fu during training, while the right for the

erased branch F e.

attention.

Similar to WSOD, weakly supervised object localiza-

tion (WSOL) also aims to localize object using coarse la-

bels but for only one class. Recently, various methods

[41, 43, 28, 13, 40, 39, 2] have been developed to handle

this challenging task. Zhou et al. [41] proposed to replace

top layers with Global Average Pooling[19] (GAP) in Con-

volutional Neural Network (CNN) trained for classification,

making it feasible to mine the spatial location of the object.

Although the modified CNN is able to generate Class Acti-
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Figure 2: A comprehensive comparison of several popular adversarial erasing approaches.

vation Map (CAM) to locate the object, it always tends to

mine the most discriminative class-specific regions instead

of the full extent of object, resulting in the limited perfor-

mance in object localization. To address this critical issue,

adversarial erasing [35, 13, 33, 39, 8, 17, 2, 11] has emerged

as a very popular approach to capture the entire object. The

key idea is that, without the guidance of the most discrimi-

native class-specific area, the network will be forced to clas-

sify the object by exploring more insignificant areas. On

this basis, most of these techniques can be roughly divided

into several classical types, as shown in Fig. 2.

As shown in Fig. 2a, a natural and straightforward

idea [13, 33, 35, 17, 9] to train a convolutional network

may firstly mark the most discriminative regions, then per-

form the erasing operation and retrain the entire network.

Specially, [35] further introduces an iterative erasing ap-

proach. However, due to expensive computation over-

heads for step-wise training, multi-branch based erasing ap-

proaches [8, 39] introduce new branches into the network to

perform erasing at the cost of extra parameters, as shown in

Fig. 2b.

Most recently, [2] presents attention based dropout layer

(ADL) shown in Fig. 2c, which stochastically erases the

most discriminative regions in forward-propagation, saving

quite a few computation and parameter overheads. How-

ever, ADL is still limited by classification degradation

caused by the random dropout of informative regions.

To solve the aforementioned issues, we propose a brand

new adversarial erasing method named Erasing Integrated

Learning (EIL) . The proposed EIL roughly depicted in

Fig. 2d is a simple yet more effective erasing solution. For

EIL module, we integrate discriminative region mining and

adversarial erasing in a single forward-backward propaga-

tion, instead of step-wise erasing requiring huge computa-

tion overheads. Different from typical multi-branch erasing

approaches, adversarial erasing is integrated into the vanilla

CNN directly without any additional parameters through

sharing the weights after erasing. In this way, the proposed

network can explore the integral extent of objects via the

unerased data stream and the erased data stream simultane-

ously.

Moreover, we have observed a common limitation of ex-

isting erasing approaches that all of them only proceed ad-

versarial erasing at particular positions like the input im-

age [35, 17] or the feature map [8, 39, 2]. Such treatments

can lead adversarial learning to only focus on mining visual

patterns at a specific feature level. Thus, we push further

to come up with an advanced Multi-EIL (MEIL) strategy.

By plugging multiple EIL modules into different layers of

CNN in a sequential manner, MEIL adversarially integrates

semantic features from multi-level of the network and mines

multi-scale informative regions of the object of interest. The

proposed EIL and the advanced MEIL both achieve new

state-of-the-art performance both on CUB-200-2011 [31]

and ILSVRC [22] benchmark, improve the localization ac-

curacy by a significant margin while maintain remarkable

classification accuracy.

2. Related work

Erasing approach for weakly supervised learning.

Step-wise erasing approaches [13, 33, 35, 17] roughly like

Fig. 2a. usually perform erasing in additional training step.

For example, Li et al. [17] propose guided attention in-

ference networks (GAIN) implemented by introducing two

streams. At the first stream, GAIN aims to find out discrim-

inative regions and generate a trainable attention map as the

erasing mask. Conversely, the second training stream is en-

forcing the network not to recognize the erased area, hence
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the gradients will supervise the trained attention to cover the

full object. [33] also adopts a two phase training strategy.

They pretrain a classification network first and then erase

the most discriminative regions to retrain the network, forc-

ing the network to focus on the next most important part.

[35] further introduces an iterative erasing approach, which

repeatedly erases the most discriminative region in given

image and finally combines attention maps in these steps to

get a more complete attention map for the object.

For less computation overhead, multi-branch erasing ap-

proaches [8, 39] like Fig. 2b replace extra training steps

with extra parameters for adversarial erasing. [39] leverages

a dual-branch network, adversarial complementary learning

(ACoL). ACoL applies two parallel classifiers on top to train

the network, one is fed with the unerased feature map di-

rectly from the shared backbone and generates the erasing

mask, while the other one is fed with the erased feature map

by this mask. Further on, a three-branch SeeNet [8] pro-

posed by Hou et al., introduces two self-erasing strategies

both for the object and background cues, which can prevent

the attention from transferring to background area thus ex-

cavate the object more accurately.

To further reduce computation and parameter overheads,

attention-based dropout layer (ADL) [2] has been proposed,

a lightweight module as shown in Fig. 2c. When ADL is

plugged into the network, it stochastically choose to erase

the most discriminative region or highlight the informative

region in the feature map. But the random erasing would

somehow drop the important information, leading to a per-

formance loss in classification.

Other approaches for Weakly Supervised Object Lo-

calization (WSOL). Zhou et al. [41] employs CAM to

identify the location of object of interest in an end-to-end

manner through the global average pooling [19] module.

Hide-and-Seek (HaS) [28] randomly hides patches of the

given image to force the network to seek more relative part

of the object, which can be also considered as a way of data

augmentation. The soft proposal network [43] jointly op-

timizes the network parameters with the object proposal.

Wei et al. [35] exploit segmentation confidence maps to

discover tight object bounding boxes. [35, 39, 17, 2] all

adopt the erasing mechanism to capture the integral extent

of object, which have been discussed in the previous sec-

tion. Self-produced guidance [40] (SPG) approach utilizes

the supervisions from high confident regions and drives the

attention to gradually spread to the whole object. [21] has

proposed an advanced localization map generation strategy

that combines the gradients of different convolutional lay-

ers to generate the localization map in a multi-scale manner.

Most recently, Xue et al. [36] design a divergent activation

(DANet) network. With the help of stronger supervision

about objects’ category hierarchy, DANet leverages cross-

category semantic discrepancy and spatial discrepancy to

learn complementary and discriminative visual patterns.

3. Erasing Integrated Learning

Erasing integrated learning aims to provide a more el-

egant and concise erasing solution for weakly supervised

tasks, integrating adversarial erasing strategy into CNN di-

rectly without additional steps or classifiers. For this, we

come up with EIL to integrate the unerased data stream

and the erased data stream from the common backbone into

a dual-branch network with shared weights. Furthermore,

we propose Multi-EIL to introduce different scale seman-

tic features into the network which further improves the lo-

calization performance through multiple adversarial erasing

learning procedures.

3.1. Integrated with erasing

In this section, we give the detail of our proposed EIL,

as shown in Fig. 3. In general, EIL is added between

convolutional blocks of CNN in a sequential way. During

training, taking the flow-in feature map as input, we sim-

ply follow [2] to generate the erasing mask, and remove the

most discriminative regions on the feature map according

to this mask. Then we feed both erased and unerased fea-

ture map into the next convolutional block, which will cre-

ate two data flows. As such treatment can also be regarded

as a dual-branch network with shared weights, it will pro-

duce two classification losses for the erased feature map and

the unerased one, respectively. During testing, EIL is de-

activated, thus the trained model is identical to the vanilla

classification network. Through the unerased loss, the net-

work can learn to classify the object by means of the most

discriminative class-specific region. At the mean time, the

erased loss drives the network to focus on the less discrim-

inative part to explore the complementary object region, as

shown in Fig. 1.

Detailed description is presented in Algorithm 1 and

Fig. 3. Formally, we denote the training image set as

I = {{Ii, yi}}
N
i=1

, where yi = {1, 2, ..., C} is the label

of the image Ii, C is total classes of images and N is the

amount of images. Let θ, lowercase f , and uppercase F de-

note network parameters, functions, and feature maps, re-

spectively.

The network f1(I, θ1) before EIL is applied can pro-

duce the original unerased feature map, which is denoted as

Fu ← f1(Ii, θ
1) and Fu ∈ RK×H×W , where K stands

for the number of channels, W and H for the width and

height, respectively. We make use of Fu as self-attention

to generate the erasing mask. Specifically, we compress Fu

into an average map Mavg ∈ R
1×H×W through channel-

wise average pooling. Then we apply a hard threshold γ

on Mavg to produce the erasing mask Me ∈ R
1×H×W , in

which the spatial locations of those pixels having intensity

greater than γ are set to zero. We perform the erasing opera-
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Figure 3: Overview of the proposed module EIL. When EIL is inserted at a feature map, an average map Mavg is first

produced by channel-wise average pooling. With thresholding Mavg to obtain an erasing mask Me, the erased feature map

F e by Me and the unerased Fu are fed into the network again under a shared dual-branch treatment.

tion by doing spatial-wise multiplication between unerased

feature map Fu and mask Me, to produce the erased feature

map F e ∈ RK×H×W .

Afterwards, both the unerased feature map Fu and the

erased counterpart F e are fed into the latter part of the

network f2(F, θ2) together. As these two data streams

are processed by the same function f2 and parameters θ2,

such structure can be regarded as a dual-branch network of

shared weights. More specifically, f2(F, θ2) produces class

activation maps (CAM) [41], applies global average pooling

[19] on CAM and utilizes a fully connected layer followed

by softmax operation to get the prediction score p for each

branch, with pu and pe for the erased and the unerased, re-

spectively. In the end, the classification losses from the two

branches will be added up to calculate the total loss L. Note

that we also introduce a loss weighting hyperparameter σ to

control the relative importance between the unerased loss

Lu and the erased loss Le.

3.2. Jointly mining the whole object

Firstly, considering the unerased loss Lu and the corre-

sponding branch only, it is actually identical to a typical

CNN without any difference. So this branch will surely

learn to do as a network trained for classification supposed

to do: highlight those class-specific discriminative regions

for better object classification. In this way, the network pa-

rameter θ1 can learn the ability to classify the object as well

as the vanilla classification model. However, solely rely

on the pure guidance of Lu, CAM usually cover the small

and sparse regions of object of interest, since Lu is over-

Algorithm 1: Training algorithm for EIL

Input: Input image I = {{Ii, yi}}
N
i=1

from C

classes, erasing threshold γ, weighting

hyperparameter σ

1 while training is not convergent do

2 Calculate the feature map Fu ← f1(Ii, θ
1) ;

3 Calculate the average map Mavg =
∑

K
i=1

Fu
i

K
;

4 Calculate the erasing mask

Mei,j =

{

0, if Mavgi,j ≥ γ

1, else
;

5 Get the erased feature map F e = Fu ⊗Me ;

6 Calculate prediction of F e: pe ← f2(F e, θ2) ;

7 Calculate prediction of Fu: pu ← f2(Fu, θ2) ;

8 Obtain erased loss: Le = −
1

C

∑

c yi,clog(p
e
c) ;

9 Obtain unerased loss:Lu = − 1

C

∑

c yi,clog(p
u
c );

10 Calculate the total loss: L = Lu + σLe ;

11 Back-propagate and update parameters θ1, θ2 ;

12 end

whelmed by the most discriminative parts. As shown in the

CAM map of Fig. 1, the network only focus on the most

discriminative regions like the head of the bird at the initial

stage.

Thus we integrate adversarial erasing to the network,

through which the erased loss Le can make a role play for

the dense-pixel prediction task. With the prominent cross-

class activations in F e erased, the latter part of the network
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f2(F e, θ2) produces the loss from the activation units from

the less discriminative area. Consequently, when the gradi-

ent Ge from the erased loss Le flows back through θ1 and

θ2, the neurons in them which are spatially corresponded

to the distribution of the less discriminative regions in the

object are updated with emphasis.

Once the erased loss Le is optimized, the network θ1, θ2

can learn to mine the less discriminative and category inde-

pendent visual patterns. As we have illustrated, these two

data streams are exactly flowing in the shared network θ2

based on the same backbone θ1. So Lu and Le are updating

the same parameters θ1, θ2 but focusing on different specific

units. Hence while the units for the most discriminative part

are also fine tuned by Lu, EIL can thus localize full object

extent holistically through combining complementary and

discriminative object patterns at the same time.

GradCAM[23] shown in Fig. 1 provides the visualiza-

tion evidence for our explanation, shown in Fig. 1. It can

be observed that the upcoming gradient Ge from F e gradu-

ally leads the unerased branch Fu to cover the full extent of

the object including the less discriminative regions, like the

torso of the bird.

⊖

⊖

sharedshared

…

…

…

Figure 4: The structure of proposed MEIL I.

3.3. Multiple EIL for multiscale features

While existing erasing approaches all choose to erase

in a single location, we propose an advanced multiple EIL

(MEIL) modules to perform erasing at multiple locations,

through which multi-scale of visual patters can be learned

adversarially and simultaneously.

A typical structure of MEIL, MEIL I, is shown in Fig.

4. Once after a single EIL is inserted into the vanilla CNN,

another EIL is appended to the unerased stream. As a re-

sult, the network will produce three losses from the shared

branches, which can lead the network to explore the object

of interest from multi-level features, not just the finest dis-

criminative features for classification.

erased pool3 erased pool4

unerased pool3 unerased pool4input image

localization map

Figure 5: A visualization of VGG-MEIL with two EIL

modules inserted in pool3 and pool4. Average maps com-

parison of feature maps from different levels before and af-

ter erasing.

3.4. Discussion

Relation between the erased data stream and the

unerased. As these two data streams are flowing forward

on the shared θ2 and backward on the same entire network

θ1, θ2, one might worry that gradients of the two streams,

Ge and Gu would make conflicts and counteract each other.

But our experiment results do not support such hypothesis.

As we have discussed, we believe that Ge and Gu are actu-

ally paying attention to different units in the network, while

the former for the most discriminative part, and the latter

for the less discriminative part. The visualization of EIL

shown in Fig. 1 and 6 also supports our explanation. We

can verify that, those high response area discovered in the

raw CAM model, a classical CNN for classification, also

keeps showing up in our EIL model. It means that EIL also

learns the parameters to explore the most discriminative re-

gion (e.g. the head of birds) and retain the ability to well

classify the object. Beyond that, we also notice that com-

pared with CAM, the less discriminative region (e.g. the

body of birds) has been given the equal highlighting treat-

ment as well as the most significant part shown in CAM,

which again proves our hypothesis. In other words, these

areas of interest that are usually ignored in CAM are mag-

nified in EIL.

Relation with existing erasing techniques for WSOL.

Here we give a brief comparison with other typical ad-

versarial erasing approaches similar to our EIL in WSOL

tasks. For ADL[2] shown in Fig. 2c, which stochas-

tically erases the most discriminative regions in a single

forward-propagation, the random dropout of informative re-
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gions could degrade its performance in classification. On

the other side, our EIL also inherits the advantages of ADL.

These include the flexibility to insert at arbitrary convolu-

tional block, and the lightness of not requiring additional

parameters. ACol[39] shown in Fig. 2b process two source

with separate branches. The reason why our EIL works

better may include three parts: 1) ACoL applies different

erasing mask generation techniques from ours and ADL.

They extract it at the top layer and resample it to perform

erasing at the middle layer, where the resampling opera-

tion may blur dense-pixel information if the network hasn’t

learned the ground-truth class properly at that moment. 2)

ACoL only shares parameters at the bottom layers of the

network, from which the extracted low-level features like

edges or texture is general and class-invariant. Conse-

quently, the losses from two separate branches may not help

the backbone to learn class-specific localization effectively.

3) ACoL fuses the CAM maps of two separate branches to

produce the final localization map, which may be inconsis-

tent as they might overwhelm each other.

4. Experiments

4.1. Experimental Setup

Datasets. We evaluate the proposed EIL on two pop-

ular benchmarks CUB-200-2011 [31] and ILSVRC 2016

[3, 22], which are all only annotated with image-level la-

bels for training. There are 5,994 images for training and

5,794 for testing in CUB-200-2011 from 200 bird species.

For ILSVRC 2016, there are approximately 1.3 million im-

ages in the training set and 50,000 images in the validation

set come from 1,000 different classes.

Metrics. Following the setting of [22, 2], we adopt the

Top-1 classification accuracy (Top-1 Clas), Top-1 localiza-

tion accuracy (Top-1 Loc) and localization accuracy with

known ground-truth class (GT Loc) as our evaluation met-

rics. Top-1 Clas is the ratio of correct classification pre-

diction. Top-1 Loc is the fraction of images with correct

prediction of classification and more than 50% intersection

over union (IoU) to the ground-truth bounding box. GT Loc

is the accuracy that considering localization only regardless

of classification result compared to Top-1 Loc.

Implementation details. We build the proposed EIL

module upon two popular CNNs including VGGnet [27]

and Google InceptionV3 [30]. Following the training set-

tings of previous work [41, 40], we remove the top pool-

ing layer and two fully connected layers for VGG16, and

the layers after the second inception block for InceptionV3.

Then we add two (one for VGG16) convolutional layers of

kernel size 3×3, stride 1, pad 1 with 1024 filters a fully con-

nected layer and finally a GAP layer on the top. Both net-

works are loaded with pretrained weights of ILSVRC. We

insert the proposed EIL after the pool4 layer for VGG16 and

the first inception block for InceptionV3. We adopt SGD

as optimizer with momentum = 0.9, weight decay =
0.0005. We set the initial learning rate as 0.001, and it is

decreased by a factor of 10 at the decay points. The input

images for training are resized to 256× 256, then randomly

cropped to 224 × 224 and flipped horizontally. We adjust

the erasing threshold γ and the loss weighting parameter σ

to fine tune the network.

For both backbones, we set γ = 0.7 and σ = 2 for a

single EIL module, while optimizing these hyperparame-

ters for specific dataset and backbone can further improve

the performance. During testing, EIL is deactivated. For

a fair comparison, we directly follow the localization map

extraction method proposed by CAM [41].

4.2. Ablation study

We utilize the modified VGG16 as backbone on CUB-

200-2011 dataset for ablation study.

Location. Firstly, we examine the impact of where to in-

sert EIL in the network. We fix γ = 0.7, and σ = 1 and then

change the location selection of EIL, shown in Table 1. We

can find that the best localization performance is achieved

when EIL is applied in the middle of the network like pool4.

There is a gap compared to adding it to the low-level like

pool3 or the top level like conv 5-3, which is also observed

in existing works [28, 2]. We believe that this is because the

low-level activation of the network is more about common

basic features (e.g. edge, texture) in the whole image rather

than regions of the object.

At the meantime, due to the smaller resolution at the

high-level layer like conv 5-3, the larger receptive field can

lead to inexact gradients for the bottom layers after upsam-

pling, providing fuzzy guidance for dense-pixel object min-

ing. Thus the improvement of localization is also limited.

On the contrary, with the high-level layer closer to the FC

layer, the classification performance is improved compared

with other location, which can be regarded as a kind of reg-

ularization by suppressing the high response activation.

Hyperparameters. As illustrated in Algorithm 1, we

introduce a necessary threshold σ for erasing operation and

a weighting parameter γ to balance the erased loss Le and

the unerased loss Lu. We plug the EIL module right behind

pool4 suggested by above discussion and change these two

parameters respectively, as shown in Table 1. For γ, neither

too high nor too low can yield the promising localization

result. Because a low threshold could erase the activation

of the entire object turning the network attention to back-

ground, while a high threshold could not erase the highest

response area completely.

Interestingly, we find that making the erased loss Le oc-

cupy a larger weight by setting σ higher can even make

a better localization result. Our explanation is from two

parts. Firstly, as the most discriminative region is small
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Figure 6: Visualization comparison with the baseline CAM method. The groundtruth bounding boxes are in red, while the

predictions are in green. EIL is putting more attention to the object and thus providing more accurate prediction.

and sparse, Lu is overwhelmed by the activation of just a

few neurons. Instead, the less discriminative region is usu-

ally larger than the former. So neurons corresponding to

the less discriminative region (e.g. area close to the object

edges) are actually making relatively little contribution to

L. Therefore, to magnify Le several times can make these

“less discriminative” neurons get a more equal treatment in

backward-propagation. Our visualization in Fig. 6 also sup-

ports that both the most and the less discriminative regions

are getting comparable attention from the network through

applying EIL.

Location GT Loc (%) Top-1 Clas (%) Top-1 Loc (%)

N/A 55.32 71.24 44.15

conv 5-3 60.75 73.37 46.77

pool4 72.37 72.99 55.44

pool3 67.48 70.04 51.06

pool2 63.27 68.43 47.51

pool1 62.74 71.19 46.89

Table 1: The result upon the selection of location.

γ

0.5 0.7 0.9

0.5 52.57 / 67.59 53.23 / 70.61 50.72 / 71.61

σ 1 52.41 / 66.97 55.44 / 72.99 51.41 / 72.20

2 50.34 / 66.00 56.21 / 72.26 52.13 / 73.11

4 52.14 / 68.05 55.64 / 72.52 51.34 / 74.61

Table 2: The affection of hyperparameters, Top-1 Loc (%) /

Top-1 Clas (%)

Structure of MEIL. We also evaluate the performance

when multiple EIL modules are inserted in different ways.

In a case that EIL already exists in the network, one may

choose to plug another EIL whether in the unerased branch

(Fig. 4) or the erased one (Fig. 7). After trying various

combination of training settings, we observe that the effect

of MEIL II in Fig. 7 is usually worse than MEIL by a mar-

gin about 2% ∼ 5%. Because MEIL II may sometimes

erase too much regions of the object of interest on the fea-

ture map, drive the attention to background and lead to a

worse performance. Additionally, when performing erasing

again just after a few convolutional layers, the next most im-

portant part may not have been excavated yet. On the other

hand, for MEIL I shown in Fig. 4, training the network

with erased stream from multi levels can drive the network

to learn multi-scale features, as we have discussed in Sec-

tion 4.2. Also, such approach is similar to increase σ in

single EIL, which enhances the importance of erased loss

Le.

⊖

⊖

…

…

…

shared

shared

Figure 7: MEIL II, a variant of MEIL shown in Fig. 4

Next, we push further to apply MEIL I at the combina-

tion of different layers in VGG16. Results shown in Table 3
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indicates that multiple EIL modules have outperformed the

best performance of single EIL shown in Table 2. So the

employment of EIL and MEIL can be a trade-off between

training resources and testing accuracy. As the combination

of multiple EIL is numerous, we advocate that the perfor-

mance of MEIL can be further improved by setting the op-

timal localization of insertion tuning the hyperparameters

or even introducing more than two EIL modules.

Location GT-Loc Top-1 Clas Top-1 Loc

N/A 55.32 71.24 44.15

pool3+pool4 73.84 74.77 57.46

pool4+conv53 62.21 74.87 47.62

pool3+pool4+conv53 65.52 74.80 50.54

Table 3: Influence of the location selection with MEIL I.

4.3. Comparison with Stateoftheart Methods

We compare our result with other state-of-the-art tech-

niques on CUB-200-2011 and ILSVRC 2016 in Table 4 and

Table 5 respectively. From the results, we observe that our

EIL has outperformed all the existing methods on localiza-

tion accuracy.

Methods Top1-Loc(%) Top-1-Clas(%)

InceptionV3-CAM [41] 43.67 73.80

InceptionV3-SPG [40] 46.64 -

InceptionV3-ADL [2] 53.04 74.55

InceptionV3-DANet [36] 49.45 71.20

VGG-CAM [41] 44.15 71.24

VGG-ACoL [39] 45.92 71.90

VGG-ADL [2] 52.36 65.27

VGG-DANet [36] 52.52 75.40

VGG-EIL (ours) 56.21 72.26

VGG-MEIL (ours) 57.46 74.77

Table 4: Quantitative result on CUB-200-2011

On the CUB-200-2011 test set, we insert MEIL I at

pool3+pool4 of VGG16. As a result, VGG-MEIL indi-

cates 13.31% localization boost on the baseline CAM ap-

proach, which is a very impressive improvement. Com-

pared with the current state-of-the-art DANet [36], which

has introduced extra supervision about category hierarchy,

VGG-MEIL is in a narrow margin that only 0.63% lower

for classification. But for localization, it reports a signif-

icant performance gain of 4.94% over DANet. Also, even

VGG16 with single EIL can achieve 56.21% / 72.26% accu-

racy in classification and localization respectively. In con-

clusion, the proposed EIL can promote the quality of object

Methods Top1-Loc(%) Top-1-Clas(%)

VGG-CAM [41] 42.80 66.60

VGG-ACoL [39] 45.83 67.50

VGG-ADL [2] 44.92 69.48

VGG-EIL (ours) 46.27 70.48

VGG-MEIL (ours) 46.81 70.27

InceptionV3-CAM [41] 46.29 68.1

InceptionV3-HaS-32 [28] 45.47 -

InceptionV3-SPG [39] 48.60 -

InceptionV3-ADL [2] 48.71 72.83

InceptionV3-DANet [2] 47.53 72.50

InceptionV3-EIL (ours) 48.79 73.88

InceptionV3-MEIL (ours) 49.48 73.31

Table 5: Quantitative result on ILSVRC

localization by a big step while maintaining high perfor-

mance in classification.

In the ILSVRC 2016 experiments, which is a more larger

scale dataset, both EIL and MEIL achieve new state-of-the-

art performance in all the metrics upon all the backbones.

Specifically, VGG-MEIL obtains an localization accuracy

of 46.81%, 0.89% improvement compared to ACoL [39].

In addition, on the InceptionV3 backbone, EIL and MEIL

not only obtain the best localization performance, but also

improve the classification accuracy by 5.78%/5.21% over

the baseline CAM approach.

5. Conclusion

We come up with a simple yet effective adversarial eras-

ing approach, Erasing Integrated Learning (EIL), which in-

tegrates the stream of erased feature map into the classifi-

cation network. Without introducing any extra parameters

both in training and testing, this is the first time that the net-

work learns to explore the full extent of the object via con-

current data streams with and without erasing in a single

forward-backward propagation. Further on, to the best of

our knowledge, this is also the first time that multi-scale and

multi-level object features are explored through integrating

erasing based learning. In the end, the proposed EIL and

its variant Multi-EIL have achieved the new state-of-the-art

performance for weakly supervised object localization.
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