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Abstract

The difficulty of processing gigapixel whole slide images

(WSIs) in clinical microscopy has been a long-standing bar-

rier to implementing computer aided diagnostic systems.

Since modern computing resources are unable to perform

computations at this extremely large scale, current state of

the art methods utilize patch-based processing to preserve

the resolution of WSIs. However, these methods are often re-

source intensive and make significant compromises on pro-

cessing time. In this paper, we demonstrate that conven-

tional patch-based processing is redundant for certain WSI

classification tasks where high resolution is only required in

a minority of cases. This reflects what is observed in clinical

practice; where a pathologist may screen slides using a low

power objective and only switch to a high power in cases

where they are uncertain about their findings. To eliminate

these redundancies, we propose a method for the selective

use of high resolution processing based on the confidence

of predictions on downscaled WSIs — we call this the Se-

lective Objective Switch (SOS). Our method is validated on

a novel dataset of 684 Liver-Kidney-Stomach immunofluo-

rescence WSIs routinely used in the investigation of autoim-

mune liver disease. By limiting high resolution processing

to cases which cannot be classified confidently at low res-

olution, we maintain the accuracy of patch-level analysis

whilst reducing the inference time by a factor of 7.74.

1. Introduction

Patch-level image processing with convolutional neu-

ral networks (CNNs) is arguably the most widely used

method for gigapixel whole slide image (WSI) analysis

[18]. Ordinarily, processing such a large image in its to-

tality with CNNs is computationally infeasible without sig-

nificant downscaling — resulting in the loss of detailed in-

formation required for fine-grained analytical tasks. How-

ever, by processing WSIs in smaller patches, it is possible

to extract the detailed information by preserving the resolu-
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Figure 1: Schematic illustration of a WSI that includes

multi-tissue types: liver, kidney and stomach.

tion of the original gigapixel image. Thus, applications that

require fine-grained analysis of gigapixel WSIs are able to

incorporate powerful CNNs in their design.

Although there are clear advantages to high resolution

patch-level analysis [16], it is resource intensive and can

substantially increase processing time [13]. In a high

throughput laboratory, any additional per sample process-

ing time will compound, which can make it difficult to

justify the use of deep learning algorithms for WSI anal-

ysis. Hence, there is a strong motivation to identify situa-

tions where it is unnecessary to process WSIs at their max-

imum resolution. Unlike bright field microscopy, the in-

creased sensitivity of the immunofluorescence assay allows

for analysis at lower resolutions. Indirect immunofluores-

cence (IIF) microscopy on multi-tissue sections is one such

example where low resolution often provides sufficient dis-

criminatory information.

Multi-tissue IIF slides, such as the Liver-Kidney-

Stomach (LKS) slide shown in Figure 1, allow for the si-

multaneous observation of immunoreactivity across differ-

ent tissue types. Comparing observations across tissue types

is crucial to interpreting these WSIs [10]; so it is advanta-

geous to screen them at a lower magnification which allows

multiple tissues to be viewed at once. Most patterns are eas-

ily identified at these lower magnifications. Accordingly, a

pathologist will often only switch to a higher magnification

for complex or ambiguous cases that require a greater re-
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solving power. Conventional patch-based processing meth-

ods do not reflect this highly efficient manner in which hu-

mans navigate slides in clinical microscopy.

In this paper, we describe an approach to WSI classifi-

cation using a mechanism which restricts the use of high

resolution processing to the complex or ambiguous cases.

To this end, we construct a dynamic multi-scale WSI clas-

sification system comprising three key components: a Low

Resolution Network (LRN); an Executive Processing Unit

(EPU); and a High Resolution Network (HRN). Inspired by

the efficient screening techniques used in manual IIF mi-

croscopy, we first attempt to classify WSIs with low res-

olution features extracted from the LRN. The EPU triggers

high resolution patch-based processing iff the probability of

the class predicted at low resolution is below a prescribed

confidence threshold. We refer to this protocol as the Se-

lective Objective Switch (SOS). The contributions of this

paper are as follows:

• To our knowledge, we are the first to propose a Dy-

namic Multi-Scale WSI classification network which

regulates the use of high resolution image streams via

the uncertainty of predictions at low resolution;

• We introduce a novel learning constraint, the paradox-

ical loss, to discourage asynchronous optimization of

the LRN and HRN during training;

• Finally, we will release our novel dataset1 of 684 LKS

WSIs to the community. This will be the first publicly

available dataset for multi-tissue IIF WSI analysis.

2. Related Works

The current methods used for WSI analysis can be

broadly classed into patch-level, conventional multi-scale,

and dynamic multi-scale image processing.

Patch-Level Methods. To classify a WSI from patches,

patch-level CNNs must incorporate a decision or feature

fusion method to aggregate the information from multiple

image patch sources. In [27], Xu et al. use a 3-norm

pooling method to aggregate patch-level features, extracted

from a CNN pre-trained on ImageNet [8], prior to classifica-

tion. While this method was able to outperform image-level

classification of Low-Grade Glioma (LGG) by a significant

margin, Hou et al. [16] later discovered that pooling general

patch features does not capture the heterogeneity that dif-

ferentiates subtypes of LGG. This suggests that the method

described in [27] is not suitable for fine-grained WSI clas-

sification tasks. Hou et al. were able to achieve fine-

grained classification of LGG subtypes by applying fine-

tuning to the CNNs during training and deriving WSI classi-

fications from aggregated predictions on individual patches

1https://github.com/cradleai/LKS-Dataset

[16]. However, this assumes that a WSI can be classified

based on observations made in a single patch — making

it unsuitable for classification tasks that require correlating

features from multiple locations in a WSI.

Conventional Multi-Scale Methods. Multi-scale net-

works provide a means of capturing spatial context in WSIs

without compromising on detail. Due to the small receptive

field, a single WSI patch may contain little to no contextual

information [4, 25]. This is not a major hindrance to cancer

classification on many popular datasets [1, 2, 3, 17]; as these

WSIs are classified based on cellular mutations observable

at the patch-level. However, for tasks that require analy-

sis of a broader WSI context, capturing long range spatial

dependencies is of vital importance [4, 22, 25].

An obvious way to capture long range dependencies in

CNNs would be to increase the size of input patches as de-

scribed by Pinheiro and Collobert [20]. However, in the

case of gigapixel WSIs, complex long range dependencies

may span across tens of thousands of pixels. Without down-

sampling, capturing them with larger input patches is com-

putationally impossible. Multi-scale networks resolve this

problem by using multiple input streams to capture different

levels of detail [4, 11, 22].

Ghafoorian et al. [11] proposed a multi-scale late fusion

pyramid architecture where low resolution image streams

with a large field of view (FOV) were used to capture spatial

context, while high resolution image streams with a smaller

FOV captured the finer details. Although this approach is

effective at capturing different levels of detail, Sirinukun-

wattana et al. [22] showed that using long short-term mem-

ory (LSTM) units [15] to integrate features from multiple

scales is more robust to noise, less sensitive to the order

of inputs and generally more accurate than the late fusion

method used by Ghafoorian et al. [11]. While both of

these multi-scale approaches perform better than traditional

single-scale patch-level methods [22], incorporating addi-

tional image data at different resolutions increases the com-

putational cost of WSI analysis.

Dynamic Multi-Scale Methods. The major disadvan-

tage of using conventional multi-scale methods is the over-

whelming redundancies in the visual information fed into

these systems. In this paper, we refer to techniques that

regulate the degree of information received from different

image scales as dynamic multi-scale methods.

Excessive fixation on diagnostically irrelevant WSI fea-

tures is thought to be the reason why novice pathologists

are considerably slower and less accurate than experts; who

direct their attention to highly discriminative regions [5].

BenTaib and Hamarneh [4] showed that multi-scale net-

works behave in a similar manner. Using recurrent visual

attention, they outperform classification models trained on

thousands of patches by selecting only 42 highly discrim-

inate patches at various scales. Similar improvements are
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Figure 2: Framework of the SOS protocol. Dashed lines indicate the residual connection between the LRN and HRN.

observed in pixel-wise WSI classification tasks. Tokunaga

et al. [25] found that subtypes of lung adenocarcinoma have

different optimal resolutions for observing discriminatory

features. By dynamically adapting the weight of features

from multiple image scales, they could focus on the most

discriminative features for detecting the type of cancer le-

sion. While both of these methods are capable of adapting

to the most relevant features in an image, neither adjust the

number of patches used, and hence, processing time [13], to

suit the individual requirements of each WSI.

The most similar work to ours is from Dong et al. [9],

who proposed training a policy network [23] based on the

ResNet18 architecture [14] to decide whether to use high

or low resolution image scales to process a WSI. Although

this resulted in faster processing time for WSI segmenta-

tion tasks [9], there are several disadvantages of using this

approach for WSI classification. Firstly, training a sepa-

rate policy network to decide on which image scale to use

introduces a significant number of model parameters. In

contrast, our decision protocol is based on the predictive

confidence at low resolution, thus avoiding the redundant

first pass through a policy network. Secondly, their high

resolution pathway does not incorporate features from low

resolution image scales. In effect, the ability to capture

long range spatial dependencies is significantly impaired

[11, 22]. However, we overcome this problem by recy-

cling feature maps from the low resolution pathway to in-

corporate spatial context information. Finally, even though

Dong et al computed the error for both the low resolution

and high resolution image scale pathways during training,

they only updated the parameters of a single pathway for

each instance — which is computationally wasteful. In

our method, all image scale pathways are updated for each

training instance.

3. Selective Objective Switch

As illustrated in Figure 2, the aim of the SOS protocol

is to avoid excessive high resolution patch-level processing

for WSIs that can be classified confidently at the image-

level. To this end, we train an EPU to serve as a controller

that decides whether the LRN or HRN is used to classify

a given WSI. We describe the details of these components

and our optimization protocol below.

3.1. Model Framework

Low Resolution Network. Depending on the path cho-

sen by the EPU, the LRN can serve as either a WSI classi-

fier, or a feature extractor for the HRN. The LRN receives

a downscaled WSI, s ∈ R
H×W×C , as input to a ResNet18

based feature extractor, φs, to compute a high level feature

vector v as:

φs(s) = v ∈ R
1×d, (1)

where d = 512 is the number of output channels from the

penultimate layer of ResNet18 [14].

Executive Processing Unit. The EPU is located at the

terminal end of the LRN where it receives v as input and

estimates a set of class probabilities Nφs
= {Ns1, ..., Nsn},

where n is number of WSI classes. To compute Nφs
, we

apply a linear transformation to v followed by the softmax

function σ:

Nφs
= σ

(

vAT
s + bs

)

, (2)

where As ∈ R
n×d and bs ∈ R

n are parameters learned by

the network. The element with the highest value in Nφs
is

compared to a confidence threshold c in the range [0, 1] to

determine the flow of downstream operations.

Algorithm 1 EPU Switch Statement

1: if max (Nφs
) > c then

2: q = argmax (Nφs
)

3: else

4: q = argmax (φh(v))
5: end if

As shown in Algorithm 1, the high confidence esti-

mations immediately compute the class label q using the
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Figure 3: Visualization of patch selection in the HRN. Red

boxes indicate undesirable selections of non-tissue regions.

argmax function while the low confidence estimations trig-

ger additional processing by the HRN φh. The details of the

φh function are outlined below.

High Resolution Network. The HRN, φh, comprises

three main subcomponents; a patch selector φa, a patch-

level feature extractor φp, and a Gated Recurrent Unit

(GRU) φg [6]. The patch selector function φa is based

on the stochastic hard attention mechanism proposed by

Xu et al. [26]. Specifically, the indices of elements in

S = {S1, ..., SP }, Sp ∈ R
H×W×C are treated as interme-

diate latent variables where S is the set of P high resolu-

tion patches derived from the full resolution WSI. We then

estimate a Multinoulli distribution X as a function of the

image-level WSI features v:

X = σ
(

vAT
p + bp

)

, (3)

where Ap ∈ R
P×d and bp ∈ R

P are parameters learned

by the network. The indices of the K highest elements

in X are used to sample the set of discriminate patches

F = {St1 , ..., StK}, Stk ∈ S . The value of K is limited

by the maximum capacity of the GPU. In our experiments

the upper limit of K is 10. A set of patch-level feature vec-

tors V = {V1, ..., VK} are then extracted by applying the φp

function to each element in F . The architecture of φp is a

clone of φs. The reason for using a separate network to ex-

tract features from the high resolution patches is that CNNs

are not robust to changes in scales [21]. Thus, the objective

of φp becomes:

φp(F) = {V1, ..., VK}, Vp ∈ R
1×d. (4)

The φg function receives V and v (via the residual con-

nection to φs illustrated in Figure 2) as input and com-

putes M ∈ R
2d, where M is a multi-scale representa-

tion of the WSI. The design of φg is similar to the late

fusion multi-stream LSTM architecture described in [22],

however, we substitute the LSTM for a GRU cell as they

have been observed to achieve comparable performance at

a lower computational cost [7]. The GRU cell, with hidden

state h ∈ R
d, is first initialized with the image-level feature

vector (v), and subsequently receives a patch image feature

vector in V each time step for a total of K time steps. The fi-

nal state of the GRU cell is concatenated with v to construct

M . Finally, we compute the class label q as follows:

Nφh
= σ

(

MAT
m + bm

)

, (5)

q = argmax (Nφh
) , (6)

where Am ∈ R
n×2d and bm ∈ R

n are parameters learned

by the network and Nφh
= {Nh1, ..., Nhn} is the set of

estimated class probabilities.

3.2. Optimization Protocol

Our model is trained by optimizing three loss terms:

classification loss; paradoxical loss; and executive loss.

During training, the EPU always triggers HRN processing

to optimize the classification accuracy of both networks.

During inference, the EPU uses the switch statement in Al-

gorithm 1 to decide on a single path. We describe the details

of our optimization protocol below.

Classification Loss. The classification loss L1 is the

summation of two cross entropy loss terms: a low resolu-

tion cross entropy loss Lce1 ; and a high resolution cross

entropy loss Lce2 . The purpose of Lce1 is to maximize the

classification accuracy when inferring the class label q from

the LRN probability distribution Nφs
:

Lce1 =
1

B

B
∑

o=1

(

−
n
∑

i=1

yo,i log(Nso,i)

)

, (7)

where B = 4 is the mini-batch size, i is the class label,

o is the observed WSI, y is a binary indication that i is the

ground truth label for o, and Nso,i is the probability that

o = i if predicted by the LRN. The purpose of Lce2 is to

maximize the classification accuracy when inferring q from

the HRN probability distribution Nφh
. The Lce2 term is

the same as Equation 7, except we use probabilities in Nφh

instead of Nφs
to calculate the cross entropy loss. The L1

loss is then computed as the sum of Lce1 and Lce2 .

Paradoxical Loss. The motivation of the paradoxical

loss L2 term is the assumption that, given M is a multi-

scale representation of image-level and patch-level features,

access to more visual detail should never decrease the per-

formance of the HRN. Thus, instances where the LRN per-

forms better than the HRN during training should be viewed

as undesirable and paradoxical. Under this assumption, we

hypothesize that if the probability of the correct class is

higher in Nφs
than in Nφh

, it must be due to either an over-
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confident LRN, or a suboptimal HRN. To deter these behav-

iors in our model we compute L2 as follows:

L2 =
1

B

B
∑

o=1

max
(

Nsx,o −Nhx,o, 0
)

, (8)

where Nsx,o and Nhx,o are the estimated probabilities of

the true class label x by the LRN and HRN respectively.

Executive Loss. The Executive Loss L3 is a weighted

sum of two novel loss terms: a hesitation loss; and a hubris-

tic loss. Its purpose is to calibrate both the confidence

threshold c (Algorithm 1) and the LRN confidence scores

to achieve the optimal trade-off between efficiency and ac-

curacy. This is crucial because confidence scores naturally

produced by neural networks may not represent true prob-

abilities [12]. Intuitively, the hesitation loss and hubristic

loss can be understood as the difference between the pre-

dicted probability value, and the value relative to c that

would have resulted in a correct action by the EPU.

The hesitation loss, Lhe, is the penalty incurred when

there is a high degree of uncertainty in correct LRN predic-

tions, resulting in redundant HRN processing. Specifically,

this describes instances when: (a) the LRN predicts the cor-

rect class label, and (b) the predicted probability value is be-

low the confidence threshold. To prevent our network from

using the HRN excessively, we penalize correct LRN pre-

dictions when the probability value is below c by computing

Lhe as follows:

Lhe =

B
∑

o=1

ys,o max (((c+ ǫ)−max (Nφs
)) , 0) , (9)

where ǫ = 10−3 is used to set the desired target above the

confidence threshold, and ys,o is the binary indicator that

argmax (Nφs
) is the correct label for observation o.

The hubristic loss Lhu is the penalty incurred when the

EPU’s decision to bypass correct HRN predictions is based

on confidently incorrect predictions by the LRN. Specifi-

cally, this describes instances when: (a) the LRN predicts

an incorrect class label; (b) the predicted probability value

is above the confidence threshold; and (c) the HRN predicts

the correct class label. To prevent this underutilization of

the HRN, we penalize incorrect LRN predictions that are

predicted with a probability value above c by computing

Lhu as:

Lhu =

B
∑

o=1

yh,o¬(ys,o)max ((max (Nφs
))− c, 0) , (10)

where yh,o is binary indicator that argmax (Nφh
) is the

correct class label for o, and ¬(ys,o) is the binary indica-

tor that argmax (Nφs
) is the incorrect class label for o.

Both Lhe and Lhu are then weighted to compute L3 as:

L3 =
1

B
(λ1Lhe + λ2Lhu) , (11)

Set Neg AMA SMA-V SMA-T Total

Train 239 106 107 27 479

Test 103 45 46 11 205

(a) The distribution of classes in the train and test set.

Size Resolution Objective Format

300GB 40000× 40000× 1 ×20 TIFF

(b) Meta-Information pertaining to the LKS dataset.

Table 1: Structure of the Liver-Kidney-Stomach Dataset.

where λ1 = 0.5 and λ2 = 1.0 are regularization terms that

set the target speed/accuracy trade-off by controlling the in-

fluence of Lhe and Lhu on L3.

Final Objective Function. The final objective function

Ltotal is computed as the sum of L1, L2, and L3 terms. By

adding L3 to the total network loss (rather than simply cal-

ibrating the threshold c), our network has the flexibility to

improve EPU decision making by: (a) adjusting c directly;

and/or (b) modifying other network parameters to have the

LRN regress confidence scores on the appropriate side of c.

4. The Liver-Kidney-Stomach Dataset

The liver auto-antibody LKS screen is critical to the

investigation of autoimmune liver disease [10, 24], how-

ever, there are currently no public WSI datasets available

for research. There are several reasons why the LKS clas-

sification task is ideal for evaluating dynamic multi-scale

networks. Firstly, compared to public bright field mi-

croscopy WSI datasets, the increased sensitivity of the im-

munoflouresence assay allows for the observation of critical

features at low resolution. Secondly, despite the increased

sensitivity of IIF, high resolution may still be required to ob-

serve certain staining patterns, particularly when antibody

concentrations are low. Finally, global structures captured

at low resolution are essential for the classification of multi-

tissue LKS WSIs. The fact that low resolution features are

necessary, but not always sufficient, for LKS classification

provides an ideal environment to validate the SOS protocol.

In collaboration with Sullivan Nicolaides Pathology, we

constructed a novel LKS dataset from routine clinical sam-

ples. To prepare the LKS slides, sections of rodent kid-

ney, stomach and liver tissue were prepared according to

the schematic in Figure 1. Patient serum was incubated on

the multi-tissue section and treated with fluorescein isoth-

iocyanate (FITC) IgG conjugate. The slides were digitized

using a monocolor camera and a x20 objective lens with a

numerical aperture of 0.8. A team of trained medical scien-

tists manually labelled the slides into one of four classes:

Negative (Neg); Anti-Mitochondrial Antibodies (AMA);
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L2 L3 K TA% ↑ IT(s) ↓ RS ↓ LP CT

X X 10 90.73 15.78 2.17 0.94 0.62

X X 5 88.29 9.74 2.17 0.92 0.60

X X 3 86.83 13.15 2.17 0.89 0.61

X 10 85.37 8.92 2.17 0.97 0.52

X 10 88.29 15.50 2.17 0.92 0.62

(a) Ablation. Classification accuracy will decrease when K is re-

duced and when L2 or L3 are omitted from the objective function.

Fusion Method TA% ↑ IT(s) ↑ RS ↓ LP CT

GRU 90.73 15.78 2.17 0.94 0.62

Average Pool 86.83 20.63 2.02 0.88 0.68

Max Pool 83.90 17.01 2.02 0.92 0.66

(b) Feature Fusion. Classification accuracy will increase when

GRU units are used to integrate multi-scale features.

Table 2: Effect of individual model components on Total

Accuracy (TA), Inference time (IT), Relative Size (RS), ra-

tio of low resolution predictions (LP) and the calibrated

confidence threshold (CT).

Vessel-Type Anti-Smooth Muscle Antibodies (SMA-V) and

Tubule-Type Anti-Smooth Muscle Antibodies (SMA-T).

The distribution of classes is provided in Table 1a and rele-

vant meta-information is provided in Table 1b.

5. Experiments

The aim of the SOS protocol is to achieve rapid WSI

classification without: (a) substantially increasing model

size; or (b) compromising on classification accuracy. Thus,

we validate the effectiveness of our method by analysing

quantitative metrics for classification accuracy, model size,

and processing speed. The design specifications for the SOS

protocol, such as the number of patches processed at high

resolution (K = 10), and the multi-image feature aggre-

gation method (GRU), were determined by the outcomes

of the ablation studies in Table 2. As described in Sec-

tion 2, the existing approaches for WSI classification can

be broadly grouped into: (a) Patch-Level; (b) Conventional

Multi-Scale; and (c) Dynamic Multi-Scale methods. We

assess the quantitative performance of our SOS protocol

against each of these commonly used methods and addition-

ally include image-level WSI classification performance for

comparison (Tables 3 and 4). We also qualitatively analyze

the outputs of our patch selection network to validate the

effectiveness of our HRN (Figures 3 and 4).

5.1. Data Preprocessing

For computational efficiency, all WSIs were prepro-

cessed into s and S prior to training and inference. To pro-

duce s where H = 1000, W = 1000 and C = 1; we down-

scale the full resolution WSIs by a factor of 40. To produce

S , we segment full resolution WSIs into non-overlapping

Method TA% ↑ RS ↓ IT(s) ↓ SB ↑ LP

Image-Level 81.95 1.00 8.37 14.59 -

Patch-Level 69.27 1.50 94.10 1.3 -

Multi-Scale 85.37 2.17 122.10 1.00 -

RDMS 88.78 3.83 57.30 2.13 0.55

SOS (ours) 90.73 2.17 15.78 7.74 0.94

Table 3: Comparison of Total Accuracy (TA), Relative Size

(RS), Inference Time (IT) and Speed Boost (SB) metrics.

The ratio of low resolution predictions (LP) is also provided

for the dynamic multi-scale classification methods.

patches with the same dimensions as s; thus, the total num-

ber of patches per WSI is 1600. Since ResNet18 [14] was

designed to be used on tricolor image inputs, we modified

the first convolutional layer to have single channel inputs to

be compatible with these monocolor images.

5.2. Method Comparison

The details of each of the methods used for comparison

are described below. All models were evaluated after train-

ing for 20 epochs using a learning rate of 10−3.

Image-Level. The Image-Level method performs clas-

sification on single-scale image-level features. Specifically,

we train a ResNet18 model [14] to directly compute the

class label (q) from downscaled WSI (s) inputs. We opti-

mize image-level classification by minimizing the cross en-

tropy loss for ground truth and predicted class probabilities.

Patch-Level. The Patch-Level method performs classi-

fication on single-scale patch-level features. The network

architecture is essentially the same as the proposed model;

however, we remove the residual connection to image-level

features. Thus, only high resolution features from the set of

K patches are used to classify the WSI. We optimize patch-

level classification by minimizing the cross entropy loss for

ground truth and predicted class probabilities.

Conventional Multi-Scale. The Conventional Multi-

Scale method performs classification on multi-scale image-

level and patch-level features. The design of the Multi-

Scale method is similar to the Patch-Level network; how-

ever, we restore the residual connection to image-level fea-

tures as shown in Figure 2. Thus, features from both low

resolution and high resolution image scales are used to clas-

sify each WSI. We optimize multi-scale classification by

minimizing the cross entropy loss for ground truth and pre-

dicted class probabilities. In this paper, we refer to this

method as Multi-Scale.

Dynamic Multi-Scale. The Dynamic Multi-Scale

method is based on the Reinforced Auto-Zoom Net (RAZN)

framework proposed by Dong et al. [9]. Specifically, we re-

move the switch statement (Algorithm 1) from the EPU and

attach a policy network, based on the ResNet architecture,
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to the front end of our model to decide whether to use the

LRN or the HRN for WSI classification. Since RAZN is de-

signed for WSI segmentation tasks, we modify the reward

function to be suitable for LKS classification as follows:

R(a) = a
Lce2 − Lce1

Lce1

, (12)

where a ∈ {0, 1}, represents the policy action to use

the LRN or HRN respectively. Thus, when a = 1 then

the reward R(a) is positive if Lce2 > Lce1 , and negative

if Lce2 < Lce1 . We then optimize the network using the

policy gradient method described in [9]. We refer to this

method as Reinforced Dynamic Multi-Scale (RDMS).

5.3. Quantitative Evaluation

Processing Speed. Processing speed is evaluated using

Inference Time (IT) and Speed Boost (SB) metrics. The IT

is a raw measurement of inference time (in seconds) on the

test dataset. SB indicates the factor by which inference time

is reduced relative to the baseline model. The model used as

the baseline for processing speed is the conventional Multi-

Scale model. The reason for selecting this model as the

baseline is because it achieved the highest accuracy among

the static classification models. Thus, it defines the baseline

speed at which the highest accuracy can be achieved without

adapting the resolution used to process each WSI.

Model Size. The model size is evaluated using the Rel-

ative Size (RS) metric. The RS metric indicates the rel-

ative increase in size compared to the simple image-level

ResNet18 classifier used as the backbone in all our multi-

scale methods e.g. an RS of 2 indicates that the model has

twice as many parameters as the simple ResNet18 classifier.

Classification Accuracy. The classification accuracy is

evaluated using the Total Accuracy (TA) metric. However,

since the majority of samples in the dataset are negative,

the TA does not provide an adequate measure of classifica-

tion performance on individual classes. To assess individual

class performance, we provide the F1 score (F1), Precision

(PR), Recall (RE), and Specificity (SP) for each of the four

WSI classes in Table 4.

6. Discussion

The results in Table 3 indicate that our proposed method

was able to reduce inference time by a factor of 7.74 while

improving classification accuracy compared to the conven-

tional multi-scale approach. The improved classification

accuracy was unexpected because the multi-scale network

processes low resolution contextual features and high reso-

lution local features for every WSI while our network only

uses single-scale low resolution features for the majority of

test samples. We suspect that training our model to use LRN

features for patch selection and classification may explain

Method F1 ↑ PR ↑ RE ↑ SP ↑

Image-Level 0.8800 0.8115 0.9612 0.7745

Patch-Level 0.7967 0.6853 0.9515 0.5588

Multi-Scale 0.9083 0.8609 0.9612 0.8431

RDMS 0.9300 0.9588 0.9029 0.9608

SOS (ours) 0.9406 0.9596 0.9223 0.9608

(a) Negative. Evaluation of Negative classification performance.

Method F1 ↑ PR ↑ RE ↑ SP ↑

Image-Level 0.8989 0.9090 0.8889 0.9750

Patch-Level 0.8471 0.9000 0.8000 0.9750

Multi-Scale 0.8706 0.9250 0.8222 0.9813

RDMS 0.9149 0.8776 0.9556 0.9625

SOS (ours) 0.9348 0.9149 0.9556 0.9750

(b) AMA. Evaluation of AMA classification performance.

Method F1 ↑ PR ↑ RE ↑ SP ↑

Image-Level 0.6667 0.7368 0.6087 0.9371

Patch-Level 0.2353 0.3636 0.1739 0.912

Multi-Scale 0.7778 0.7955 0.7609 0.9434

RDMS 0.8367 0.7885 0.8913 0.9308

SOS (ours) 0.8542 0.8200 0.8913 0.9434

(c) SMA-V. Evaluation of SMA-V classification performance.

Method F1 ↑ PR ↑ RE ↑ SP ↑

Image-Level 0.1667 1.000 0.0909 1.000

Patch-Level 0.0000 0.0000 0.000 1.000

Multi-Scale 0.4706 0.6667 0.3636 0.9897

RDMS 0.5556 0.7143 0.4545 0.9897

SOS (ours) 0.7000 0.7778 0.6364 0.9897

(d) SMA-T. Evaluation of SMA-T classification performance.

Table 4: Evaluation of F1 scores, Precision (PR), Recall

(RE) and Specificity (SP) for each of the four WSI classes.

the improved accuracy as it has been shown that jointly

learning the tasks of detection and classification have a ben-

eficial effect on model performance [19].

The RDMS method was also shown to improve accu-

racy and reduce inference time. However, as shown in Ta-

ble 3, adding the additional policy network has introduced

significantly more parameters than our proposed method.

The limitations of using RDMS for classification tasks are

demonstrated clearly by the LP of 0.55; meaning only 55%
of samples in the test dataset were classified at low resolu-

tion compared to our 94%. The fact that our model still

achieved a higher accuracy when processing fewer sam-

ples at high resolution indicates that RDMS is using the

HRN excessively. This behavior was expected because the

policy reward in RDMS (Equation 12) is always zero un-

less the “zoom” (HRN processing) action is sampled. This

means there is an incentive to utilize HRN processing when-

ever the incurred loss is lower than the LRN prediction i.e.
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Negative

Figure 4: Examples of WSI patch regions sampled by the HRN for each of the WSI classes. The sampled patch regions

are provided in low (top) and high (bottom) resolution to compare the different levels of detail at each scale. The colored

arrows indicate examples where diagnostically significant features could not be resolved at the lower resolution. At the LRN

input resolution, it is difficult to observe the fine granular staining of mitochondria (yellow arrow) and virtually impossible

to resolve the staining of smooth muscle actin fibres in the stomach (red arrow) and kidney (blue arrow). However, in the

corresponding high resolution patches sampled by the HRN, these distinguishing features are clearly visible.

Lce2 < Lce1 . However, in classification tasks, a lower cross

entropy loss is not a perfect estimate of classification accu-

racy because the LRN may still reliably predict the correct

class label. In our method, we encourage the network to

maximize the use of LRN for classification in these cases

by minimizing Lhe (Equation 9). Thus, we could classify

WSIs significantly faster than RDMS without compromis-

ing on classification accuracy.

Figure 4 provides examples of sampled patches for each

of the WSI classes. At low resolution, it is virtually im-

possible to resolve the fine smooth muscle actin fibres in

SMA-T and SMA-V patches. The staining of actin fibres is

an essential diagnostic feature of smooth muscle antibodies

[10]. The inability to resolve these fibres at low resolution

likely explains why the F1 scores for these classes are sub-

stantially lower with the Image-Level classifier than with

the Multi-Scale, RDMS and SOS methods; which all incor-

porate high resolution WSI features (Table 4). The Patch-

Level method also has access to the high resolution WSI

features; however, without any spatial context features from

the low resolution WSI, it obtained the lowest classification

accuracy of all tested methods (Table 3).

While the HRN clearly improves the accuracy of our

model, the hard patch attention mechanism often selects

patches containing no tissue at all (Figure 3). The selec-

tion of undesirable patches likely explains why average and

max pooling methods do not perform as well as the gated

recurrent unit for aggregating multi-image features (Table

2) — as recurrent neural networks are known to be more

robust to noisy WSI patches [22].

From the ablation studies in Table 2, it is clear that re-

ducing the number of patches processed by the HRN will

have an adverse effect on classification accuracy. Omitting

the paradoxical loss (L2) during training also results in a

significant drop in classification accuracy. The paradoxi-

cal loss is used to prevent overconfident estimates by the

LRN; without it, the model becomes biased towards classi-

fying examples at low resolution (as indicated by the LP of

0.97). A smaller reduction in classification accuracy is also

observed when the executive loss term (L3) was omitted

during training. The executive loss term helps regulate the

network to regress class probability estimates on the appro-

priate side of the decision boundary. Without the executive

loss, class probabilities can be estimated without feedback

on how they affected EPU decisions; which can result in the

suboptimal image scale being selected to classify a WSI.

7. Conclusion

In this paper, we show that it is possible to reduce in-

ference time in WSI classification tasks, without compro-

mising on accuracy, by restricting high resolution patch-

based processing to cases that cannot be classified confi-

dently at low resolution. The effectiveness of our proposed

SOS protocol is demonstrated on the LKS dataset; which

presents the challenging task of finding the optimal trade-

off between low resolution WSI processing and patch-based

processing. To evaluate the generalizability of the proposed

framework, in future works, we will perform experiments

on a variety of IIF WSI datasets that are being assembled in

collaboration with Sullivan Nicolaides Pathology.
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